CN114059052A - 一种peek塑料管内镀银层的空芯波导制备方法 - Google Patents

一种peek塑料管内镀银层的空芯波导制备方法 Download PDF

Info

Publication number
CN114059052A
CN114059052A CN202111468301.3A CN202111468301A CN114059052A CN 114059052 A CN114059052 A CN 114059052A CN 202111468301 A CN202111468301 A CN 202111468301A CN 114059052 A CN114059052 A CN 114059052A
Authority
CN
China
Prior art keywords
waveguide
plastic pipe
hollow
peek plastic
peek
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111468301.3A
Other languages
English (en)
Inventor
敬承斌
刘晟
鲁学会
赵强
刘少华
胡鸣
姚萌
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202111468301.3A priority Critical patent/CN114059052A/zh
Publication of CN114059052A publication Critical patent/CN114059052A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemically Coating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种PEEK塑料管内镀银层的空芯波导制备方法,其特点是采用等离子体处理的PEEK塑料管为结构管,制备用于不同频率范围的内镀银层的空芯波导,具体制备包括:结构管采用等离子体预处理,然后通过化学液相层积法制备PEEK管内镀银的空芯太赫兹波导,在PEEK/Ag镀层空芯波导的基础上,通过碘化反应,制得Ag/AgI空芯红外波导。本发明与现有技术相比具有成本低、工艺简单、弯曲性能优良、耐温性及耐腐蚀性好等优点,有效解决了塑料与金属层之间结合性能较差的问题,增强了波导的耐弯折性能及使用寿命,有广阔的应用前景。

Description

一种PEEK塑料管内镀银层的空芯波导制备方法
技术领域
本发明涉及太赫兹波导及红外波导制备技术领域,尤其是一种PEEK塑料管内镀银层的空芯波导制备方法。
背景技术
太赫兹波在电磁波谱中介于微波与红外波之间,频率范围为0.1~10 THz。太赫兹波因其具有低能性、高穿透性及宽带性等优良特性而受到极大关注,在通讯、生物医学、基础科学、反恐安检、航空航天等领域具有重要的研究及应用价值。红外波具有谱线丰富、线宽窄及与很多分子有很好的吸收效应等优点,在探测、医疗、军事等方面有广泛的用途。为实现太赫兹波和红外波的有效传输,研究人员提出了大量的波导结构,在众多波导结构中,空芯波导具有无端面反射、损耗阈值高及传输损耗低等优点。空芯波导的结构主要包括结构管及内反射层,结构管的热学性能、力学性能和表面光滑度对波导的性能有重要影响。
目前,结构管的材料选择主要为金属、玻璃及塑料,金属结构管具有良好的热学性能及机械性能,但其内表面粗糙且难以处理使得其传输损耗较高;玻璃管内表面光滑但易碎且难以弯曲,限制了其应用范围;塑料毛细管柔韧性好且内表面光滑,但其热学性能较差且与金属的结合能力较弱。太赫兹波与红外波在不同环境中的广泛应用也对波导提出了更高的要求,例如在航空领域要求波导能够具有耐高温及耐低温的性能,在火灾环境中利用波导的红外成像也需要波导具有较好的耐热性能。
现有技术的各种结构管材料无法满足广泛领域的应用,空芯波导存在着塑料管与金属反射层之间结合力不高,波导的耐温性不佳及耐弯折性能不好等问题,极大地限制了基于塑料结构管的柔性空芯波导的发展。关于能够在冷热环境中工作的柔性波导研究很少。因此,选择一种合适的聚合物材料作为波导的结构管及采用良好的工艺用以制备耐温性好、传输损耗低的柔性空芯波导显得尤为重要。
发明内容
本发明的目的是针对现有技术的不足而提供的一种PEEK塑料管内镀银层的空芯波导制备方法,采用等离子体处理的PEEK塑料管为结构管,使用液相沉积法制备的PEEK塑料管空芯太赫兹波导及空芯红外波导,具有波导传输损耗低、耐弯折性能好、能够在-78.5~150 ℃的冷热环境中稳定工作,在通讯、生物医学、基础科学、反恐安检、航空航天等领域具有重要的研究和广阔的应用前景。
实现本发明的具体技术方案是:一种PEEK塑料管内镀银层的空芯波导制备方法,其特点是采用等离子体处理的PEEK塑料管为波导的结构管,制备内镀银层的空芯太赫兹波导和空芯红外波导,所述空芯太赫兹波导的具体制备包括以下步骤:
步骤1:选用PEEK塑料管为波导的结构管,对其内表面采用等离子体预处理;
步骤2:使用液相化学沉积法在PEEK塑料管的内表面制备金属银镀层,制得PEEK塑料管内镀银层的空芯太赫兹波导。
所述等离子体预处理具体包括以下步骤:
步骤1.1:使用气体等离子体处理法对PEEK塑料管表面进行处理,时间为3~30min,所述气体包括氧气、氢气和氮气;
步骤1.2:使用蠕动泵向PEEK塑料管内依次通入清洁剂1~3 min、乙醇1~3min和去离子水1~3 min,所述清洁剂为洗洁精和去污粉的混合溶液,其质量比为1:1~2。
所述内镀银层的具体制备包括以下步骤:
步骤2.1:使用蠕动泵向PEEK塑料管内依次通入SnCl2溶液3~7 min,去离子水1~2min;所述SnCl2溶液的浓度为2~100 mmol/L;
步骤2.2:在避光条件下,使用蠕动泵向PEEK塑料管中同时通入葡萄糖溶液和银氨溶液,通过液相化学沉积法在PEEK塑料管的内壁上制备金属银镀层,所述液相化学沉积的时间为10~40 min,所述银氨溶液的浓度为2~100 mmol/L,葡萄糖溶液的浓度为2~100mmol/L;
步骤2.3:使用蠕动泵向PEEK塑料管内依次通入去离子水和乙醇进行清洗,其清洗时间分别为2~6 min;
步骤2.4:向PEEK塑料管内吹入干燥空气,时间为2~24 h,在PEEK塑料管内表面制得内镀银层的空芯太赫兹波导。
所述空芯红外波导的具体制备包括以下步骤:
步骤1:选择PEEK塑料管作为波导的结构管,对其内表面进行预处理,其方法与空芯太赫兹波导的预处理相同;
步骤2:通过液相化学沉积法在PEEK塑料管的内表面制备金属银镀层,制得PEEK塑料管内镀银层的空芯波导,其沉积方法与空芯太赫兹波导的液相化学沉积相同;
步骤3:通过碘化反应在内镀银层表面生成碘化银反射膜,制得PEEK塑料管内镀Ag/AgI空芯红外波导。
所述碘化银反射膜的具体制备包括以下步骤:
步骤3.1:使用蠕动泵向内镀银层的空芯太赫兹波导管内通入质量分数为1~10 g/L的碘溶液,通过碘化反应在金属银镀层表面生成碘化银反射膜,然后通入乙醇清洗1~3min,所述碘化反应时间为1~12 min;
步骤3.2:向PEEK塑料管内吹入干燥空气,时间为2~24 h,制得PEEK塑料管内镀Ag/AgI层的空芯红外波导。
本发明与现有技术相比具有以下有益的技术效果和显著进步:
1)PEEK塑料管作为结构管制备耐温性佳、耐弯折性好的PEEK塑料管金属镀层空芯波导具有柔性好、损耗低、机械强度高、耐弯折性强,以及能在冷/热环境中实现稳定传输等优良特性。
2)利用等离子体处理法对塑料管进行表面处理,解决了塑料表面与金属层之间结合性能较差的问题,极大地提升了塑料管与金属层之间的结合性能,使得波导的弯曲极限及耐弯折性能得到了提升,增加了波导的使用寿命。同时,PEEK管与金属层之间良好的结合性能使得波导在冷/热环境中依旧能够保持稳定,有效地实现太赫兹波的传输。
3)PEEK作为一种特种工程塑料,具有耐腐蚀、抗老化、热学性能及力学性能良好等优点,用作波导结构管能够使波导具有良好的柔性且能够在复杂环境中工作。此外,PEEK塑料管的表面光滑度高,镀制反射层后波导的传输损耗低。
4)PEEK塑料管空芯波导具有成本低、工艺简单、弯曲性能优良、耐高温、耐冲击、耐酸碱、阻燃等优点,有广阔的应用前景。
附图说明
图1为实施例1制备的空芯太赫兹波导结构示意图;
图2为实施例2制备的空芯红外波导结构示意图。
具体实施方式
下面以制备适用于不同频率范围的空芯波导为例对本发明作进一步详细描述和说明:
实施例1
参阅附图1,通过液相化学沉积法在结构管1上内镀银层2,制得空芯太赫兹波导,其制备具体包括以下步骤:
1)选择内径为4.25 mm,壁厚为0.35 mm,长度为1 m的PEEK塑料管作为结构管1,对其内表面使用氮气与氢气混合的等离子体气体处理20 min;
2)使用蠕动泵向结构管1内依次通入清洁剂、乙醇和去离子水进行清洗,清洗时间均为2 min,所述清洁剂为洗洁精和去污粉的混合溶液,其质量比为1:1。
3)使用蠕动泵向结构管1内依次通入SnCl2敏化液5 min,去离子水1 min;所述SnCl2敏化液的浓度为8.2 mmol/L;
4)在避光条件下,使用蠕动泵向结构管1中同时通入葡萄糖溶液和银氨溶液,通入时间均为15 min,所述银氨溶液为AgNO3的碱性溶液,其浓度为37.6 mmol/L;所述葡萄糖溶液的浓度为8.1 mmol/L;
5)使用蠕动泵向结构管1内依次通入去离子水和乙醇进行清洗,清洗时间分别为2min;
6)向结构管1内吹入干燥空气,干燥时间为12 h,制得在PEEK塑料管内镀银层2的空芯太赫兹波导。
上述制备的空芯太赫兹波导经测试,在传输频率为0.3 THz的太赫兹波时,直线损耗小于1 dB/m。当波导弯曲半径为15 cm,弯曲角度为180°时,传输损耗小于2 dB/m,该波导可在-78.5~150 ℃的冷/热环境中实现太赫兹波的稳定传输。
实施例2
参阅附图2,在结构管1的内壁上依次制备内镀银层2和碘化银反射膜3,制得空芯红外波导,其制备具体包括以下步骤:
1)、选择内径为1.0 mm,壁厚为0.2 mm,长度为1 m的PEEK塑料管作为结构管1,对其内表面使用氮气与氢气混合的等离子体气体处理30 min;
2)使用蠕动泵向结构管1内依次通入清洁剂、乙醇和去离子水进行清洗,清洗时间均为2 min,所述清洁剂为洗洁精和去污粉的混合溶液,其质量比为1:1。
3)使用蠕动泵向结构管1内依次通入SnCl2敏化液5 min,去离子水1 min;所述SnCl2敏化液的浓度为8.2 mmol/L;
4)在避光条件下,使用蠕动泵向结构管1中同时通入葡萄糖溶液和银氨溶液,通入时间均为30 min,所述银氨溶液为AgNO3的碱性溶液,其浓度为37.6 mmol/L;所述葡萄糖溶液的浓度为8.1 mmol/L;
5)使用蠕动泵向结构管1内依次通入去离子水和乙醇进行清洗,清洗时间分别为2min,制得PEEK塑料管内镀银层2的波导管;
6)使用蠕动泵向上述内镀银层2的波导管内通入质量分数为5 g/L的碘溶液7min,通过碘化反应在内镀银层2表面生成碘化银反射膜3,然后通入乙醇清洗2 min;
7)向结构管1内吹入干燥空气,干燥时间为12 h,制得PEEK塑料管内镀Ag/AgI层的空芯红外波导。
上述制备的空芯红外波导经测试,在传输波长为10.6 μm的红外波时,直线传输损耗小于1 dB/m,该波导可以在-78.5~150 ℃的冷/热环境中实现红外波的稳定传输。
本发明以PEEK塑料管为结构管,通过对PEEK塑料管进行等离子体处理,极大地提高PEEK塑料管与金属反射层之间的结合力,采用化学液相层积法制备了PEEK管内镀银层的空芯太赫兹波导。在PEEK/Ag镀层空芯波导的基础上,通过碘化反应在内镀银层上生成碘化银反射膜3,制备Ag/AgI空芯红外波导。聚醚醚酮(PEEK)塑料作为一种特种高分子材料,具有机械强度高、耐高温、耐冲击、耐酸碱及阻燃等优良性能,制备耐温性佳、耐弯折性好的PEEK塑料管内镀金属银层的空芯波导,同时较好的解决了塑料与金属层之间结合性能较差的问题。
以上只是对本发明做进一步说明,并非用以限制本发明专利,凡为本发明等效实施,均应包含于本发明专利的权利要求范围之内。

Claims (4)

1.一种PEEK塑料管内镀银层的空芯波导制备方法,其特征在于采用等离子体处理的PEEK塑料管为波导的结构管,制备不同频率的内镀银层的空芯波导,其空芯太赫兹波导及空芯红外波导的制备,具体包括以下步骤:
步骤1:选用PEEK塑料管为波导的结构管,对其内表面采用等离子体预处理;
步骤2:使用液相化学沉积法在PEEK塑料管的内表面制备金属银镀层,制得PEEK塑料管内镀银层的空芯太赫兹波导;
步骤3:上述制备的空芯太赫兹波导通过碘化反应在银层表面生成碘化银反射膜,制得PEEK塑料管内镀Ag/AgI层的空芯红外波导。
2.根据权利要求1所述PEEK塑料管内镀银层的空芯波导制备方法,其特征在于所述等离子体预处理具体包括以下步骤:
步骤1.1:使用气体等离子体处理法对PEEK塑料管表面处理3~30 min;所述气体包括氧气、氢气和氮气;
步骤1.2:使用蠕动泵向PEEK塑料管内依次通入清洁剂、乙醇和去离子水进行清洗,清洗时间分别为1~3 min;所述清洁剂为洗洁精与去污粉的混合溶液,所述洗洁精与去污粉的质量比为1:1~2。
3.根据权利要求1所述PEEK塑料管内镀银层的空芯波导制备方法,其特征在于所述液相化学沉积法在PEEK塑料管内镀银层的制备具体包括以下步骤:
步骤2.1:使用蠕动泵向PEEK塑料管内依次通入SnCl2溶液进行敏化和去离子水进行清洗,所述清洗时间分别为3~7 min和1~2 min;所述SnCl2溶液的浓度为2~100 mmol/L;
步骤2.2:在避光条件下,使用蠕动泵向PEEK塑料管中同时通入葡萄糖溶液和银氨溶液,通过液相化学沉积法在PEEK塑料管的内壁上制备金属银镀层,所述液相化学沉积的时间为10~40 min,所述银氨溶液的浓度为2~100 mmol/L,葡萄糖溶液的浓度为2~100 mmol/L;
步骤2.3:使用蠕动泵向PEEK塑料管内依次通入去离子水和乙醇进行清洗,清洗时间分别为2~6 min;
步骤2.4:向PEEK塑料管内吹入干燥空气进行干燥,干燥时间为2~24 h,制得PEEK塑料管内镀银层的空芯太赫兹波导。
4.根据权利要求1所述PEEK塑料管内镀银层的空芯波导制备方法,其特征在于所述碘化银反射膜的制备具体包括以下步骤:
步骤3.1:使用蠕动泵向内镀银层的空芯太赫兹波导管内通入质量分数为1~10 g/L的碘溶液,通过碘化反应在银层表面生成碘化银反射膜,然后通入乙醇清洗1~3 min,所述碘化反应时间为1~12 min;
步骤3.2:向PEEK塑料管内吹入干燥空气进行干燥,干燥时间为2~24 h,制得PEEK塑料管内镀Ag/AgI层的空芯红外波导。
CN202111468301.3A 2021-12-03 2021-12-03 一种peek塑料管内镀银层的空芯波导制备方法 Pending CN114059052A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111468301.3A CN114059052A (zh) 2021-12-03 2021-12-03 一种peek塑料管内镀银层的空芯波导制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111468301.3A CN114059052A (zh) 2021-12-03 2021-12-03 一种peek塑料管内镀银层的空芯波导制备方法

Publications (1)

Publication Number Publication Date
CN114059052A true CN114059052A (zh) 2022-02-18

Family

ID=80228491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111468301.3A Pending CN114059052A (zh) 2021-12-03 2021-12-03 一种peek塑料管内镀银层的空芯波导制备方法

Country Status (1)

Country Link
CN (1) CN114059052A (zh)

Similar Documents

Publication Publication Date Title
Chen et al. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth
US5995696A (en) Hollow waveguide and method of making same
CN111916917B (zh) 一种基于MXene的太赫兹波宽带超强吸收泡沫
CN101586019B (zh) 吸收高频电磁波的四氧化三铁/氧化锡核壳纳米棒及制法
CN106348616B (zh) 一种SiO2/TiO2减反射膜的制备方法
CN105870260B (zh) 一种减反结构与石墨烯复合透明导电薄膜的制备方法
CN111730924A (zh) 具有梯度孔径结构的太赫兹吸波材料及其制备方法
Zhai et al. Facile synthesis of nickel/reduced graphene oxide-coated glass fabric for highly efficient electromagnetic interference shielding
CN216972681U (zh) 一种peek塑料管内镀银层的空芯波导结构
Bai et al. Flexible and lightweight Ni/MXene decorated polyurethane sponge composite with sensitive strain sensing performance for ultrahigh terahertz absorption
CN114059052A (zh) 一种peek塑料管内镀银层的空芯波导制备方法
CN112563874B (zh) 一种室温光激发氧化锌声子振动太赫兹激光器
Zhang et al. Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Liu et al. A robust PEEK/silver-coated hollow waveguide for terahertz bendable transmission in hot and cold environments
Huang et al. Lightweight and efficient luffa sponge carbon/Co composites with adjustable electromagnetic wave absorption properties
CN111635736B (zh) 一种多孔氧化铝基复合吸波材料及其制备方法
CN209822845U (zh) 一种太赫兹波导及器件
CN113881097B (zh) 一种超高性能太赫兹吸收海绵及其制备方法
CN107991733A (zh) 金属毛细管二氧化锗电介质膜中远红外空芯光纤及制备
Xiang et al. A new approach for preparation of free-standing nano-porous SiO 2 films with a large area
CN117467277A (zh) 一种柔性太赫兹吸波复合材料及其制备方法
Zhao et al. Q-switched fiber laser operating at 1560 nm modulated by Cr3C2 film
CN108862250A (zh) 一种氮掺杂石墨烯的制备方法
Saggese et al. Novel lightpipes for infrared spectroscopy
Harrington et al. Hollow waveguides for the transmission of quantum cascade laser (QCL) energy for spectroscopic applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination