CN114060451B - Nonlinear-magnetorheological self-tuning vibration absorber - Google Patents
Nonlinear-magnetorheological self-tuning vibration absorber Download PDFInfo
- Publication number
- CN114060451B CN114060451B CN202110877674.XA CN202110877674A CN114060451B CN 114060451 B CN114060451 B CN 114060451B CN 202110877674 A CN202110877674 A CN 202110877674A CN 114060451 B CN114060451 B CN 114060451B
- Authority
- CN
- China
- Prior art keywords
- vibration
- signal
- magnetic
- nonlinear
- magnetorheological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 55
- 230000001133 acceleration Effects 0.000 claims abstract description 24
- 238000013016 damping Methods 0.000 claims abstract description 18
- 230000000694 effects Effects 0.000 claims abstract description 14
- 230000005284 excitation Effects 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 230000017525 heat dissipation Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 230000000670 limiting effect Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 230000005672 electromagnetic field Effects 0.000 claims description 3
- 239000006249 magnetic particle Substances 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000005265 energy consumption Methods 0.000 claims description 2
- 230000001050 lubricating effect Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 239000011344 liquid material Substances 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 238000010008 shearing Methods 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/002—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/008—Reduction of noise or vibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/53—Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
- F16F9/535—Magnetorheological [MR] fluid dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2228/00—Functional characteristics, e.g. variability, frequency-dependence
- F16F2228/04—Frequency effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/0005—Attachment, e.g. to facilitate mounting onto confer adjustability
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/0052—Physically guiding or influencing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/08—Sensor arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/18—Control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/30—Sealing arrangements
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Fluid-Damping Devices (AREA)
- Vibration Prevention Devices (AREA)
Abstract
本发明公开了一种非线性‑磁流变自调谐吸振器,包括加速度传感器、电子控制单元、驱动模块和吸振器,所述加速度传感器感测液压泵的振动加速度,并作为闭环控制的振动信号传递给所述的电子控制单元;电子控制单元用于根据电动机转速值和加速度传感器提供的振动信号,并与预定幅值进行对比得到误差信号,从而生成并输出控制信号;驱动模块根据接收到的控制信号后输出一定幅值和频率的驱动信号;吸振器安装在液压泵前端盖上,用于接收驱动信号并产生电磁阻尼与电动机传递给液压泵的激励力进行抵消。本发明通过实时感测液压泵的振动响应,控制吸振器施加电磁阻尼从而抵消电动机传递的激励力,具有较明显的减振效果、成本低、体积小、使用灵活。
The invention discloses a nonlinear-magnetorheological self-tuning vibration absorber, comprising an acceleration sensor, an electronic control unit, a driving module and a vibration absorber. The acceleration sensor senses the vibration acceleration of a hydraulic pump and serves as a vibration signal for closed-loop control It is transmitted to the electronic control unit; the electronic control unit is used to obtain an error signal according to the motor speed value and the vibration signal provided by the acceleration sensor, and compare it with a predetermined amplitude to obtain an error signal, thereby generating and outputting a control signal; After controlling the signal, a drive signal with a certain amplitude and frequency is output; the vibration absorber is installed on the front end cover of the hydraulic pump to receive the drive signal and generate electromagnetic damping to offset the excitation force transmitted by the motor to the hydraulic pump. By sensing the vibration response of the hydraulic pump in real time, the invention controls the vibration absorber to apply electromagnetic damping to offset the excitation force transmitted by the motor, and has obvious vibration reduction effect, low cost, small size and flexible use.
Description
技术领域technical field
本发明属于一种结构振动技术领域的减振耗能装置,特别涉及一种非线性-磁流变自调谐吸振器。The invention belongs to a vibration reduction and energy dissipation device in the technical field of structural vibration, in particular to a nonlinear-magnetorheological self-tuning vibration absorber.
背景技术Background technique
消能减振装置根据刚度单元或阻尼单元的特性不同,可以分为线性和非线性两种形式。工程中广泛使用的动力吸振器(Dynamic vibration absorber,DVA)也称为调谐质量阻尼器(Tunedmass damper,TMD)是一种应用较多的被动振动控制设备,动力吸振器通过设计其固有频率与主系统振动所受激励频率相同或接近,利用共振原理抑制系统的振动,TMD作为一种线性阻尼器,只能在特定的频带内发挥良好的减振效果,然而外界激励的频率以及主体结的动力特性往往会随时间发生变化。,这时TMD便会丧失减振效率,甚至会加剧主体结构的振动响应。非线性能量阱(Nonlinear Energy Sink,NES)具有附加质量小、振动抑制频带宽、可完成定向靶能量传递、可靠性高、鲁棒性强等优点,可有效弥补TMD在非线性振动领域的缺陷,但,现有的非线性能量阱装置(NES),均为被动控制,不能根据外部激励的特点以及结构自身的振动特性的变化做出及时调整,存在一定的局限性。因此,本发明将半主动控制技术与NES被动控制技术进行结合,通过振动特征对磁性液体的磁场环境进行反馈控制,产生可变阻尼,消耗NES-磁流变动力吸振器从液压管道吸收过来的振动能量,实现被动与半主动结合的混合振动控制。According to the characteristics of the stiffness unit or damping unit, the energy dissipation and vibration damping device can be divided into two types: linear and nonlinear. Dynamic vibration absorber (DVA), also known as tuned mass damper (TMD), which is widely used in engineering, is a passive vibration control device that is widely used. The excitation frequency of the system vibration is the same or close. The resonance principle is used to suppress the vibration of the system. As a linear damper, TMD can only play a good vibration reduction effect in a specific frequency band. However, the frequency of the external excitation and the power of the main junction Characteristics tend to change over time. At this time, the TMD will lose the vibration reduction efficiency, and even aggravate the vibration response of the main structure. Nonlinear Energy Sink (NES) has the advantages of small additional mass, wide vibration suppression frequency band, directional target energy transfer, high reliability, and strong robustness, which can effectively make up for the defects of TMD in the field of nonlinear vibration. However, the existing nonlinear energy traps (NES) are passively controlled and cannot be adjusted in time according to the characteristics of the external excitation and the changes of the vibration characteristics of the structure itself, and there are certain limitations. Therefore, the present invention combines the semi-active control technology with the NES passive control technology, and performs feedback control on the magnetic field environment of the magnetic liquid through the vibration characteristics to generate variable damping and consume the NES-magnetorheological dynamic vibration absorber absorbed from the hydraulic pipeline. Vibration energy to realize hybrid vibration control combining passive and semi-active.
磁性液体是一种长期稳定存在的胶体,由基载液、微/纳米尺度的磁性颗粒以及包裹在磁性颗粒表面的表面活性剂组成。磁性液体的第二类悬浮特性指的是,磁铁浸没在磁性液体中受到的浮力大于阿基米德浮力,因此磁性液体可以将浸在其中的、比重大于磁性液体的磁铁悬浮起来。基于磁性液体第二类悬浮特性的磁性液体阻尼减振器通过磁性液体和壳体之间的摩擦、碰撞,磁性液体内部的剪切,以及悬浮体与磁性液体之间的摩擦耗散能量,实现阻尼减振效果。Magnetic liquid is a long-term stable colloid, which is composed of base carrier liquid, micro/nano-scale magnetic particles and surfactants wrapped on the surface of magnetic particles. The second type of levitation characteristics of magnetic liquids means that the buoyancy force of magnets immersed in magnetic liquids is greater than the Archimedes buoyancy force, so the magnetic liquids can suspend the immersed magnets with a specific gravity greater than that of the magnetic liquids. The magnetic liquid damping shock absorber based on the second type of suspension characteristics of the magnetic liquid dissipates energy through friction and collision between the magnetic liquid and the shell, shear inside the magnetic liquid, and friction between the suspension and the magnetic liquid. Damping effect.
发明内容SUMMARY OF THE INVENTION
技术问题:本发明的目在于提出一种非线性-磁流变自调谐吸振器,基于磁性液体的第二类悬浮特性,实现了非线性能量阱的半主动化改造,可以根据结构对外部扰动的响应实时改变磁性液体的磁场环境,产生可变阻尼。可作为半主动控制广泛应用在液压系统振动领域吸振、减振。Technical problem: The purpose of the present invention is to propose a nonlinear-magnetorheological self-tuning vibration absorber, which realizes the semi-active transformation of nonlinear energy traps based on the second type of suspension characteristics of magnetic liquids, and can respond to external disturbances according to the structure. The response changes the magnetic field environment of the magnetic liquid in real time, resulting in variable damping. It can be widely used as a semi-active control in the field of vibration absorption and vibration reduction in the hydraulic system.
技术方案:根据本发明实施例的一种非线性-磁流变自调谐吸振器,其由减振系统和控制系统组成,减振系统包括外壳、动质量、定子和导向组件;测控系统包括位移传感器、DSP控制器、电流驱动器。Technical solution: a nonlinear-magnetorheological self-tuning vibration absorber according to an embodiment of the present invention is composed of a vibration reduction system and a control system. The vibration reduction system includes a casing, a dynamic mass, a stator and a guide assembly; the measurement and control system includes a displacement Sensors, DSP controllers, current drivers.
所述控制系统集成处理器模块、数模转换模块、驱动器模块和加速度传感器。处理器模块对加速度传感器的加速度信号进行分析和处理并输出数字控制信号,数模转换模块将处理器输出的数字控制信号转换成控制驱动器模块的模拟信号,驱动器模块根据处理器模块的信号指令调整励磁线圈的电流大小。The control system integrates a processor module, a digital-to-analog conversion module, a driver module and an acceleration sensor. The processor module analyzes and processes the acceleration signal of the acceleration sensor and outputs a digital control signal. The digital-to-analog conversion module converts the digital control signal output by the processor into an analog signal for controlling the driver module. The driver module adjusts according to the signal instructions of the processor module. The magnitude of the current in the excitation coil.
进一步地,所述控制信号的生成具体包括:振动信号,作为反馈信号传输给电子控制单元。Further, the generation of the control signal specifically includes: a vibration signal, which is transmitted to the electronic control unit as a feedback signal.
进一步地,所述的加速度传感器安装于液压系统动力源处,用于通过感测动力源处的振动信号,作为反馈信号传输给电子控制单元。Further, the acceleration sensor is installed at the power source of the hydraulic system, and is used to transmit the vibration signal at the power source to the electronic control unit as a feedback signal by sensing the vibration signal.
将获得的电动机转速值确定电动机振动的主阶次频率;Determine the main order frequency of motor vibration from the obtained motor speed value;
依据所述的振动主阶次频率对接收的振动信号进行带通滤波,保留在振动主阶次附近的振动信号频率成分;Band-pass filtering is performed on the received vibration signal according to the frequency of the main vibration order, and the frequency components of the vibration signal near the main order of vibration are retained;
对接收到的主阶次频率成分的振动进行判断,即滤波后的振动信号在主阶次频率附近的振动超过预定幅值时,半主动控制装置开始工作,并生成所述的控制信号。Judging the vibration of the received main-order frequency components, that is, when the vibration of the filtered vibration signal near the main-order frequency exceeds a predetermined amplitude, the semi-active control device starts to work and generates the control signal.
进一步地,所述的驱动模块用于接收到电子控制单元输出的控制信号,对控制信号施加一定的增益,生成具有一定幅值和频率的交变电流作为驱动信号作用于吸振器,产生电磁阻尼效应。Further, the driving module is used to receive the control signal output by the electronic control unit, apply a certain gain to the control signal, and generate an alternating current with a certain amplitude and frequency as the driving signal to act on the vibration absorber, thereby generating electromagnetic damping. effect.
根据本发明实施例的一种非线性-磁流变自调谐吸振器对于相关技术而言具有以下有益效果:A nonlinear-magnetorheological self-tuning vibration absorber according to an embodiment of the present invention has the following beneficial effects for the related art:
(1)基于磁性液体的第二类悬浮特性,由非均匀磁场作用下磁性液体产生的轴向和径向悬浮力产生非线性刚度,使得该装置可以与机械结构产生靶向能量传递的特性,这种传递具有传递速度快、单向(不可逆)的特点,因此NES-磁性液体动力吸振器能够高效地俘获主体结构的振动能量,并将其传递到自身,能量耗散效率高,能快速地将机构振动的机械能转化为摩擦产生的热能,阻尼减振的效果好;(1) Based on the second type of suspension characteristics of magnetic liquids, the nonlinear stiffness is generated by the axial and radial suspension forces generated by the magnetic liquid under the action of a non-uniform magnetic field, so that the device can have the characteristics of targeted energy transfer with the mechanical structure, This transmission has the characteristics of fast transmission speed and one-way (irreversible), so the NES-magnetic hydrodynamic vibration absorber can efficiently capture the vibration energy of the main structure and transmit it to itself, with high energy dissipation efficiency and can quickly The mechanical energy of the mechanism vibration is converted into the heat energy generated by friction, and the effect of damping and vibration reduction is good;
(2)非线性能量阱的装置只需要主结构的5%~10%,具有轻质,鲁棒性强,减振频带宽,结构简单,安装方便等优点,在非线性消能减振方面具有良好的应用前景。(2) The device of the nonlinear energy trap only needs 5% to 10% of the main structure, and has the advantages of light weight, strong robustness, wide vibration reduction frequency band, simple structure, and convenient installation. In terms of nonlinear energy dissipation and vibration reduction Has a good application prospect.
(3)目前大部分基于靶向能量传递原理设计的非线性能量阱装置均是采用被动控制,而这种基于磁性液体悬浮特性的非线性能量阱装置可以进一步根据主结构特性调节阻尼大小来实现主动控制,具备了被动与主动结合的半主动控制,弥补了被动控制无法时变的缺点,同时,降低了半主动控制能耗高的问题。(3) At present, most of the nonlinear energy trap devices designed based on the principle of targeted energy transfer are passively controlled, and this nonlinear energy trap device based on the suspension characteristics of magnetic liquid can be further realized by adjusting the damping size according to the characteristics of the main structure. Active control, with semi-active control combining passive and active, makes up for the disadvantage that passive control cannot be time-varying, and at the same time, reduces the problem of high energy consumption of semi-active control.
(4)该非线性-磁流变自调谐吸振器,仅需对控制算法进行修改,即可以满足不同工况下的减振需求,成本低,使用灵活。(4) The nonlinear-magnetorheological self-tuning vibration absorber only needs to modify the control algorithm to meet the vibration reduction requirements under different working conditions, with low cost and flexible use.
另外,根据本发明附加方面的优点将在随后的具体实施方式中部分给出,部分优点将变得明显,或者通过本发明的实践获得。Additionally, advantages according to additional aspects of the invention will be set forth in part in the detailed description which follows, and some advantages will become apparent, or may be obtained by practice of the invention.
附图说明Description of drawings
图1是根据本发明实施例的液压系统振动半主动控制装置简图。FIG. 1 is a schematic diagram of a semi-active control device for vibration of a hydraulic system according to an embodiment of the present invention.
图2是根据本发明实施例的液压系统振动半主动控制吸振器的控制方法实施流程示意图。FIG. 2 is a schematic flowchart of the implementation of the control method for the semi-active control of the vibration absorber of the hydraulic system according to the embodiment of the present invention.
图3是根据本发明实施例的一种非线性-磁流变自调谐吸振器结构简图。FIG. 3 is a schematic structural diagram of a nonlinear-magnetorheological self-tuning vibration absorber according to an embodiment of the present invention.
图4是根据本发明实施例的吸振器导向组件结构示意图。4 is a schematic structural diagram of a guide assembly of a vibration absorber according to an embodiment of the present invention.
图5是根据本发明实施例的吸振器动质量结构示意图。FIG. 5 is a schematic diagram of a dynamic mass structure of a vibration absorber according to an embodiment of the present invention.
图6是根据本发明实施例的吸振器永磁环结构示意图。FIG. 6 is a schematic structural diagram of a permanent magnet ring of a vibration absorber according to an embodiment of the present invention.
图7是根据本发明实施例的吸振器定子结构示意图FIG. 7 is a schematic view of the stator structure of a vibration absorber according to an embodiment of the present invention
图8是根据本发明实施例的吸振器外壳结构示意图FIG. 8 is a schematic structural diagram of a vibration absorber housing according to an embodiment of the present invention
图9是根据本发明实施例的吸振器力学模型示意图。FIG. 9 is a schematic diagram of a mechanical model of a vibration absorber according to an embodiment of the present invention.
附图标记:Reference number:
一种含非线性-磁流变自调谐吸振器10,A non-linear-magnetorheological self-tuning vibration absorber 10,
其中:1、导向组件;1-1、上限位块;1-2、导向轴;1-3、下限位块;1-4、润滑槽;2、动质量;2-1、上端螺母;2-2、永磁环;2-3、导磁块;2-4、永磁环保持架;2-5、下端螺母;2-6、微纳磁性复合液;3、定子;3-1、线圈保持架;3-2、线圈绕组;3-3、铜线圈;3-4、线圈绕组槽;4、吸振器外壳;4-1、上端盖;4-2、线圈引线入口;4-3、圆柱形外壳;4-4、散热孔;4-5、下端盖;4-6、线圈引线出口;4-7、密封圈。Among them: 1. Guide assembly; 1-1, Upper limit block; 1-2, Guide shaft; 1-3, Lower limit block; 1-4, Lubrication groove; 2, Dynamic mass; 2-1, Upper end nut; 2 -2, permanent magnet ring; 2-3, magnetic conductive block; 2-4, permanent magnet ring cage; 2-5, bottom nut; 2-6, micro-nano magnetic composite fluid; 3, stator; 3-1, Coil holder; 3-2, Coil winding; 3-3, Copper coil; 3-4, Coil winding slot; 4, Vibration absorber shell; 4-1, Upper end cover; 4-2, Coil lead entry; 4-3 , Cylindrical shell; 4-4, heat dissipation hole; 4-5, lower end cover; 4-6, coil lead outlet; 4-7, sealing ring.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.
下面结合图1到图9详细描述根据本发明实施例的一种非线性-磁流变自调谐吸振器10。该非线性-磁流变自调谐吸振器10是一种最具前景的液压系统振动控制装置,将在液压工程领域具有广泛应用的前景。A nonlinear-magnetorheological self-tuning vibration absorber 10 according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 9 . The nonlinear-magnetorheological self-tuning vibration absorber 10 is one of the most promising hydraulic system vibration control devices, and will have wide application prospects in the field of hydraulic engineering.
结合图1,一种非线性-磁流变自调谐吸振器,包括加速度传感器、电子控制单元、驱动模块和阻尼吸振模块。所述的加速度传感器感测液压系统动力源的振动加速度,并作为闭环控制的振动信号传递给所述的电子控制单元;所述的电子控制单元用于根据电动机转速值和加速度传感器提供的振动信号,并与预定幅值进行对比得到误差信号,从而生成并输出控制信号;所述的驱动模块根据接收到的控制信号后输出一定幅值和频率的驱动信号;所述的吸振器安装在液压泵上,用于接收驱动模块输出的驱动信号并产生一定的电磁力,对微纳复合磁性液体的磁黏效应进行控制,产生电磁阻尼效应,达到半主动振动控制的目的。With reference to Fig. 1, a nonlinear-magnetorheological self-tuning vibration absorber includes an acceleration sensor, an electronic control unit, a driving module and a damping vibration absorption module. The acceleration sensor senses the vibration acceleration of the power source of the hydraulic system, and transmits it to the electronic control unit as a closed-loop control vibration signal; the electronic control unit is used for the vibration signal provided by the motor speed value and the acceleration sensor. , and compare it with a predetermined amplitude to obtain an error signal, thereby generating and outputting a control signal; the drive module outputs a drive signal with a certain amplitude and frequency according to the received control signal; the vibration absorber is installed in the hydraulic pump It is used to receive the drive signal output by the drive module and generate a certain electromagnetic force, to control the magnetic viscosity effect of the micro-nano composite magnetic liquid, and to generate an electromagnetic damping effect to achieve the purpose of semi-active vibration control.
具体而言,所述的加速度传感器安装于液压泵前端盖出,用于通过感测液压泵处的振动信号,作为反馈信号传输给电子控制单元。所述的驱动模块用于接收到电子控制单元输出的控制信号,对控制信号施加一定的增益,生成具有一定幅值和频率的交变电流作为驱动信号作用于吸振器。Specifically, the acceleration sensor is installed on the front end of the hydraulic pump and is used to sense the vibration signal at the hydraulic pump and transmit it to the electronic control unit as a feedback signal. The driving module is used for receiving the control signal output by the electronic control unit, applying a certain gain to the control signal, and generating an alternating current with a certain amplitude and frequency as the driving signal to act on the vibration absorber.
具体而言,所述控制信号的生成具体包括:Specifically, the generation of the control signal specifically includes:
将获得的电动机转速值确定电动机振动的主阶次频率;依据所述的振动主阶次频率对接收的振动信号进行带通滤波,保留在振动主阶次附近的振动信号频率成分;对接收到的主阶次频率成分的振动进行判断,即滤波后的振动信号在主阶次频率附近的振动超过预定幅值时,半主动控制装置开始工作,并生成所述的控制信号。Determine the main order frequency of motor vibration based on the obtained motor speed value; carry out band-pass filtering on the received vibration signal according to the main order frequency of vibration, and retain the frequency components of the vibration signal near the main order of vibration; The vibration of the main-order frequency components is judged, that is, when the vibration of the filtered vibration signal near the main-order frequency exceeds a predetermined amplitude, the semi-active control device starts to work and generates the control signal.
具体而言,本实施例的所述电子控制单元同步接收电动机转速信号,并判断出电动机振动的主阶次频率,根据得到的主阶次频率,对加速度传感器传递过来的振动信号进行带通滤波,从而保留主阶次频率附近的振动信号频率成分;电子控制单元对滤波后的振动信号在主阶次频率附近的振幅进行误差判断,如果超过预定幅值时,输出控制指令给驱动模块,反之,不输出控制指令;驱动模块根据接受到的控制指令,产生驱动信号驱动吸振器工作;吸振器输出电磁驱动力。Specifically, the electronic control unit of this embodiment receives the motor speed signal synchronously, determines the main order frequency of the motor vibration, and performs band-pass filtering on the vibration signal transmitted by the acceleration sensor according to the obtained main order frequency. , so as to retain the frequency components of the vibration signal near the frequency of the main order; the electronic control unit makes an error judgment on the amplitude of the filtered vibration signal near the frequency of the main order, if it exceeds the predetermined amplitude, it outputs a control command to the drive module, otherwise , does not output the control command; the drive module generates the drive signal to drive the vibration absorber to work according to the received control command; the vibration absorber outputs the electromagnetic driving force.
如图3所示,本实施例中,所述吸振器包括导向组件1、动质量2、定子3、外壳4。所述导向组件1两端加工螺纹,与两端盖依靠螺纹连接。所述动质量2与导向组件1间隙配合,沿导向轴2滑动,消耗振动能量。所述定子3从上至下由疏至密分布排列缠绕铜线圈3-3,形成梯度磁场,其两端与端盖螺纹连接。外壳4周围均布散热孔,并与上端盖4-1和下端盖4-5螺纹连接。As shown in FIG. 3 , in this embodiment, the vibration absorber includes a
如图4所示,所述的导向组件1包括上限位块1-1、导向轴1-2、下限位块1-3、润滑槽1-4。导向轴1-2穿过永磁环保持架2-4,两者形成移动副结构。导向轴1-2两端与上限位块1-1、下限位块1-3以及左端盖4-1和右端盖4-5采用螺纹连接。其中,所述导向轴1-2为非导磁材料,本发明中采用不锈钢材料(如304、304L、316和316L等),其外表面设计有润滑槽1-4其结构为圆弧槽和螺旋槽,但不仅限于以上两种结构,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合,另外其外表面要求有良好的表面粗糙度,导向轴1-2与永磁环保持架2-4间隙配合。As shown in FIG. 4 , the
如图5所示,所述的动质量2由上端螺母2-1、永磁环2-2、导磁块2-3、永磁环保持架2-4、下端螺母2-5、微纳磁性复合液2-6组成。所述的上端螺母2-1和下端螺母2-5,主要作用是对永磁环2-2和导磁块2-3进行连接,使其在永磁环保持架2-4上进行固定。所述永磁环2-2根据应用需求采用不同结构类型,如圆柱形、锥台形等,但不仅限于以上两种结构,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。所述永磁环保持架2-4采用导磁性材料,其内孔与导向轴1-2形成静压支撑,微纳磁性复合液材料中的磁性颗粒成分,在两者之间形成的“滚动摩擦效应”可以减小接触面的摩擦力,提高了动质量2对振动吸收的灵敏度。As shown in Figure 5, the
如图6所示,所述永磁环2-2采用永磁铁(如NdFeB)材料制成,其外径具有不同规格大小,安装时先将导磁块2-3安装与永磁环保持架2-4中部,然后依次分为上下两端,将小直径永磁环2-2套入永磁环保持架2-4中,依次增大不同永磁环2-2直径并套入永磁环保持架2-4中,形成上下两端由大至小的磁性梯度。As shown in Figure 6, the permanent magnet ring 2-2 is made of permanent magnet (such as NdFeB) material, and its outer diameter has different sizes. When installing, first install the magnetic conductive block 2-3 on the permanent magnet ring cage The middle part of 2-4 is divided into upper and lower ends in turn, and the small-diameter permanent magnet ring 2-2 is inserted into the permanent magnet ring holder 2-4, and the diameters of different permanent magnet rings 2-2 are sequentially increased and inserted into the permanent magnet ring. In the ring cage 2-4, a magnetic gradient from large to small is formed at the upper and lower ends.
如图7所示,所述定子3包括线圈保持架3-1、线圈绕组3-2、铜线圈3-3、线圈绕组槽3-4。所述的线圈绕组3-2由铜线圈3-3和线圈保持架3-1构成。所述线圈保持架3-1留有线圈绕组槽3-3。其中,线圈绕组槽3-3由腰鼓形线圈保持架3-1从上至下由疏至密分布排列,线圈绕组3-2放置于线圈绕组槽3-3中,形成电磁场梯度分布。线圈绕组3-2放置于线圈绕组槽3-3中。所述定子3与上端盖4-1和下端盖4-5之间采用螺栓连接。As shown in FIG. 7 , the
如图8所示,所述吸振器外壳4包括上端盖4-1、线圈引线入口4-2、圆柱形外壳4-3、散热孔4-4、下端盖4-5、线圈引线出口4-6、密封圈4-7。所述上端盖4-1和下端盖4-5均采用密封圈4-7进行密封处理,采用过盈配合,防止微纳磁性复合液2-6泄漏。所述圆柱形外壳4-3的周围均布分布着散热孔4-4,以实现对振动热能的均匀分散,其上下两端与上端盖4-1、下端盖4-5通过螺纹连接。As shown in FIG. 8, the
如图2所示,本实施例的实现原理包括以下步骤:As shown in Figure 2, the implementation principle of this embodiment includes the following steps:
液压泵振动的感测:加速度传感器布置在液压泵端盖处,感测液压泵的振动加速度响应,作为振动信号反馈给电子控制单元;Sensing of hydraulic pump vibration: The acceleration sensor is arranged at the end cover of the hydraulic pump to sense the vibration acceleration response of the hydraulic pump and feed it back to the electronic control unit as a vibration signal;
主阶次频率产生:电子控制单元实时接收电动机转速信号,以确定电动机振动的主阶次振动频率;Main-order frequency generation: The electronic control unit receives the motor speed signal in real time to determine the main-order vibration frequency of the motor vibration;
带通滤波处理:依据所述的主阶次振动频率,对接收的加速度传感器传递过来的振动信号进行滤波,保留在主阶次频率附近的振动信号频率成分;Band-pass filtering processing: filter the vibration signal transmitted by the received acceleration sensor according to the main-order vibration frequency, and retain the frequency components of the vibration signal near the main-order frequency;
误差判断步骤:滤波后的振动信号在主阶次频率附近的振幅超过预定幅值时判定为主动控制系统工作;Error judgment step: when the amplitude of the filtered vibration signal in the vicinity of the main-order frequency exceeds a predetermined amplitude, it is determined that the active control system is working;
控制信号产生:依据误差判断,确定抑制座椅导轨振动的控制信号;Control signal generation: According to the error judgment, determine the control signal to suppress the vibration of the seat rail;
驱动信号产生:依据控制信号,驱动模块施加一定的增益,产生驱动信号;Drive signal generation: According to the control signal, the drive module applies a certain gain to generate the drive signal;
驱动电磁力的产生:吸振器接收到驱动信号,调节励磁线圈的电流大小,改变吸振器10的磁场环境,对微纳磁性复合液2-6内部的剪切力、动质量2和微纳磁性复合液2-6之间的摩擦力、微纳磁性复合液2-6和定子3之间的摩擦力进行控制,从而将振动的机械能转化为热能,实现阻尼可调的减振效果。The generation of driving electromagnetic force: the vibration absorber receives the driving signal, adjusts the current of the excitation coil, changes the magnetic field environment of the
综上所述,本实施例的非线性-磁流变自调谐吸振器装置包括加速度传感器、电子控制单元、驱动模块及吸振器。本实施例的半主动振动控制逻辑包括:诊断步骤,根据所述的液压泵振动信号,判断误差振动水平;以及控制步骤,接收所述诊断步骤的判断信号,发出作用于吸振器的指令,使得吸振器产生电磁驱动力用于对微纳磁性复合液的磁黏效应进行控制,实现阻尼可控的振动半主动控制。To sum up, the nonlinear-magnetorheological self-tuning vibration absorber device of this embodiment includes an acceleration sensor, an electronic control unit, a driving module and a vibration absorber. The semi-active vibration control logic of this embodiment includes: a diagnosis step of judging the error vibration level according to the vibration signal of the hydraulic pump; and a control step of receiving the judgment signal of the diagnosis step, and issuing an instruction to act on the vibration absorber, so that The vibration absorber generates electromagnetic driving force to control the magnetic viscosity effect of the micro-nano magnetic composite liquid, and realize semi-active vibration control with controllable damping.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110877674.XA CN114060451B (en) | 2021-08-01 | 2021-08-01 | Nonlinear-magnetorheological self-tuning vibration absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110877674.XA CN114060451B (en) | 2021-08-01 | 2021-08-01 | Nonlinear-magnetorheological self-tuning vibration absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114060451A CN114060451A (en) | 2022-02-18 |
CN114060451B true CN114060451B (en) | 2022-08-02 |
Family
ID=80233453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110877674.XA Active CN114060451B (en) | 2021-08-01 | 2021-08-01 | Nonlinear-magnetorheological self-tuning vibration absorber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114060451B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116204003A (en) * | 2023-03-03 | 2023-06-02 | 哈尔滨工业大学 | Multi-line Spectrum Vibration Control Method for Rotating Machinery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6463736B1 (en) * | 1997-04-26 | 2002-10-15 | Bayer Aktiengesellschaft | Adjustment and damping device |
CN102168738A (en) * | 2011-05-11 | 2011-08-31 | 北京航空航天大学 | Six-degree-of-freedom active and passive dynamic vibration-absorbing device |
CN104565167A (en) * | 2014-12-29 | 2015-04-29 | 北京交通大学 | Adaptive variable-stiffness linear magnetic liquid damping vibration absorber |
CN104747647A (en) * | 2015-01-23 | 2015-07-01 | 北京交通大学 | Inner taper angle magnetic liquid damping vibration absorber |
CN106257123A (en) * | 2016-08-01 | 2016-12-28 | 北京工业大学 | A kind of magnetorheological pipeline dual dynamic damping absorber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0319552D0 (en) * | 2003-08-20 | 2003-09-24 | Reactec Ltd | Improvments in or relating to vibration contol |
-
2021
- 2021-08-01 CN CN202110877674.XA patent/CN114060451B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6463736B1 (en) * | 1997-04-26 | 2002-10-15 | Bayer Aktiengesellschaft | Adjustment and damping device |
CN102168738A (en) * | 2011-05-11 | 2011-08-31 | 北京航空航天大学 | Six-degree-of-freedom active and passive dynamic vibration-absorbing device |
CN104565167A (en) * | 2014-12-29 | 2015-04-29 | 北京交通大学 | Adaptive variable-stiffness linear magnetic liquid damping vibration absorber |
CN104747647A (en) * | 2015-01-23 | 2015-07-01 | 北京交通大学 | Inner taper angle magnetic liquid damping vibration absorber |
CN106257123A (en) * | 2016-08-01 | 2016-12-28 | 北京工业大学 | A kind of magnetorheological pipeline dual dynamic damping absorber |
Also Published As
Publication number | Publication date |
---|---|
CN114060451A (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108974382B (en) | Two-stage vibration isolation holder based on magnetorheological | |
CN107606041B (en) | Hybrid damper formed by combining magneto-rheological damper and electric vortex damper | |
CN106439301B (en) | The passive absorbing ring of pipe-line system three-dimensional master | |
CN108343171B (en) | Electromagnetic resonance inertial damper | |
CN104019179B (en) | A kind of pneumatic spring-magnetic suspension hybrid isolator | |
CN107061587A (en) | A kind of axial current vortex system of double-deck permanent-magnet type moves back counterrecoil mechanism | |
CN103697099A (en) | Differential magnetic suspension vibration isolator | |
CN103847454B (en) | A kind of vehicle suspension electromagnetic damping vibration absorber | |
CN114060451B (en) | Nonlinear-magnetorheological self-tuning vibration absorber | |
CN207333558U (en) | The type hybrid damper that MR damper and eddy current damper are composed | |
CN106838089A (en) | A kind of underfill type magnetic liquid single order law of buoyancy shock absorber | |
CN106015437B (en) | A kind of rank power transformation MR damper | |
CN113738809B (en) | Variable-stiffness nonlinear energy trap vibration reduction method based on magnetic liquid suspension characteristics | |
CN104482091A (en) | Vibration isolator with active vibration absorbing ability | |
CN113983108B (en) | A magnetorheological self-tuning vibration absorber with a three-degree-of-freedom energy trap | |
CN107676419A (en) | A kind of self-powered method of magnetic rheological liquid damper self-induction and damper | |
CN112443613B (en) | A rotary eddy current vibration damper with adjustable damping | |
CN114110290A (en) | Nonlinear self-tuning pipeline vibration noise semi-active control method and system | |
CN106594160B (en) | Folding flow-type MR damper with wide adjustable extent | |
KR19990047271A (en) | Braking system for both load device using magnetorheological fluid | |
Zhang et al. | An online active balancing method using magnetorheological effect of magnetic fluid | |
CN109578499A (en) | A kind of double rod magnetic rheological liquid dampers and its sludge proof method | |
CN207080542U (en) | A double-layer permanent magnet type axial eddy current control device for retreating and re-advancing | |
CN113719573B (en) | A two-dimensional magnetic liquid vibration absorber with nonlinear energy trap | |
CN113074209B (en) | Miniature magneto-rheological vibration damper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |