CN211086757U - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
CN211086757U
CN211086757U CN201921709821.7U CN201921709821U CN211086757U CN 211086757 U CN211086757 U CN 211086757U CN 201921709821 U CN201921709821 U CN 201921709821U CN 211086757 U CN211086757 U CN 211086757U
Authority
CN
China
Prior art keywords
lens
imaging system
optical imaging
image
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921709821.7U
Other languages
English (en)
Inventor
李洋
贺凌波
赵烈烽
戴付建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201921709821.7U priority Critical patent/CN211086757U/zh
Application granted granted Critical
Publication of CN211086757U publication Critical patent/CN211086757U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本申请公开了一种光学成像系统,其沿光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面为凹面,像侧面为凸面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有负光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;第一透镜的物侧面至第六透镜的像侧面中至少一个面为非旋转对称的非球面。

Description

光学成像系统
技术领域
本申请涉及光学元件领域,更具体地,涉及一种光学成像系统。
背景技术
近年来,随着科学技术的发展,市场对适用于便携式电子产品的光学成像系统的需求逐渐增加。例如手机,且其成像质量已经成为评价智能手机性能的一个重要因素。
人们对电子产品成像品质的越来越高的要求,使得光学成像系统不断升级换代,而用于便携式电子产品的光学成像系统设计难度较大。例如广角光学系统的光学畸变和TV畸变较大,得到的图像失真严重。通常较难校正广角光学系统的这些畸变,而且对轴外像差和弧矢像差的校正也比较困难。
因此期望一种能够兼顾大视角、低畸变及低像差的光学成像系统。
实用新型内容
本申请提供了一种光学成像系统,其沿光轴由物侧至像侧依序包括:具有负光焦度的第一透镜,其物侧面可为凹面,像侧面可为凸面;具有负光焦度的第二透镜;具有光焦度的第三透镜;具有负光焦度的第四透镜;具有光焦度的第五透镜;具有光焦度的第六透镜;第一透镜的物侧面至第六透镜的像侧面中至少一个面可为非旋转对称的非球面。
在一个实施方式中,第六透镜的物侧面及第六透镜的像侧面可都为非旋转对称的非球面,第六透镜的物侧面的X轴方向的曲率半径R11x与第六透镜的像侧面的X轴方向的曲率半径R12x 可满足0.5<R11x/R12x<1.5。
在一个实施方式中,第一透镜的有效焦距f1与第三透镜的有效焦距f3可满足-6.0<f1/f3< -3.0。
在一个实施方式中,第一透镜的物侧面的曲率半径R1与第一透镜的像侧面的曲率半径R2 可满足1.5≦R2/R1≦3.0。
在一个实施方式中,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4 可满足1.0<R3/R4<1.5。
在一个实施方式中,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6 可满足-3.5<R5/R6<-1.0。
在一个实施方式中,第五透镜的像侧面的曲率半径R10、第六透镜的物侧面的曲率半径R11 以及第六透镜的像侧面的曲率半径R12可满足-2.0<R10/(R11+R12)<-0.5。
在一个实施方式中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2 以及第五透镜在光轴上的中心厚度CT5可满足1.5<CT5/(CT1-CT2)<3.0。
在一个实施方式中,第三透镜在光轴上的中心厚度CT3、第五透镜在光轴上的中心厚度CT5 以及第六透镜在光轴上的中心厚度CT6可满足1.0<(CT5+CT6)/CT3<2.0。
在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离T12、第二透镜和第三透镜在光轴上的间隔距离T23、第三透镜和第四透镜在光轴上的间隔距离T34以及第四透镜和第五透镜在光轴上的间隔距离T45可满足2.1<(T23+T34)/(T12+T45)<3.7。
在一个实施方式中,光学成像系统的最大视场角的一半Semi-FOV可满足Semi-FOV>50°。
本申请采用了六片透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像系统具有大视角、低畸变或低像差等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像系统的结构示意图;
图2示意性示出了实施例1的光学成像系统的RMS光斑直径在第一象限内的情况;
图3示出了根据本申请实施例2的光学成像系统的结构示意图;
图4示意性示出了实施例2的光学成像系统的RMS光斑直径在第一象限内的情况;
图5示出了根据本申请实施例3的光学成像系统的结构示意图;
图6示意性示出了实施例3的光学成像系统的RMS光斑直径在第一象限内的情况;
图7示出了根据本申请实施例4的光学成像系统的结构示意图;
图8示意性示出了实施例4的光学成像系统的RMS光斑直径在第一象限内的情况;
图9示出了根据本申请实施例5的光学成像系统的结构示意图;
图10示意性示出了实施例5的光学成像系统的RMS光斑直径在第一象限内的情况。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
在本文中,我们定义平行于光轴的方向为Z轴方向,与Z轴垂直且位于子午平面内的方向为 Y轴方向,与Z轴垂直且位于弧矢平面内的方向为X轴方向。除非另有说明,否则本文中除涉及视场的参量符号以外的各参量符号(例如,曲率半径等)均表示沿光学成像系统的Y轴方向的特征参量值。例如,在没有特别说明的情况下,fx表示光学成像系统的X轴方向的曲率半径,fy 表示光学成像系统的Y轴方向的曲率半径。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像系统可包括例如六片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴由物侧至像侧依序排列。在第一透镜至第六透镜中,任意相邻两透镜之间均可具有空气间隔。
在示例性实施方式中,第一透镜可具有负光焦度,其物侧面可为凹面,像侧面可为凸面。通过使第一透镜的光焦度和面型匹配,有利于使第一透镜具有良好的可加工性。
在示例性实施方式中,第二透镜可具有负光焦度。负光焦度的第二透镜有利于矫正光学成像系统的轴外像差并提升成像质量。
在示例性实施方式中,第三透镜可具有正光焦度或负光焦度;第四透镜可具有负光焦度;第五透镜可具有正光焦度或负光焦度;第六透镜可具有正光焦度或负光焦度。通过合理地控制系统的各个组元的光焦度的正负分配和镜片面型曲率,可有效的平衡控制系统的低阶像差,且有利于降低光学成像系统对公差的敏感性,并提升解像力。其中,负光焦度的第四透镜有利于降低光学成像系统的公差敏感性。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第六透镜的像侧面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
在示例性实施方式中,第一透镜至第六透镜中至少一个透镜的物侧面或像侧面是非旋转对称的非球面。非旋转对称的非球面是在旋转对称的非球面基础上增加了非旋转对称分量,非旋转对称的非球面镜面有利于减少光学畸变和TV畸变,并且有利于矫正光学成像系统的轴外子午像差和弧矢像差,提高光学成像系统的成像质量。可选地,第六透镜的物侧面和像侧面均为非旋转对称的非球面。
在示例性实施方式中,本申请的光学成像系统可满足条件式0.5<R11x/R12x<1.5,其中, R11x是第六透镜的物侧面的X轴方向的曲率半径,R12x是第六透镜的像侧面的X轴方向的曲率半径。更具体地,R11x与R12x可满足0.93<R11x/R12x<1.45。通过控制第六透镜的两个镜面为非旋转对称的非球面,且第六透镜的两个镜面在X轴方向上的曲率半径之比,可以控制第六透镜的曲率,进而有利于矫正光学成像系统的轴外弧矢像差,并提升光学成像系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式-6.0<f1/f3<-3.0,其中,f1 是第一透镜的有效焦距,f3是第三透镜的有效焦距。更具体地,f1与f3可满足-5.8<f1/f3<-3.4。通过控制第一透镜的有效焦距和第三透镜的有效焦距的比值,有利于使第一透镜的光焦度与第三透镜的光焦度匹配,使第一透镜和第三透镜都具有良好的利于加工的形态,并有利于分担物方的大视场,同时还有利于矫正第三透镜的像侧方向的透镜产生的轴外像差,进而有利于提升光学成像系统的成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.5≦R2/R1≦3.0,其中,R1 是第一透镜的物侧面的曲率半径,R2是第一透镜的像侧面的曲率半径。通过控制第一透镜的物侧面与像侧面的曲率半径之比,有利于使光学成像系统的高级球差得到平衡,并且降低光学成像系统的敏感性。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.0<R3/R4<1.5,其中,R3 是第二透镜的物侧面的曲率半径,R4是第二透镜的像侧面的曲率半径。更具体地,R3与R4可满足1.1<R3/R4<1.4。通过控制第二透镜的物侧面的曲率半径与其像侧面的曲率半径的比值,有利于使第二透镜的两个侧面的曲率半径匹配,进而有利于矫正光学成像系统的轴外像差,有利于提升成像质量。
在示例性实施方式中,本申请的光学成像系统可满足条件式-3.5<R5/R6<-1.0,其中, R5是第三透镜的物侧面的曲率半径,R6是第三透镜的像侧面的曲率半径。更具体地,R5与R6 可满足-3.35<R5/R6<-1.25。通过控制第三透镜的物侧面及其像侧面的曲率半径之比,有利于控制光学成像系统的畸变,进而使光学成像系统具有较好的成像品质。
在示例性实施方式中,本申请的光学成像系统可满足条件式-2.0<R10/(R11+R12)<-0.5,其中,R10是第五透镜的像侧面的曲率半径,R11是第六透镜的物侧面的曲率半径,R12是第六透镜的像侧面的曲率半径。更具体地,R10、R11以及R12可满足-1.99<R10/(R11+R12)<-0.60。通过使第五透镜的像侧面的曲率半径、第六透镜的物侧面的曲率半径以及第六透镜的像侧面的曲率半径匹配,有利于矫正光学成像系统的色差,同时能够使各像差之间平衡。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.5<CT5/(CT1-CT2)<3.0,其中,CT1是第一透镜在光轴上的中心厚度,CT2是第二透镜在光轴上的中心厚度,CT5是第五透镜在光轴上的中心厚度。更具体地,CT1、CT2以及CT5可满足1.6<CT5/(CT1-CT2)<2.7。通过使第一透镜、第二透镜及第五透镜三者的中心厚度匹配,有利于控制第一透镜及第二透镜在光学成像系统内部空间占据的比例,进而有利于保证各个透镜组装时的工艺性,并且有利于使光学成像系统具有小型化的特性。
在示例性实施方式中,本申请的光学成像系统可满足条件式1.0<(CT5+CT6)/CT3<2.0,其中,CT3是第三透镜在光轴上的中心厚度,CT5是第五透镜在光轴上的中心厚度,CT6是第六透镜在光轴上的中心厚度。更具体地,CT3、CT5以及CT6可满足1.4<(CT5+CT6)/CT3<1.9。通过控制第三透镜、第五透镜以及第六透镜三者的中心厚度匹配,有利于使各透镜的厚度均衡匹配,同时有利于保证各个透镜组装时的工艺性,并且有利于减小光学成像系统的像差,此外还可以缩短光学成像系统的光学总长。
在示例性实施方式中,本申请的光学成像系统可满足条件式2.1<(T23+T34)/(T12+T45) <3.7,其中,T12是第一透镜和第二透镜在光轴上的间隔距离,T23是第二透镜和第三透镜在光轴上的间隔距离,T34是第三透镜和第四透镜在光轴上的间隔距离,T45是第四透镜和第五透镜在光轴上的间隔距离。更具体地,T12、T23、T34以及T45可满足2.15<(T23+T34)/(T12+T45) <3.65。通过使第一透镜至第五透镜中相邻透镜之间的间隔距离匹配,有利于避免光学成像系统中的光线偏折过大,同时有利于降低光学成像系统的组装难度。
在示例性实施方式中,本申请的光学成像系统可满足条件式Semi-FOV>50°,其中, Semi-FOV是光学成像系统的最大视场角的一半。更具体地,Semi-FOV可满足Semi-FOV>56°。通过控制光学成像系统的板市场较,有利于增加光学成像系统获得的物方信息。
在示例性实施方式中,上述光学成像系统还可包括至少一个光阑。光阑可根据需要设置在适当位置处,例如,设置在第二透镜与第三透镜之间。可选地,上述光学成像系统还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小成像系统的体积、降低成像系统的敏感度并提高成像系统的可加工性,使得光学成像系统更有利于生产加工并且可适用于便携式电子产品。同时,本申请的光学成像系统还具备小型化的特性以及大视角、低像差、低畸变等优良光学性能。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像系统的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像系统不限于包括六个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2描述根据本申请实施例1的光学成像系统。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和滤光片E7。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面 S13和像侧面S14。光学成像系统具有成像面S15,来自物体的光依序穿过各表面S1至S14 并最终成像在成像面S15上。
表1示出了实施例1的光学成像系统的基本参数表,其中,曲率半径Y、曲率半径X、厚度/距离和焦距的单位均为毫米(mm)。
Figure DEST_PATH_GDA0002269252340000051
Figure DEST_PATH_GDA0002269252340000061
表1
在实施例1中,光学成像系统的总有效焦距f的值是2.56mm,第一透镜E1的物侧面S1 至成像面S15的轴上距离TTL的值是6.74mm,成像面S15上有效像素区域对角线长的一半ImgH的值是3.91mm,以及最大视场角的一半Semi-FOV的值是57.1°,光学成像系统的光圈数Fno的值是2.04。
在实施例1中,第一透镜E1至第五透镜E5中的任意一个透镜的物侧面和像侧面均为旋转对称的非球面,各旋转对称的非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure DEST_PATH_GDA0002269252340000062
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数; Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1至S10 的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.1109E+00 -8.1263E-02 6.8602E-02 -2.6895E-03 9.7475E-03 4.2913E-04 1.6344E-03 1.4084E-04 2.1987E-04
S2 7.6298E-01 -1.2380E-01 2.1404E-02 -4.5136E-03 2.2445E-03 -1.6612E-03 -5.5150E-04 -3.9637E-04 -8.9727E-05
S3 4.7368E-04 -6.1764E-02 1.8420E-02 -1.4244E-03 4.7614E-04 -7.4723E-04 2.1537E-04 -4.7180E-05 3.1220E-06
S4 4.4850E-02 1.1779E-03 4.0628E-03 1.1898E-03 5.0779E-04 1.5846E-04 9.4744E-05 2.9099E-05 4.5171E-06
S5 7.9216E-03 -1.3996E-03 -3.4470E-05 3.3892E-05 1.9267E-05 1.5615E-05 7.7163E-06 -1.4999E-06 -3.5202E-06
S6 -1.5502E-01 1.0651E-02 -2.3810E-03 3.6610E-04 -8.3606E-05 2.1727E-05 6.9028E-06 -1.1848E-06 1.4477E-07
S7 -2.5341E-01 1.8074E-02 -2.5808E-03 1.7889E-04 -1.2392E-04 4.5274E-05 -5.1993E-07 1.4167E-05 -4.0543E-06
S8 -1.3710E-01 2.9988E-02 -3.5300E-03 4.1916E-04 -3.1666E-04 1.0948E-04 9.3227E-05 2.3927E-05 -2.9357E-05
S9 1.8973E-01 -1.4180E-02 2.5511E-03 1.5135E-03 -5.6658E-04 -5.0924E-05 -3.8606E-05 6.6097E-05 -1.6902E-05
S10 8.1387E-02 8.3293E-02 -1.3458E-02 7.2119E-03 -4.0030E-04 1.0092E-03 -5.1397E-04 -1.1086E-04 4.0679E-05
表2
由表1还可以看出,第六透镜E6的物侧面S11及像侧面S12为非旋转对称的非球面(即,AAS面),非旋转对称的非球面的面型可利用但不限于以下非旋转对称的非球面公式进行限定:
Figure DEST_PATH_GDA0002269252340000071
其中,z为平行于Z轴方向的面的矢高;CUX、CUY分别为X、Y轴方向面顶点的曲率(曲率是曲率半径的倒数);KX、KY分别为X、Y轴方向的圆锥系数;AR、BR、CR、DR、 ER、FR、GR、HR、JR分别为非球面旋转对称分量中的4阶、6阶、8阶、10阶、12阶、 14阶、16阶、18阶、20阶系数;AP、BP、CP、DP、EP、FP、GP、HP、JP分别为非球面非旋转对称分量中的4阶、6阶、8阶、10阶、12阶、14阶、16阶、18阶、20阶系数。下表3、表4分别给出了可用于实施例1中的非旋转对称的非球面S11、S12的旋转对称分量以及非旋转对称分量的各高阶系数。
AAS面 AR BR CR DR ER FR GR HR JR
S11 -2.4765E-01 2.5216E-01 -2.1628E-01 1.3008E-01 -5.3548E-02 1.5016E-02 -2.7988E-03 3.1399E-04 -1.5836E-05
S12 -1.1182E-01 6.9358E-02 -3.3358E-02 1.1065E-02 -2.4614E-03 3.5925E-04 -3.3148E-05 1.7589E-06 -4.0913E-08
表3
AAS面 AP BP CP DP EP FP GP HP JP
S11 9.1676E-03 5.3338E-03 1.4470E-03 -2.2736E-04 -1.5959E-04 6.6965E-04 1.4332E-03 1.7032E-03 1.4856E-03
S12 2.9413E-02 2.1148E-02 1.0541E-02 3.9658E-03 8.1261E-04 -4.3536E-04 -8.3448E-04 -9.5510E-04 -1.0527E-03
表4
图2示出了实施例1的光学成像系统的RMS光斑直径在第一象限内不同像高位置处的大小情况。图2示出了RMS光斑直径与真实光线像高的关系。图2中,X真实光线高度与Y真实光线高度均以毫米(mm)为单位,最小的RMS光斑直径为0.0022423mm,最大的 RMS光斑直径为0.016991mm,RMS光斑直径的均值为0.0055281mm,RMS光斑直径的标准差为0.0034366mm。根据图2可知,实施例1所给出的光学成像系统能够实现良好的成像品质。
实施例2
以下参照图3至图4描述根据本申请实施例2的光学成像系统。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像系统的结构示意图。
如图3所示,光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和滤光片E7。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面 S13和像侧面S14。光学成像系统具有成像面S15,来自物体的光依序穿过各表面S1至S14 并最终成像在成像面S15上。
在实施例2中,光学成像系统的总有效焦距f的值是2.51mm,第一透镜E1的物侧面S1 至成像面S15的轴上距离TTL的值是6.74mm,成像面S15上有效像素区域对角线长的一半ImgH的值是3.90mm,以及最大视场角的一半Semi-FOV的值是56.9°,光学成像系统的光圈数Fno的值是2.00。
表5示出了实施例2的光学成像系统的基本参数表,其中,曲率半径Y、曲率半径X、厚度/距离和焦距的单位均为毫米(mm)。表6示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表7、表8分别示出了可用于实施例2中非旋转对称的非球面S11、S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2)限定。
Figure DEST_PATH_GDA0002269252340000081
表5
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.2827E+00 -1.0539E-01 8.3669E-02 -9.2839E-03 1.2090E-02 -7.5930E-04 1.8862E-03 -8.4650E-05 2.3299E-04
S2 9.8040E-01 -1.1333E-01 5.1740E-02 -7.3987E-03 6.3029E-03 -4.7635E-05 1.2484E-03 1.8971E-05 1.1417E-04
S3 1.4631E-01 -1.0535E-01 2.9436E-02 -7.4463E-03 3.3215E-03 -1.2821E-03 3.5404E-04 -3.2084E-04 9.4979E-05
S4 -5.2647E-02 1.7705E-02 -8.1443E-03 2.3381E-03 -6.7657E-04 -8.7703E-05 1.3511E-04 -8.9862E-05 -1.1162E-05
S5 1.6704E-02 -2.7444E-03 -5.2314E-04 -5.2774E-05 2.0419E-05 9.7124E-06 1.5042E-06 -8.2412E-06 -1.9441E-06
S6 -3.0844E-01 1.9357E-02 -6.9625E-03 1.0251E-03 -1.6911E-04 -9.9726E-05 1.1516E-04 -2.7993E-05 -1.5227E-06
S7 -3.1914E-01 3.9976E-03 5.4614E-03 1.6811E-03 1.8346E-03 -6.4557E-04 1.8143E-04 -8.2970E-05 -2.7008E-05
S8 3.0875E-03 -2.8106E-02 1.8043E-02 -4.6478E-03 5.1239E-03 -1.6700E-03 8.7630E-04 -1.0929E-04 3.5955E-06
S9 4.0737E-01 -4.2987E-02 1.3192E-02 -1.3353E-02 1.9761E-03 -2.3893E-03 -1.4407E-04 -2.3697E-05 -1.8548E-04
S10 -1.7810E-01 1.8172E-01 -4.6266E-02 -1.5404E-02 -6.4839E-03 5.0566E-03 6.9600E-05 -2.7382E-04 -4.2156E-04
表6
AAS面 AR BR CR DR ER FR GR HR JR
S11 -2.8974E-01 2.5451E-01 -2.1611E-01 1.3026E-01 -5.3510E-02 1.5015E-02 -2.8005E-03 3.1366E-04 -1.5809E-05
S12 -1.2675E-01 7.2269E-02 -3.3740E-02 1.1070E-02 -2.4577E-03 3.5922E-04 -3.3184E-05 1.7584E-06 -4.0725E-08
表7
AAS面 AP BP CP DP EP FP GP HP JP
S11 -2.8283E-03 -1.8326E-03 -5.9340E-04 -4.8974E-04 -9.9759E-05 6.9375E-04 1.4104E-03 1.6920E-03 1.5228E-03
S12 8.7364E-02 3.9449E-02 1.4679E-02 4.5333E-03 7.5452E-04 -4.4923E-04 -7.8040E-04 -9.4536E-04 -1.1958E-03
表8
图4示出了实施例2的光学成像系统的RMS光斑直径在第一象限内不同像高位置处的大小情况。图4示出了RMS光斑直径与真实光线像高的关系。图4中,X真实光线高度与 Y真实光线高度均以毫米(mm)为单位,最小的RMS光斑直径为0.003635mm,最大的 RMS光斑直径为0.013891mm,RMS光斑直径的均值为0.0067641mm,RMS光斑直径的标准差为0.0023681mm。根据图4可知,实施例2所给出的光学成像系统能够实现良好的成像品质。
实施例3
以下参照图5至图6描述了根据本申请实施例3的光学成像系统。图5示出了根据本申请实施例3的光学成像系统的结构示意图。
如图5所示,光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和滤光片E7。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面 S13和像侧面S14。光学成像系统具有成像面S15,来自物体的光依序穿过各表面S1至S14 并最终成像在成像面S15上。
在实施例3中,光学成像系统的总有效焦距f的值是2.51mm,第一透镜E1的物侧面S1 至成像面S15的轴上距离TTL的值是6.74mm,成像面S15上有效像素区域对角线长的一半ImgH的值是3.90mm,以及最大视场角的一半Semi-FOV的值是56.8°,光学成像系统的光圈数Fno的值是2.00。
表9示出了实施例3的光学成像系统的基本参数表,其中,曲率半径Y、曲率半径X、厚度/距离和焦距的单位均为毫米(mm)。表10示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表11、表12 分别示出了可用于实施例3中非旋转对称的非球面S11、S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2) 限定。
Figure DEST_PATH_GDA0002269252340000091
Figure DEST_PATH_GDA0002269252340000101
表9
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.2031E+00 -1.2244E-01 7.8880E-02 -1.2604E-02 1.1078E-02 -1.1207E-03 1.7154E-03 -9.3489E-05 2.1553E-04
S2 1.0218E+00 -1.3237E-01 5.6569E-02 -6.8405E-03 6.6314E-03 3.4902E-04 1.2225E-03 1.1021E-05 1.0839E-04
S3 1.6512E-01 -1.0002E-01 2.6405E-02 -6.2581E-03 2.5139E-03 -1.1959E-03 7.2452E-05 -3.4580E-04 4.5725E-05
S4 4.2423E-02 2.3147E-04 1.7968E-03 4.8153E-05 6.8543E-05 -1.3487E-04 -8.7288E-05 -6.1852E-05 -1.3597E-05
S5 1.9623E-02 -4.2879E-03 -7.0168E-04 1.7348E-05 5.5918E-05 -5.0212E-06 -2.7238E-05 -2.0928E-05 1.2729E-06
S6 -4.0554E-01 2.8709E-02 -1.1169E-02 3.5481E-03 -4.6230E-05 1.8771E-04 4.8706E-04 -3.8205E-05 9.5109E-05
S7 -3.6878E-01 4.3392E-03 1.8579E-02 5.4788E-03 2.9706E-03 -2.3660E-03 2.6149E-04 -5.7950E-04 8.9787E-05
S8 3.6504E-02 -4.6255E-02 2.3653E-02 -7.4864E-03 7.2203E-03 -2.5285E-03 1.5729E-03 -3.6059E-04 1.4482E-04
S9 4.5215E-01 -6.0970E-02 1.8244E-02 -1.9272E-02 3.9461E-03 -3.9762E-03 2.7131E-04 -3.0503E-04 -1.3779E-04
S10 -2.2582E-01 2.0113E-01 -4.7176E-02 -1.3692E-02 -6.4067E-03 5.5051E-03 -4.7972E-06 -8.9946E-05 -3.5302E-04
表10
AAS面 AR BR CR DR ER FR GR HR JR
S11 -2.7918E-01 2.5466E-01 -2.1722E-01 1.3039E-01 -5.3473E-02 1.5014E-02 -2.8021E-03 3.1345E-04 -1.5738E-05
S12 -1.1947E-01 7.1095E-02 -3.3614E-02 1.1075E-02 -2.4603E-03 3.5916E-04 -3.3155E-05 1.7613E-06 -4.1147E-08
表11
AAS面 AP BP CP DP EP FP GP HP JP
S11 -9.6693E-03 -8.2164E-03 -3.1606E-03 -9.2004E-04 3.1734E-05 7.3686E-04 1.3467E-03 1.7165E-03 1.7675E-03
S12 1.8394E-01 7.1527E-02 2.3189E-02 5.8740E-03 5.2312E-04 -5.6975E-04 -6.0316E-04 -8.7991E-04 -1.8563E-03
表12
图6示出了实施例3的光学成像系统的RMS光斑直径在第一象限内不同像高位置处的大小情况。图6示出了RMS光斑直径与真实光线像高的关系。图6中,X真实光线高度与Y真实光线高度均以毫米(mm)为单位,最小的RMS光斑直径为0.0028903mm,最大的 RMS光斑直径为0.053866mm,RMS光斑直径的均值为0.014068mm,RMS光斑直径的标准差为0.011344mm。根据图6可知,实施例3所给出的光学成像系统能够实现良好的成像品质。
实施例4
以下参照图7至图8描述了根据本申请实施例4的光学成像系统。图7示出了根据本申请实施例4的光学成像系统的结构示意图。
如图7所示,光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和滤光片E7。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面 S13和像侧面S14。光学成像系统具有成像面S15,来自物体的光依序穿过各表面S1至S14 并最终成像在成像面S15上。
在实施例4中,光学成像系统的总有效焦距f的值是2.51mm,第一透镜E1的物侧面S1 至成像面S15的轴上距离TTL的值是6.74mm,成像面S15上有效像素区域对角线长的一半ImgH的值是3.90mm,以及最大视场角的一半Semi-FOV的值是56.9°,光学成像系统的光圈数Fno的值是2.00。
表13示出了实施例4的光学成像系统的基本参数表,其中,曲率半径Y、曲率半径X、厚度/距离和焦距的单位均为毫米(mm)。表14示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表15、表16 分别示出了可用于实施例4中非旋转对称的非球面S11、S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2) 限定。
Figure DEST_PATH_GDA0002269252340000111
表13
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.1648E+00 -1.0472E-01 6.7181E-02 -9.6761E-03 8.5085E-03 -9.9684E-04 1.2203E-03 -1.1915E-04 1.2995E-04
S2 8.1980E-01 -1.1620E-01 3.9086E-02 -6.0667E-03 5.2597E-03 1.3749E-05 9.2926E-04 -4.6302E-05 5.5514E-05
S3 1.0558E-01 -7.5698E-02 1.7829E-02 -4.0545E-03 1.7733E-03 -6.3196E-04 2.6987E-04 -1.1203E-04 1.8152E-05
S4 2.6221E-02 2.4652E-03 2.1510E-03 3.7183E-04 1.8900E-04 4.7968E-06 5.9582E-06 -1.8122E-05 -2.3748E-06
S5 1.1400E-02 -1.4065E-03 -2.1543E-04 -2.8159E-05 -1.9321E-06 6.0181E-07 5.6768E-06 8.0657E-07 -1.0387E-06
S6 -1.7118E-01 1.2120E-02 -2.5016E-03 2.3015E-04 4.9766E-05 -3.4363E-05 -3.0431E-06 5.5422E-06 -9.2616E-07
S7 -2.3231E-01 2.6028E-03 1.3824E-03 -6.2526E-04 9.0127E-04 -2.1775E-04 5.8803E-05 1.1455E-05 -9.6412E-06
S8 -2.5370E-02 -2.0138E-03 2.4148E-02 -4.9742E-03 1.9403E-03 -4.4313E-03 -6.3667E-04 -1.0696E-03 -2.5404E-04
S9 2.3595E-01 -2.7210E-02 1.0201E-02 -3.5854E-03 9.0283E-04 -5.5652E-06 -1.5977E-04 6.6105E-05 -9.7152E-06
S10 -2.1377E-01 1.1408E-01 -1.1443E-02 3.7425E-03 -3.8300E-03 8.3019E-04 -2.1279E-04 8.8355E-05 -1.3788E-05
表14
AAS面 AR BR CR DR ER FR GR HR JR
S11 -2.8290E-01 2.5587E-01 -2.1653E-01 1.3022E-01 -5.3506E-02 1.5016E-02 -2.8005E-03 3.1370E-04 -1.5808E-05
S12 -1.2316E-01 7.1748E-02 -3.3691E-02 1.1074E-02 -2.4589E-03 3.5920E-04 -3.3179E-05 1.7595E-06 -4.0796E-08
表15
AAS面 AP BP CP DP EP FP GP HP JP
S11 -9.0775E-04 5.5378E-04 -1.0289E-04 -5.8698E-04 -1.5085E-04 7.0904E-04 1.4093E-03 1.6695E-03 1.5321E-03
S12 4.0557E-02 2.7078E-02 1.2733E-02 4.4185E-03 7.4073E-04 -5.0505E-04 -7.6790E-04 -8.0440E-04 -9.4618E-04
表16
图8示出了实施例4的光学成像系统的RMS光斑直径在第一象限内不同像高位置处的大小情况。图8示出了RMS光斑直径与真实光线像高的关系。图8中,X真实光线高度与 Y真实光线高度均以毫米(mm)为单位,最小的RMS光斑直径为0.0031601mm,最大的 RMS光斑直径为0.010455mm,RMS光斑直径的均值为0.0054983mm,RMS光斑直径的标准差为0.0017733mm。根据图8可知,实施例4所给出的光学成像系统能够实现良好的成像品质。
实施例5
以下参照图9至图10描述了根据本申请实施例5的光学成像系统。图9示出了根据本申请实施例5的光学成像系统的结构示意图。
如图9所示,光学成像系统沿光轴由物侧至像侧依序包括:第一透镜E1、第二透镜E2、光阑STO、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6和滤光片E7。
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凸面。第二透镜E2具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凸面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面 S13和像侧面S14。光学成像系统具有成像面S15,来自物体的光依序穿过各表面S1至S14 并最终成像在成像面S15上。
在实施例5中,光学成像系统的总有效焦距f的值是2.53mm,第一透镜E1的物侧面S1 至成像面S15的轴上距离TTL的值是6.73mm,成像面S15上有效像素区域对角线长的一半ImgH的值是3.90mm,以及最大视场角的一半Semi-FOV的值是56.9°,光学成像系统的光圈数Fno的值是2.02。
表17示出了实施例5的光学成像系统的基本参数表,其中,曲率半径Y、曲率半径X、厚度/距离和焦距的单位均为毫米(mm)。表18示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。表19、表20 分别示出了可用于实施例5中非旋转对称的非球面S11、S12的旋转对称分量以及非旋转对称分量的高阶系数,其中,非旋转对称的非球面面型可由上述实施例1中给出的公式(2) 限定。
Figure DEST_PATH_GDA0002269252340000121
Figure DEST_PATH_GDA0002269252340000131
表17
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 1.1451E+00 -9.7698E-02 6.9900E-02 -6.0657E-03 9.2085E-03 -4.8265E-04 1.3523E-03 -6.8565E-05 1.6845E-04
S2 6.2408E-01 -1.3478E-01 4.0163E-02 -7.0003E-03 1.8385E-03 -1.1186E-03 5.6186E-04 -2.0308E-04 4.8191E-05
S3 1.5583E-01 -8.3296E-02 1.6811E-02 -4.6934E-03 -4.6717E-04 -8.4461E-04 8.6867E-04 6.3206E-05 1.5469E-05
S4 8.4308E-02 3.5960E-03 2.1979E-03 3.8407E-04 3.2583E-04 -4.0533E-05 1.8204E-05 4.2064E-06 -2.9572E-06
S5 8.2271E-04 -1.5217E-03 -1.2505E-04 4.1534E-05 -4.6238E-07 1.3055E-05 3.8698E-06 2.5585E-06 -4.7901E-06
S6 -1.6263E-01 9.3653E-03 -2.3176E-03 3.6419E-04 -9.3314E-05 1.4506E-05 1.8941E-06 -4.7544E-07 2.7483E-08
S7 -2.6556E-01 2.3722E-02 -4.4415E-03 7.0483E-04 -1.6506E-04 3.3302E-05 -1.3129E-05 1.2790E-05 -2.5820E-06
S8 -1.5664E-01 3.1033E-02 -5.0243E-03 1.0681E-03 -1.3898E-04 -7.2758E-05 1.1151E-04 1.0923E-05 -1.4188E-05
S9 -1.5664E-01 3.1033E-02 -5.0243E-03 1.0681E-03 -1.3898E-04 -7.2758E-05 1.1151E-04 1.0923E-05 -1.4188E-05
S10 -5.8122E-02 9.1172E-02 -1.5742E-02 6.9457E-03 -1.5540E-03 1.2303E-03 -5.3028E-04 -3.1947E-05 2.1096E-05
表18
AAS面 AR BR CR DR ER FR GR HR JR
S11 -2.7839E-01 2.5744E-01 -2.1609E-01 1.3008E-01 -5.3549E-02 1.5015E-02 -2.7992E-03 3.1395E-04 -1.5823E-05
S12 -1.1242E-01 6.8729E-02 -3.3194E-02 1.1058E-02 -2.4621E-03 3.5929E-04 -3.3147E-05 1.7587E-06 -4.0857E-08
表19
AAS面 AP BP CP DP EP FP GP HP JP
S11 8.0105E-03 5.7440E-03 1.4432E-03 -3.0164E-04 -1.5268E-04 6.8339E-04 1.4135E-03 1.7122E-03 1.6244E-03
S12 2.0764E-02 1.9500E-02 1.0258E-02 3.8959E-03 8.1283E-04 -4.1487E-04 -8.2089E-04 -9.4731E-04 -1.0328E-03
表20
图10示出了实施例5的光学成像系统的RMS光斑直径在第一象限内不同像高位置处的大小情况。图10示出了RMS光斑直径与真实光线像高的关系。图10中,X真实光线高度与Y真实光线高度均以毫米(mm)为单位,最小的RMS光斑直径为0.0024208mm,最大的RMS光斑直径为0.0087877mm,RMS光斑直径的均值为0.0048171mm,RMS光斑直径的标准差为0.0011087mm。根据图10可知,实施例5所给出的光学成像系统能够实现良好的成像品质。
综上,实施例1至实施例5分别满足表21中所示的关系。
Figure DEST_PATH_GDA0002269252340000132
Figure DEST_PATH_GDA0002269252340000141
表21
本申请还提供一种成像装置,其设置有电子感光元件以成像,其电子感光元件可以是感光耦合元件(Charge Coupled Device,CCD)或互补性氧化金属半导体元件(Complementary Metal Oxide Semiconductor,CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像系统。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离本申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (11)

1.光学成像系统,其特征在于,沿光轴由物侧至像侧依序包括:
具有负光焦度的第一透镜,其物侧面为凹面,像侧面为凸面;
具有负光焦度的第二透镜;
具有光焦度的第三透镜;
具有负光焦度的第四透镜;
具有光焦度的第五透镜;
具有光焦度的第六透镜;
所述第一透镜的物侧面至所述第六透镜的像侧面中至少一个面为非旋转对称的非球面。
2.根据权利要求1所述的光学成像系统,其特征在于,所述第六透镜的物侧面及所述第六透镜的像侧面都为非旋转对称的非球面,所述第六透镜的物侧面的X轴方向的曲率半径R11x与所述第六透镜的像侧面的X轴方向的曲率半径R12x满足0.5<R11x/R12x<1.5。
3.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3满足-6.0<f1/f3<-3.0。
4.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜的物侧面的曲率半径R1与所述第一透镜的像侧面的曲率半径R2满足1.5≦R2/R1≦3.0。
5.根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4满足1.0<R3/R4<1.5。
6.根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足-3.5<R5/R6<-1.0。
7.根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜的像侧面的曲率半径R10、所述第六透镜的物侧面的曲率半径R11以及所述第六透镜的像侧面的曲率半径R12满足-2.0<R10/(R11+R12)<-0.5。
8.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜在所述光轴上的中心厚度CT1、所述第二透镜在所述光轴上的中心厚度CT2以及所述第五透镜在所述光轴上的中心厚度CT5满足1.5<CT5/(CT1-CT2)<3.0。
9.根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜在所述光轴上的中心厚度CT3、所述第五透镜在所述光轴上的中心厚度CT5以及所述第六透镜在所述光轴上的中心厚度CT6满足1.0<(CT5+CT6)/CT3<2.0。
10.根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜和所述第二透镜在所述光轴上的间隔距离T12、所述第二透镜和所述第三透镜在所述光轴上的间隔距离T23、所述第三透镜和所述第四透镜在所述光轴上的间隔距离T34以及所述第四透镜和所述第五透镜在所述光轴上的间隔距离T45满足2.1<(T23+T34)/(T12+T45)<3.7。
11.根据权利要求1至10中任一项所述的光学成像系统,其特征在于,所述光学成像系统的最大视场角的一半Semi-FOV满足Semi-FOV>50°。
CN201921709821.7U 2019-10-12 2019-10-12 光学成像系统 Active CN211086757U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921709821.7U CN211086757U (zh) 2019-10-12 2019-10-12 光学成像系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921709821.7U CN211086757U (zh) 2019-10-12 2019-10-12 光学成像系统

Publications (1)

Publication Number Publication Date
CN211086757U true CN211086757U (zh) 2020-07-24

Family

ID=71630975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921709821.7U Active CN211086757U (zh) 2019-10-12 2019-10-12 光学成像系统

Country Status (1)

Country Link
CN (1) CN211086757U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579863A (zh) * 2019-10-12 2019-12-17 浙江舜宇光学有限公司 光学成像系统
CN110579863B (zh) * 2019-10-12 2024-05-14 浙江舜宇光学有限公司 光学成像系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110579863A (zh) * 2019-10-12 2019-12-17 浙江舜宇光学有限公司 光学成像系统
CN110579863B (zh) * 2019-10-12 2024-05-14 浙江舜宇光学有限公司 光学成像系统

Similar Documents

Publication Publication Date Title
CN109283665B (zh) 成像镜头
CN109407284B (zh) 光学成像系统
CN109752826B (zh) 光学成像镜头
CN110850557B (zh) 光学成像镜头
CN113376808B (zh) 摄像镜头组
CN211123446U (zh) 光学成像系统
CN114236754A (zh) 光学成像系统
CN211293433U (zh) 光学成像镜头
CN111025583B (zh) 光学成像镜头
CN211426896U (zh) 光学成像镜头
CN110596864A (zh) 光学成像系统
CN109407277B (zh) 光学成像系统
CN209911623U (zh) 成像镜头
CN109597188B (zh) 摄像镜头组
CN112748545B (zh) 光学成像镜头
CN110596866A (zh) 光学成像镜头
CN112596208A (zh) 一种光学成像镜头
CN210894831U (zh) 光学成像系统
CN109856782B (zh) 光学成像镜头
CN110673305A (zh) 光学成像系统
CN115327750A (zh) 光学成像镜头
CN110687665A (zh) 摄像镜头组
CN211086745U (zh) 光学成像系统
CN111624739A (zh) 光学成像镜头
CN218675457U (zh) 光学成像镜头

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant