CN114062839A - 一种铁路电力线路故障定位装置及其方法 - Google Patents

一种铁路电力线路故障定位装置及其方法 Download PDF

Info

Publication number
CN114062839A
CN114062839A CN202111280598.0A CN202111280598A CN114062839A CN 114062839 A CN114062839 A CN 114062839A CN 202111280598 A CN202111280598 A CN 202111280598A CN 114062839 A CN114062839 A CN 114062839A
Authority
CN
China
Prior art keywords
fault
traveling wave
line
signal
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111280598.0A
Other languages
English (en)
Inventor
赵永君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Polytechnic
Original Assignee
Shandong Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Polytechnic filed Critical Shandong Polytechnic
Priority to CN202111280598.0A priority Critical patent/CN114062839A/zh
Publication of CN114062839A publication Critical patent/CN114062839A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种铁路电力线路故障定位装置及其方法,涉及铁路电力线路领域,本发明包括构建行波监测、采集、传输一体化系统,故障选线,分别向故障线路和正常线路发射一个行波信号,获取故障特征波对应的时刻,通过训练好的神经网络来判断故障区段;本发明在线路发生故障后,通过主站的监测采集系统分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位,通过行波到达的时间就可以实现故障点位置的精确计算,完成整个电网故障定位,降低了查找所需的时间,提高了故障处理的效率。

Description

一种铁路电力线路故障定位装置及其方法
技术领域
本发明涉及铁路电力线路技术领域,尤其涉及一种铁路电力线路故障定位装置及其方法。
背景技术
铁路电力线路由于运行环境复杂、自然灾害频繁、以及线缆本身材质质量、老化等因素影响,经常会发生故障。一旦发生故障,通信信号设备的供电可靠性大大降低,给铁路运输带来很大安全隐患。传统的电力线路故障查找的方法,均只能先判断故障区段,不仅故障点判断不准确,故障处理效率很低,已不能满足铁路运行需求;费时、费力,尤其是在山区和雨、雪、雾、大风等气象条件不好的情况下,查找时间需要更长,工人的劳动强度更大,效率也更低,明显不能满足铁路运行需求。因此迫切需要一套设计思想成熟、性能可靠的电力线路故障查找的方法,降低人员的劳动强度,保证铁路设备供电系统安全可靠运行。
发明内容
本发明的目的是为了解决现有技术中存在故障点判断不准确,故障处理效率低,查找时间需要更长,工人的劳动强度大的缺点,而提出的一种铁路电力线路故障定位装置及其方法。
为了解决上述问题,本发明采用了如下技术方案:
一种铁路电力线路故障定位方法,步骤如下:
构建行波监测、采集、传输一体化系统;
故障选线,分别向故障线路和正常线路发射一个行波信号;
获取故障特征波对应的时刻,根据行波测距定位原理,计算故障点的距离;
通过训练好的神经网络来判断故障区段。
优选地,所述步骤1的具体如下:在主站以及配电线路中设置多个采集点,每个均采集点设置有行波采集传感器,所有采集点均通过通讯网络与主站连接,行波监测器采集每一个采集点的行波信号,并将采集到的行波信号上传到主站的监测采集系统,由主站收集各采集点采集的行波信号,筛选各采集点行波信息,形成记录。
优选地,所述步骤2的具体如下:当线路发生故障后,主站的监测采集系统分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位;
所述监测采集系统内还包括有测量控制单元,首先,由测量控制单元判断线路故障,确定故障类型,如果确定故障相发生单相接地故障后向信号注入单元发出指令,信号注入单元在接到测量控制单元指令后向电压互感器中的故障相发出高频探测信号,由于接地故障点处波阻抗不连续,高频信号将发生反射,所以电压互感器能够检测出相应的反射信号,测量控制单元根据反射信号返回到定位系统的时间就可以确定故障点到监测装置的距离;
所述行波信号注入形式如下:
Figure BDA0003330925380000031
该信号的持续时间T,频带宽度B,中心频率f0表示为:
Figure BDA0003330925380000032
Figure BDA0003330925380000033
Figure BDA0003330925380000034
可见:参数a决定了注入信号的持续时间,参数a和B共同决定该信号的频带宽度,信号的角频率w决定了其中心频率,t表示信号的中心时刻。
优选地,所述步骤3的具体如下:通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻;
所述小波包分解和重构计算模型如下:
其二尺度关系为:
Figure BDA0003330925380000035
式中:h0k、h1k分别是多分辨率分析的滤波器系数
定义递推关系:
Figure BDA0003330925380000036
根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,其计算公式如下:
Figure BDA0003330925380000041
式中,L是距离,v是波速;t为特征波间隔时间。
优选地,所述步骤4的具体如下:用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段,再通过算法所得参数坐标,从而确定故障断点位置。
一种铁路电力线路故障定位装置,包括:
行波传感单元:构建行波监测、采集、传输一体化系统;
信号注入单元:线路发生故障后,分别向故障线路和正常线路发射一个行波信号;
距离定位单元:首先获取故障特征波对应的时刻,根据行波测距定位原理,计算故障点的距离;
区段判断单元:通过训练好的神经网络来判断故障区段。
优选地,在主站以及配电线路中设置多个采集点,每个均采集点设置有行波采集传感器,所有采集点均通过通讯网络与主站连接,行波监测器采集每一个采集点的行波信号,并将采集到的行波信号上传到主站的监测采集系统,由主站收集各采集点采集的行波信号,筛选各采集点行波信息,形成记录。
优选地,当线路发生故障后,分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位;
监测采集系统内还包括有测量控制单元,首先,由测量控制单元判断线路故障,确定故障类型,如果确定故障相发生单相接地故障后向信号注入单元发出指令,信号注入单元在接到测量控制单元指令后向电压互感器中的故障相发出高频探测信号,由于接地故障点处波阻抗不连续,高频信号将发生反射,所以电压互感器能够检测出相应的反射信号,测量控制单元根据反射信号返回到定位系统的时间就可以确定故障点到监测装置的距离;
所述行波信号注入形式如下:
Figure BDA0003330925380000051
该信号的持续时间T,频带宽度B,中心频率f0表示为:
Figure BDA0003330925380000052
Figure BDA0003330925380000053
Figure BDA0003330925380000054
可见:参数a决定了注入信号的持续时间,参数a和B共同决定该信号的频带宽度,信号的角频率w决定了其中心频率,t表示信号的中心时刻。
优选地,通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻;
所述小波包分解和重构计算模型如下:
其二尺度关系为:
Figure BDA0003330925380000061
式中:h0k、h1k分别是多分辨率分析的滤波器系数
定义递推关系:
Figure BDA0003330925380000062
然后根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,其计算公式如下:
Figure BDA0003330925380000063
式中,L是距离,v是波速;t为特征波间隔时间。
优选地,用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段,再通过算法所得参数坐标,从而确定故障断点位置;
所述神经网络是一种模仿大量神经元进行分布式并行信息处理的网络模型,其包含输入层、隐含层和输出层;
假设输入层第i个神经元的输入变量为net;
Figure BDA0003330925380000064
式中,θ为第i个神经元的阈值,对应输出为:
ai=f(neti)
式中f表示隐含层的激发函数,通常选用连续可导的Sigmoid函数:
Figure BDA0003330925380000071
当映射函数值在正负区间时,采用对称的Than函数作为激发函数:
Figure BDA0003330925380000072
在神经网络中,非线性特征学习主要由隐含层和输出层来完成,一般令:
ai=xi
则隐含层第j个神经元的输入net;
Figure BDA0003330925380000073
式中,w、θ分别为隐层的权重和第j个神经元的阈值,对应输出为a:
aj=f(neti)
则输出层第k个神经元的输入net:
Figure BDA0003330925380000074
式中,w、θ分别为输出层的权重和第k个神经元的阈值,而输出层输出y:
yk=f(netk)
相比现有技术,本发明的有益效果为:
1、本发明在线路发生故障后,通过主站的监测采集系统分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位,通过行波到达的时间就可以实现故障点位置的精确计算,完成整个电网故障定位,降低了查找所需的时间,提高了故障处理的效率。
2、本发明通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻,根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,通过用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段,再通过算法所得参数坐标,从而确定故障断点位置,使得对故障点位置的判定更加准确,极大的降低了人工寻找所花费的时间。
附图说明
图1为本发明提出的一种铁路电力线路故障定位方法的流程图;
图2为本发明提出的一种铁路电力线路故障定位方法的故障判定流程图;
图3为本发明提出的一种铁路电力线路故障定位方法的故障行波传输路径图;
图4为本发明提出的一种铁路电力线路故障定位方法的通讯连接示意图;
图5为本发明提出的一种铁路电力线路故障定位方法的采集点布置示意图;
图6为本发明提出的一种铁路电力线路故障定位装置的框架结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
参照图1-5,一种铁路电力线路故障定位方法,步骤如下:
在主站以及配电线路中设置多个采集点,每个均采集点设置有行波采集传感器,所有采集点均通过通讯网络与主站连接,行波监测器采集每一个采集点的行波信号,并将采集到的行波信号上传到主站的监测采集系统,由主站收集各采集点采集的行波信号,筛选各采集点行波信息,形成记录。
当线路发生故障后,主站的监测采集系统分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位;
监测采集系统内还包括有测量控制单元,首先,由测量控制单元判断线路故障,确定故障类型,如果确定故障相发生单相接地故障后向信号注入单元发出指令,信号注入单元在接到测量控制单元指令后向电压互感器中的故障相发出高频探测信号,由于接地故障点处波阻抗不连续,高频信号将发生反射,所以电压互感器能够检测出相应的反射信号,测量控制单元根据反射信号返回到定位系统的时间就可以确定故障点到监测装置的距离;
行波信号注入形式如下:
Figure BDA0003330925380000101
该信号的持续时间T,频带宽度B,中心频率f0表示为:
Figure BDA0003330925380000102
Figure BDA0003330925380000103
Figure BDA0003330925380000104
可见:参数a决定了注入信号的持续时间,参数a和B共同决定该信号的频带宽度,信号的角频率w决定了其中心频率,t表示信号的中心时刻。
通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻;
小波包分解和重构计算模型如下:
其二尺度关系为:
Figure BDA0003330925380000111
式中:h0k、h1k分别是多分辨率分析的滤波器系数
定义递推关系:
Figure BDA0003330925380000112
根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,其计算公式如下:
Figure BDA0003330925380000113
式中,L是距离,v是波速;t为特征波间隔时间。
用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段。
参照图2-6,一种铁路电力线路故障定位装置,包括:
行波传感单元:构建行波监测、采集、传输一体化系统;
信号注入单元:线路发生故障后,分别向故障线路和正常线路发射一个行波信号;
距离定位单元:首先获取故障特征波对应的时刻,根据行波测距定位原理,计算故障点的距离;
区段判断单元:通过训练好的神经网络来判断故障区段。
其中,在主站以及配电线路中设置多个采集点,每个均采集点设置有行波采集传感器,所有采集点均通过通讯网络与主站连接,行波监测器采集每一个采集点的行波信号,并将采集到的行波信号上传到主站的监测采集系统,由主站收集各采集点采集的行波信号,筛选各采集点行波信息,形成记录。
其中,当线路发生故障后,分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位;
监测采集系统内还包括有测量控制单元,首先,由测量控制单元判断线路故障,确定故障类型,如果确定故障相发生单相接地故障后向信号注入单元发出指令,信号注入单元在接到测量控制单元指令后向电压互感器中的故障相发出高频探测信号,由于接地故障点处波阻抗不连续,高频信号将发生反射,所以电压互感器能够检测出相应的反射信号,测量控制单元根据反射信号返回到定位系统的时间就可以确定故障点到监测装置的距离;
行波信号注入形式如下:
Figure BDA0003330925380000121
该信号的持续时间T,频带宽度B,中心频率f0表示为:
Figure BDA0003330925380000122
Figure BDA0003330925380000123
Figure BDA0003330925380000124
可见:参数a决定了注入信号的持续时间,参数a和B共同决定该信号的频带宽度,信号的角频率w决定了其中心频率,t表示信号的中心时刻。
其中,通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻;
小波包分解和重构计算模型如下:
其二尺度关系为:
Figure BDA0003330925380000131
式中:h0k、h1k分别是多分辨率分析的滤波器系数
定义递推关系:
Figure BDA0003330925380000132
然后根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,其计算公式如下:
Figure BDA0003330925380000133
式中,L是距离,v是波速;t为特征波间隔时间。
其中,用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段;
所述神经网络是一种模仿大量神经元进行分布式并行信息处理的网络模型,其包含输入层、隐含层和输出层;
假设输入层第i个神经元的输入变量为net;
Figure BDA0003330925380000141
式中,θ为第i个神经元的阈值,对应输出为:
ai=f(neti)
式中f表示隐含层的激发函数,通常选用连续可导的Sigmoid函数:
Figure BDA0003330925380000142
当映射函数值在正负区间时,采用对称的Than函数作为激发函数:
Figure BDA0003330925380000143
在神经网络中,非线性特征学习主要由隐含层和输出层来完成,一般令:
ai=xi
则隐含层第j个神经元的输入net;
Figure BDA0003330925380000144
式中,w、θ分别为隐层的权重和第j个神经元的阈值,对应输出为a:
aj=f(neti)
则输出层第k个神经元的输入net:
Figure BDA0003330925380000151
式中,w、θ分别为输出层的权重和第k个神经元的阈值,而输出层输出y:
yk=f(netk)
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种铁路电力线路故障定位方法,其特征在于,步骤如下:
构建行波监测、采集、传输一体化系统;
故障选线,分别向故障线路和正常线路发射一个行波信号;
获取故障特征波对应的时刻,根据行波测距定位原理,计算故障点的距离;
通过训练好的神经网络来判断故障区段,确定故障断点位置。
2.根据权利要求1所述的一种铁路电力线路故障定位装置及其方法,其特征在于,所述步骤1的具体如下:在主站以及配电线路中设置多个采集点,每个均采集点设置有行波采集传感器,所有采集点均通过通讯网络与主站连接,行波监测器采集每一个采集点的行波信号,并将采集到的行波信号上传到主站的监测采集系统,由主站收集各采集点采集的行波信号,筛选各采集点行波信息,形成记录。
3.根据权利要求1所述的一种铁路电力线路故障定位装置及其方法,其特征在于,所述步骤2的具体如下:当线路发生故障后,主站的监测采集系统分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位;
所述行波信号注入形式如下:
Figure FDA0003330925370000011
该信号的持续时间T,频带宽度B,中心频率f0表示为:
Figure FDA0003330925370000021
Figure FDA0003330925370000022
Figure FDA0003330925370000023
可见:参数a决定了注入信号的持续时间,参数a和B共同决定该信号的频带宽度,信号的角频率w决定了其中心频率,t表示信号的中心时刻。
4.根据权利要求1所述的一种铁路电力线路故障定位装置及其方法,其特征在于,所述步骤3的具体如下:通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻;
所述小波包分解和重构计算模型如下:
其二尺度关系为:
Figure FDA0003330925370000024
式中:h0k、h1k分别是多分辨率分析的滤波器系数
定义递推关系:
Figure FDA0003330925370000025
根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,其计算公式如下:
Figure FDA0003330925370000031
式中,L是距离,v是波速;t为特征波间隔时间。
5.根据权利要求1所述的一种铁路电力线路故障定位装置及其方法,其特征在于,所述步骤4的具体如下:用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段,再通过算法所得参数坐标,从而确定故障断点位置。
6.一种铁路电力线路故障定位装置,其特征在于,包括:
行波传感单元:构建行波监测、采集、传输一体化系统;
信号注入单元:线路发生故障后,分别向故障线路和正常线路发射一个行波信号;
距离定位单元:首先获取故障特征波对应的时刻,根据行波测距定位原理,计算故障点的距离;
点位判定单元:通过训练好的神经网络来判断故障区段,确定故障断点位置。
7.根据权利要求7所述的一种铁路电力线路故障定位装置,其特征在于,在主站以及配电线路中设置多个采集点,每个均采集点设置有行波采集传感器,所有采集点均通过通讯网络与主站连接,行波监测器采集每一个采集点的行波信号,并将采集到的行波信号上传到主站的监测采集系统,由主站收集各采集点采集的行波信号,筛选各采集点行波信息,形成记录。
8.根据权利要求7所述的一种铁路电力线路故障定位装置,其特征在于,当线路发生故障后,分别向故障线路和正常线路发射一个行波信号,行波信号遇到波阻抗不连续点(线路的节点、端点和故障点)就会发生反射和折射,在线路检测端采集反射回的信号,利用行波信号在波阻抗不连续点产生的第一个反射波来进行故障定位;
所述行波信号注入形式如下:
Figure FDA0003330925370000041
该信号的持续时间T,频带宽度B,中心频率f0表示为:
Figure FDA0003330925370000042
Figure FDA0003330925370000043
Figure FDA0003330925370000044
可见:参数a决定了注入信号的持续时间,参数a和B共同决定该信号的频带宽度,信号的角频率w决定了其中心频率,t表示信号的中心时刻。
9.根据权利要求7所述的一种铁路电力线路故障定位装置,其特征在于,通过比较故障线路和正常线路波形,使故障线路波形和正常线路波形相减,对波形差信号进行小波包分解和重构,分为多个频带,在选定的分频带上分别找到波形差的第一个畸变点,其对应的就是故障点的特征波时刻;
所述小波包分解和重构计算模型如下:
其二尺度关系为:
Figure FDA0003330925370000051
式中:h0k、h1k分别是多分辨率分析的滤波器系数
定义递推关系:
Figure FDA0003330925370000052
然后根据行波信号在检测点与故障点之间往返一次的时间和行波的波速来确定故障点的距离,其计算公式如下:
Figure FDA0003330925370000053
式中,L是距离,v是波速;t为特征波间隔时间。
10.根据权利要求7所述的一种铁路电力线路故障定位装置,其特征在于,用预定的数据样本对神经网络进行训练使其具有识别节点特征波能量变化的能力,最后形成基于神经网络模式识别功能的故障诊断系统来判断故障区段,再通过算法所得参数坐标,从而确定故障断点位置;
所述神经网络是一种模仿大量神经元进行分布式并行信息处理的网络模型,其包含输入层、隐含层和输出层;
假设输入层第i个神经元的输入变量为net;
Figure FDA0003330925370000054
式中,θ为第i个神经元的阈值,对应输出为:
ai=f(neti)
式中f表示隐含层的激发函数,通常选用连续可导的Sigmoid函数:
Figure FDA0003330925370000061
当映射函数值在正负区间时,采用对称的Than函数作为激发函数:
Figure FDA0003330925370000062
在神经网络中,非线性特征学习主要由隐含层和输出层来完成,一般令:
ai=xi
则隐含层第j个神经元的输入net;
Figure FDA0003330925370000063
式中,w、θ分别为隐层的权重和第j个神经元的阈值,对应输出为a:
aj=f(neti)
则输出层第k个神经元的输入net:
Figure FDA0003330925370000064
式中,w、θ分别为输出层的权重和第k个神经元的阈值,而输出层输出y:
yk=f(netk) 。
CN202111280598.0A 2021-11-01 2021-11-01 一种铁路电力线路故障定位装置及其方法 Pending CN114062839A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111280598.0A CN114062839A (zh) 2021-11-01 2021-11-01 一种铁路电力线路故障定位装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111280598.0A CN114062839A (zh) 2021-11-01 2021-11-01 一种铁路电力线路故障定位装置及其方法

Publications (1)

Publication Number Publication Date
CN114062839A true CN114062839A (zh) 2022-02-18

Family

ID=80236218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111280598.0A Pending CN114062839A (zh) 2021-11-01 2021-11-01 一种铁路电力线路故障定位装置及其方法

Country Status (1)

Country Link
CN (1) CN114062839A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117495741A (zh) * 2023-12-29 2024-02-02 成都货安计量技术中心有限公司 一种基于大卷积对比学习的畸变还原方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305900A (zh) * 2011-05-21 2012-01-04 山东大学 基于Rogowski线圈微分输出的行波故障测距方法及装置
CN110907763A (zh) * 2019-12-12 2020-03-24 重庆邮电大学 一种基于时频域反射法的电力电缆故障检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305900A (zh) * 2011-05-21 2012-01-04 山东大学 基于Rogowski线圈微分输出的行波故障测距方法及装置
CN110907763A (zh) * 2019-12-12 2020-03-24 重庆邮电大学 一种基于时频域反射法的电力电缆故障检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐汝俊等: "电力线路故障定位方法的研究", 科技创新应用, pages 127 - 128 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117495741A (zh) * 2023-12-29 2024-02-02 成都货安计量技术中心有限公司 一种基于大卷积对比学习的畸变还原方法
CN117495741B (zh) * 2023-12-29 2024-04-12 成都货安计量技术中心有限公司 一种基于大卷积对比学习的畸变还原方法

Similar Documents

Publication Publication Date Title
CN111679166A (zh) 基于无线传输技术的开关柜局部放电故障多源信息融合检测预警系统及方法
CN110514957A (zh) 变电站自动巡检方法和平台
CN110261394A (zh) 在线风机叶片损伤实时诊断系统和方法
CN109763944B (zh) 一种海上风机叶片故障非接触式监测系统及监测方法
CN112233091A (zh) 一种风力机叶片图像损伤检测和定位方法
CN106356757A (zh) 一种基于人眼视觉特性的电力线路无人机巡检方法
CN101907437A (zh) 一种基于小波差分算法的电缆故障测距方法
CN107390097A (zh) 一种gis声电联合局部放电仿真检测系统及其检测方法
CN106777984A (zh) 一种基于密度聚类算法实现光伏阵列工作状态分析与故障诊断的方法
CN109886396A (zh) 一种输电线路舞动在线预测系统及方法
CN108008287A (zh) 基于移频信号的轨道电路故障监测平台及其监测方法
CN112179487A (zh) 机场环境噪声自动检测系统及监测方法
CN103558519A (zh) 一种gis局部放电超声波信号识别方法
CN108535598B (zh) 一种轨道电路电缆故障在线检测方法和装置
CN113566948A (zh) 机器人化煤机故障音频识别及诊断方法
CN109649432A (zh) 基于导波技术的云端平台钢轨完整性监测系统及方法
CN103345637A (zh) 输电线路复合绝缘子憎水性在线检测系统及方法
CN113495201A (zh) 分布式输电线缆故障定位诊断系统及定位诊断方法
CN108334902A (zh) 一种基于深度学习的轨道列车设备间烟雾防火监测方法
CN114062839A (zh) 一种铁路电力线路故障定位装置及其方法
CN111724290A (zh) 基于深度分层模糊算法的环保设备识别方法与系统
CN112455676A (zh) 一种光伏板健康状态智能监测分析系统及方法
CN116559591A (zh) 一种智能输配电分布式故障诊断及类型识别系统
CN108181059A (zh) 基于小波信号的多相流管道泄漏声波信号识别方法
CN110428398A (zh) 一种基于深度学习的高铁接触网拉线缺陷检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination