CN114057624A - 一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用 - Google Patents

一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用 Download PDF

Info

Publication number
CN114057624A
CN114057624A CN202111509504.2A CN202111509504A CN114057624A CN 114057624 A CN114057624 A CN 114057624A CN 202111509504 A CN202111509504 A CN 202111509504A CN 114057624 A CN114057624 A CN 114057624A
Authority
CN
China
Prior art keywords
spliced
tea
ketone
compound
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111509504.2A
Other languages
English (en)
Other versions
CN114057624B (zh
Inventor
彭礼军
刘雄利
韩晓雪
刘雄伟
潘博文
田又平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN202111509504.2A priority Critical patent/CN114057624B/zh
Publication of CN114057624A publication Critical patent/CN114057624A/zh
Application granted granted Critical
Publication of CN114057624B publication Critical patent/CN114057624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/32Oxygen atoms
    • C07D209/34Oxygen atoms in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Indole Compounds (AREA)

Abstract

本发明公开了一种茶香酮拼接氧化吲哚类化合物,本发明以以各种取代的氧化吲哚1与茶香酮2,在有机溶剂中,在有机小分子三级胺和二级胺组合催化剂的催化作用下,进行Michael加成脱氢反应,获得茶香酮拼接氧化吲哚类化合物3,该类化合物包含潜在生物活性茶香酮骨架和氧化吲哚骨架,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。且该骨架化合物可以作为新型冠状病毒3CL水解酶潜在抑制剂。本发明操作简单易行,原料合成便宜易得,可以在各种有机溶剂中进行,也具有较好的空气稳定性,适用性广,对于各种取代基都有很好的兼容性。

Description

一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用
技术领域
本发明涉及化学技术和药学技术领域,尤其是一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用。
背景技术
根据药物设计的活性骨架拼接原理,把两个或多个具有生物活性骨架拼接成一个潜在生物活性的多骨架分子在有机化学和医药化学中是极其重要的研究领域。(1)茶香酮主要用作烟用香精和饮料香精的原料,也具有较强的生物活性,目前针对茶香酮的结构修饰或者合成其类似物文献报道较少。这些化合物在解除病痛、经济发展中起着重要作用。(2)氧化吲哚在吲哚生物碱中占有重要的地位,由于其明显的生物活性以及独特的结构,吸引了许多化学工作者及医药化学团队的广泛关注。鉴于茶香酮骨架和氧化吲哚骨架具有潜在的生物活性。因此,把茶香酮骨架拼接到氧化吲哚骨架上,合成一系列新的潜在多活性官能团的茶香酮拼接氧化吲哚类化合物,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。
新型冠状病毒3CL水解酶(3CLpro)在病毒复制过程中能将病毒复制酶多聚蛋白切割成必须的功能蛋白。因此,以新型冠状病毒3CL水解酶为COVID-19的治疗靶点进行药物筛选具有重要意义。分子对接技术通过特定靶点与配体的化学结合作用,可以达到分析活性成分的潜在抑制作用。
发明内容
本发明的目的是:提供一种茶香酮拼接氧化吲哚类化合物及其制备方法与应用,它是一类重要的医药中间体类似物和药物分子类似物,对药物筛选和制药行业具有重要的应用价值,且其合成方法非常经济简便。
本发明还发现该类化合物在作为新型冠状病毒3CL水解酶抑制剂的药物应用。
本发明是这样实现的:一种茶香酮拼接氧化吲哚类化合物,该化合物具有如下通式(I)的结构:
Figure BDA0003405250950000021
式中,R1为甲基、乙基、苯基或苄基;R2为甲基、氟、氯或氢。
具体为如下结构式之一:
Figure BDA0003405250950000022
茶香酮拼接氧化吲哚类化合物的制备方法,将各种取代的氧化吲哚1与茶香酮2,在有机溶剂中,在有机小分子三级胺和二级胺组合催化剂的催化作用下,进行Michael加成脱氢反应,获得茶香酮拼接氧化吲哚类化合物3。
合成路线举例如下:
Figure BDA0003405250950000023
其中合成路线中的化合物,其取代基满足式中,R1为甲基、乙基、苯基或苄基;R2为甲基、氟、氯或氢。
反应机理举例如下:
Figure BDA0003405250950000031
所述的有机小分子三级胺为DABCO或三乙胺。
所述的有机小分子二级胺为二乙胺、哌啶或四氢吡咯。
所述的有机溶剂为甲醇、甲苯、乙醇、二氯甲烷、氯仿或乙腈。
将各种取代的氧化吲哚1与茶香酮2,在有机溶剂中,在有机小分子三级胺和二级胺组合催化剂的催化作用下,进行Michael加成脱氢反应,反应温度60℃-90℃,反应时间为12-30小时。
茶香酮拼接氧化吲哚类化合物作为新型冠状病毒3CL水解酶抑制剂的药物应用。
通过采用上述技术方案,以各种取代的氧化吲哚1与茶香酮2,在有机溶剂中,在有机小分子三级胺和二级胺组合催化剂的催化作用下,进行Michael加成脱氢反应,获得茶香酮拼接氧化吲哚类化合物3,该类化合物包含潜在生物活性茶香酮骨架和氧化吲哚骨架,可以为生物活性筛选提供化合物源,对药物的筛选和制药行业具有重要的应用价值。且该骨架化合物可以作为新型冠状病毒3CL水解酶潜在抑制剂。本发明操作简单易行,原料合成便宜易得,可以在各种有机溶剂中进行,也具有较好的空气稳定性,适用性广,对于各种取代基都有很好的兼容性。
附图说明
图1为本发明的实施例的化合物3e单晶图;
图2为本发明新型冠状病毒3CL水解酶蛋白信息图。
图3为本发明化合物3e和3h的分子对接模型示意图。
具体实施方式
本发明的实施例:在反应管中依次加入29.4mg N-甲基氧化吲哚1a(0.20mmol),45.6mg茶香酮2(0.30mmol),4.8mg DABCO(20mol%,0.04mmol),3.4mg哌啶(20mol%,0.04mmol)和2.0mL乙醇溶液,在65℃中搅拌反应24h,TLC检测至基本反应完全,旋干溶剂后,经柱层析(洗脱剂:V(石油醚):V(乙酸乙酯)=7:1)纯化得41.6mg化合物3a,淡黄色固体,熔点:119.2~120.7℃;产率70%。核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.20(s,6H),2.21(s,3H),2.50(d,J=16.0Hz,1H),2.62(d,J=16.0Hz,1H),3.22(s,3H),4.41(s,1H),6.81(d,J=8.0Hz,1H),6.87~6.90(m,1H),7.21~7.25(m,1H);13C NMR(CDCl3,100MHz)δ:13.1,25.0,25.6,44.2,45.7,50.0,107.5,121.3,121.4,125.9,127.6,143.8,146.5,194.2,201.7;HRMS(ESI-TOF)m/z:Calcd.for C18H19NNaO3{[M+Na]+}320.1257,found 320.1257。
化合物3b至3j的制备方法同化合物3a,投料比与化合物3a相同,可得到化合物3b至3j,反应产率见表1,但需强调的是本发明的化合物不限于表1所表示的内容。
表1为一种茶香酮拼接氧化吲哚类化合物的化学结构
Figure BDA0003405250950000041
本实施例制备化合物3b:淡黄色固体,熔点:122.3~123.8℃;产率65%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.22(s,6H),2.26(s,3H),2.54(d,J=16.4Hz,1H),2.66(d,J=16.4Hz,1H),4.60(s,1H),6.73(d,J=7.6Hz,1H),6.91-6.93(m,1H),7.13~7.16(m,1H),7.34~7.37(m,2H),7.46~7.50(m,4H);13C NMR(CDCl3,100MHz)δ:13.2,25.0,44.3,45.8,50.0,108.8,121.7,125.7,125.9,127.2,127.5,128.7,143.6,144.1,146.4,173.8,194.2,201.7;HRMS(ESI-TOF)m/z:Calcd.for C23H21NNaO3{[M+Na]+}382.1414,found 382.1411。
本实施例制备化合物3c:淡黄色固体,熔点:65.4~66.9℃;产率70%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.21(s,6H),2.21(s,3H),2.50(d,J=16.0Hz,1H),2.62(d,J=16.0Hz,1H),3.19(s,3H),4.38(s,1H),6.66~6.70(m,2H),7.02(d,J=7.6Hz,1H);13C NMR(CDCl3,100MHz)δ:12.6,19.6,24.6,24.8,43.8,45.3,49.6,106.8,121.8,125.6,127.4,130.4,141.0,143.0,145.9,173.8,193.8,201.3;HRMS(ESI-TOF)m/z:Calcd.for C19H21NNaO3{[M+Na]+}334.1414,found 334.1414。
本实施例制备化合物3d:淡黄色固体,熔点:115.2~116.7℃;产率71%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.21(s,6H),2.20(s,3H),2.51(d,J=16.0Hz,1H),2.63(d,J=16.0Hz,1H),3.20(s,3H),4.40(s,1H),6.61~6.63(m,1H),6.71~6.74(m,1H),6.91~6.93(m,1H);13C NMR(CDCl3,100MHz)δ:13.1,25.0,25.7,44.3,45.9,50.0,107.8(d,JCF=8.2Hz),109.7(d,JCF=25.1Hz),113.7(d,JCF=24.2Hz),127.5,139.8,142.7,146.9,157.6(d,JCF=244.0Hz),173.8,194.1,201.4;HRMS(ESI-TOF)m/z:Calcd.for C18H18FNNaO3{[M+Na]+}338.1163,found 338.1165。
本实施例制备化合物3e:淡黄色固体,熔点:105.7~106.2℃;产率63%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.21(s,6H),2.20(s,3H),2.50(d,J=16.4Hz,1H),2.63(d,J=16.0Hz,1H),3.58(s,3H),4.38(s,1H),6.71~6.73(m,1H),6.78~6.82(m,1H),7.13~7.15(m,1H);13C NMR(CDCl3,100MHz)δ:13.1,25.0,29.0,44.3,45.5,49.9,114.9,119.8,121.9,128.5,129.9,139.7,142.9,146.7,174.4,194.1,201.5;HRMS(ESI-TOF)m/z:Calcd.for C18H18ClNNaO3{[M+Na]+}354.0867,found 354.0871。
本实施例制备化合物3f:淡黄色固体,熔点:92.4~93.9℃;产率64%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.21(s,6H),2.20(s,3H),2.51(d,J=16.0Hz,1H),2.63(d,J=16.0Hz,1H),3.64~3.71(m,1H),3.78~3.85(m,1H),4.38(s,1H),6.61~6.64(m,1H),6.73~6.76(m,1H),6.89~6.94(m,1H);13C NMR(CDCl3,100MHz)δ:11.0,13.1,25.0,34.1,44.3,45.9,50.0,107.9(d,JCF=7.3Hz),109.9(d,JCF=24.4Hz),113.6(d,JCF=23.3Hz),127.7,127.7,138.8,144.8,146.8,157.7(d,JCF=241.3Hz),173.4,194.1,201.5;HRMS(ESI-TOF)m/z:Calcd.for C19H20FNNaO3{[M+Na]+}352.1319,found 352.1320。
本实施例制备化合物3g:淡黄色固体,熔点:72.3~73.8℃;产率53%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.21(s,6H),1.30~1.34(m,3H),2.20(s,3H),2.50(d,J=16.0Hz,1H),2.64(d,J=16.0Hz,1H),4.11~4.18(m,2H),4.37(s,1H),6.72(d,J=7.2Hz,1H),6.78~6.82(m,1H),7.15(d,J=8.4Hz,1H);13C NMR(CDCl3,100MHz)δ:13.2,13.3,25.0,35.9,44.2,45.5,49.9,114.4,119.9,121.8,128.9,130.0,139.1,143.0,146.6,174.2,194.0,201.6;HRMS(ESI-TOF)m/z:Calcd.for C19H20ClNNaO3{[M+Na]+}368.1024,found 368.1030。
本实施例制备化合物3h:淡黄色固体,熔点:75.6~77.1℃;产率64%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.23(s,6H),2.16(s,3H),2.23(s,3H),2.55(d,J=16.4Hz,1H),2.68(d,J=16.0Hz,1H),4.49(s,1H),4.82(d,J=16.0Hz,1H),5.00(d,J=16.0Hz,1H),6.50(d,J=8.0Hz,1H),6.67(s,1H),6.87(d,J=8.0Hz,1H),7.17~7.29(m,4H),7.38(d,J=7.6Hz,1H);13C NMR(CDCl3,100MHz)δ:11.7,18.6,23.6,41.8,42.9,44.5,48.6,107.0,120.8,124.5,124.9,125.0,125.4,126.2,126.3,129.5,133.5,139.0,141.9,145.1,172.7,192.7,200.4;HRMS(ESI-TOF)m/z:Calcd.forC25H25NNaO3{[M+Na]+}410.1727,found 410.1734。
本实施例制备化合物3i:淡黄色固体,熔点:109.7~11.2℃;产率52%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.22(s,6H),2.19(s,3H),2.23(s,3H),2.55(d,J=16.0Hz,1H),2.69(d,J=16.0Hz,1H),4.52(s,1H),5.10(d,J=16.6Hz,1H),5.25(d,J=16.6Hz,1H),6.71-6.73(m,1H),6.86~6.89(m,1H),7.27-7.32(m,2H);13CNMR(CDCl3,100MHz)δ:13.1,17.7,25.1,44.5,45.6,50.0,119.3,121.4,124.8,126.0,126.5,127.8,131.5,137.0,140.9,143.3,146.6,175.1,194.1,201.8;HRMS(ESI-TOF)m/z:Calcd.for C25H25NNaO3{[M+Na]+}410.1727,found 410.1731。
本实施例制备化合物3j:淡黄色固体,熔点:98.2~99.7℃;产率57%;;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.18(s,6H),2.22(s,3H),2.55(d,J=16.0Hz,1H),2.68(d,J=16.0Hz,1H),4.51(s,1H),5.26(d,J=16.0Hz,1H),5.39(d,J=16.0Hz,1H),6.75(d,J=7.2Hz,1H),6.80~6.84(m,1H),7.09(d,J=8.0Hz,1H),7.18~7.20(m,2H),7.25~7.29(m,2H),7.35(d,J=7.6Hz,1H);13C NMR(CDCl3,100MHz)δ:13.2,25.0,28.7,44.3,45.6,49.9,114.7,119.9,122.1,125.5,126.0,127.5,128.6,130.1,136.8,142.7,147.0,174.5,193.9,201.5;HRMS(ESI-TOF)m/z:Calcd.for C24H22ClNNaO3{[M+Na]+}430.1180,found 430.1175。
本发明的式(1)化合物具有潜在的重要生物活性,成分靶点分子对接筛选活性成分试验表明:本发明的式(1)化合物具有潜在的重要生物活性,可以作为新型冠状病毒3CL水解酶潜在抑制剂。
药理实施例:成分靶点分子对接筛选活性成分
分子对接配体与受体的准备的具体方法是:本发明的式(1)化合物的mo12结构,通过Open Babel GUI选用MMFF94力场进行能量优化,并保存为mol2格式;通过AutoDockTools-1.5.6赋予配体原子类型、进行电荷计算,并定义所有柔性键可旋转,保存为pdbqt格式;从PDB数据库中下载SARS-CoV-2 3CL水解酶的PDB格式,导入PyMOL软件去水分子,分离蛋白;导入AutoDockTools-1.5.6中进行添加极性氢,计算Gasteiger电荷并分配电荷,保存为pdbqt文件。
成分靶点分子对接筛选活性成分的具体方法是:AutoDockTools软件分别设置受体的格点参数文本文件,energy_range=3,num_modes=10,exhaustiveness=8;运用Autodock Vina软件在linux虚拟环境下进行对接,选取结合自由能小且构象较好的作为结果;选取结合能≤-5.0kJ/mol的化合物作为新型冠状病毒3CL水解酶潜在抑制剂的活性成分。
本专利以蛋白结构上的配体所在部位为活性位点中心,通过分子对接方法来计算小分子化合物与蛋白的结合能和潜在结合模式。活性位点主要有氨基酸Thr26、His41、Met49等组成,大部分为中性、亲水性氨基酸(图2),故活性化合物与蛋白间的疏水作用力较弱。
活性位点氨基酸信息
Figure BDA0003405250950000081
对本发明的式(1)茶香酮拼接氧化吲哚类化合物-3CL水解酶的分子对接模型分析结果,其中3e和3h结果最好,分别为3e结合能为-6.9kg/mol;3h结合能为-7.5kg/mol。分子对接模型图见图3,其中氢键在配体与受体结合中起关键作用。
(1)小分子3e与蛋白6LU7分子对接结果;将蛋白结构6LU7与小分子3e进行分子对接,其结合能为-0.69kg/mol,六元环上的=O原子与氨基酸Gly143有氢键作用,键长为
Figure BDA0003405250950000082
(2)小分子3h与蛋白6LU7分子对接结果;将蛋白结构6LU7与小分子3h进行分子对接,其结合能为-0.75kg/mol,六元环上的=O原子与氨基酸Gln189有氢键作用,键长为
Figure BDA0003405250950000083
实验结论:一般认为配体与受体结合的构象越稳定时,所需能量能量越低,其发生作用的可能性越大。配体与受体结合能≤-5.0kJ/mol,表明活性成分与新冠肺炎相关靶点有较好的结合活性。本发明使用分子对接技术,对本发明的式(1)化合物的活性成分进行分子对接筛选。筛选表明:以-5.0kcal/mol为筛选标准,3CL水解酶与式(1)化合物活性成分有较好的结合活性,表明此类式(1)所示的茶香酮拼接氧化吲哚类化合物活性成分可能直接作用于新冠病毒3CL水解酶进行复制的过程,可以作为新型冠状病毒3CL水解酶潜在抑制剂,值得继续深入研究下去。

Claims (7)

1.一种茶香酮拼接氧化吲哚类化合物,其特征在于:该化合物具有如通式(Ⅰ)所示的结构:
Figure FDA0003405250940000011
具体为如下结构式之一:
Figure FDA0003405250940000012
2.一种如权利要求1所述的茶香酮拼接氧化吲哚类化合物的制备方法,其特征在于:将各种取代的氧化吲哚1与茶香酮2,在有机溶剂中,在有机小分子三级胺和二级胺组合催化剂的催化作用下,进行Michael加成脱氢反应,获得茶香酮拼接氧化吲哚类化合物3。
3.根据权利要求2所述的茶香酮拼接氧化吲哚类化合物的制备方法,其特征在于:所述的有机小分子三级胺为DABCO或三乙胺。
4.根据权利要求2所述的茶香酮拼接氧化吲哚类化合物的制备方法,其特征在于:所述的有机小分子二级胺为二乙胺、哌啶或四氢吡咯。
5.根据权利要求2所述的茶香酮拼接氧化吲哚类化合物的制备方法,其特征在于:所述的有机溶剂为甲醇、甲苯、乙醇、二氯甲烷、氯仿或乙腈。
6.根据权利要求2所述的茶香酮拼接氧化吲哚类化合物的制备方法,其特征在于:将各种取代的氧化吲哚1与茶香酮2,在有机溶剂中,在有机小分子三级胺和二级胺组合催化剂的催化作用下,进行Michael加成脱氢反应,反应温度60℃-90℃,反应时间为12-30小时。
7.一种如权利要求1所述的茶香酮拼接氧化吲哚类化合物作为新型冠状病毒3CL水解酶潜在抑制剂的药物应用。
CN202111509504.2A 2021-12-10 2021-12-10 一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用 Active CN114057624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111509504.2A CN114057624B (zh) 2021-12-10 2021-12-10 一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111509504.2A CN114057624B (zh) 2021-12-10 2021-12-10 一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN114057624A true CN114057624A (zh) 2022-02-18
CN114057624B CN114057624B (zh) 2023-09-12

Family

ID=80229163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111509504.2A Active CN114057624B (zh) 2021-12-10 2021-12-10 一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN114057624B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177854A1 (en) * 2022-03-18 2023-09-21 Enanta Pharmaceuticals, Inc. Processes for the preparation of substituted spirooxindole derivatives
US11858945B2 (en) 2021-11-12 2024-01-02 Enanta Pharmaceuticals, Inc. Alkyne-containing antiviral agents
US11912714B2 (en) 2021-11-12 2024-02-27 Enanta Pharmaceuticals, Inc. Spiropyrrolidine derived antiviral agents
US11919910B2 (en) 2021-11-12 2024-03-05 Enanta Pharmaceuticals, Inc. Spiropyrrolidine derived antiviral agents
US11970502B2 (en) 2021-05-04 2024-04-30 Enanta Pharmaceuticals, Inc. Macrocyclic antiviral agents
US11976084B2 (en) 2020-11-23 2024-05-07 Enanta Pharmaceuticals, Inc. Spiropyrrolidine derived antiviral agents
US11993600B2 (en) 2021-12-08 2024-05-28 Enanta Pharmaceuticals, Inc. Saturated spirocyclics as antiviral agents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099976A1 (en) * 2004-02-13 2007-05-03 President And Fellows Of Harvard College 3-3-di-substituted-oxindoles as inhibitors of translation initiation
CN102659494A (zh) * 2012-03-31 2012-09-12 华东师范大学 3,3-二取代-2-氧化吲哚类化合物的不对称合成方法
CN104030966A (zh) * 2014-06-20 2014-09-10 浙江工业大学 2-(3-氨基-2-氧代吲哚烷-3-基)-3-羟基-1,4-萘醌衍生物及其制备方法
CN106047959A (zh) * 2016-06-29 2016-10-26 西南大学 α‑胰凝乳蛋白酶催化的傅克反应在合成双吲哚基‑二氢吲哚‑2‑酮类化合物中的应用及方法
CN107188924A (zh) * 2017-07-03 2017-09-22 贵州大学 一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法及应用
CN107935910A (zh) * 2017-11-23 2018-04-20 贵州大学 含1′‑茚醇拼接3‑氧化吲哚类化合物及其制备方法及应用
WO2021212974A1 (zh) * 2020-04-24 2021-10-28 复旦大学 消旋和手性3-(2,3-丁二烯基)氧化吲哚酮类化合物及制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099976A1 (en) * 2004-02-13 2007-05-03 President And Fellows Of Harvard College 3-3-di-substituted-oxindoles as inhibitors of translation initiation
CN102659494A (zh) * 2012-03-31 2012-09-12 华东师范大学 3,3-二取代-2-氧化吲哚类化合物的不对称合成方法
CN104030966A (zh) * 2014-06-20 2014-09-10 浙江工业大学 2-(3-氨基-2-氧代吲哚烷-3-基)-3-羟基-1,4-萘醌衍生物及其制备方法
CN106047959A (zh) * 2016-06-29 2016-10-26 西南大学 α‑胰凝乳蛋白酶催化的傅克反应在合成双吲哚基‑二氢吲哚‑2‑酮类化合物中的应用及方法
CN107188924A (zh) * 2017-07-03 2017-09-22 贵州大学 一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法及应用
CN107935910A (zh) * 2017-11-23 2018-04-20 贵州大学 含1′‑茚醇拼接3‑氧化吲哚类化合物及其制备方法及应用
WO2021212974A1 (zh) * 2020-04-24 2021-10-28 复旦大学 消旋和手性3-(2,3-丁二烯基)氧化吲哚酮类化合物及制备方法及应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976084B2 (en) 2020-11-23 2024-05-07 Enanta Pharmaceuticals, Inc. Spiropyrrolidine derived antiviral agents
US11970502B2 (en) 2021-05-04 2024-04-30 Enanta Pharmaceuticals, Inc. Macrocyclic antiviral agents
US11858945B2 (en) 2021-11-12 2024-01-02 Enanta Pharmaceuticals, Inc. Alkyne-containing antiviral agents
US11912714B2 (en) 2021-11-12 2024-02-27 Enanta Pharmaceuticals, Inc. Spiropyrrolidine derived antiviral agents
US11919910B2 (en) 2021-11-12 2024-03-05 Enanta Pharmaceuticals, Inc. Spiropyrrolidine derived antiviral agents
US11993600B2 (en) 2021-12-08 2024-05-28 Enanta Pharmaceuticals, Inc. Saturated spirocyclics as antiviral agents
WO2023177854A1 (en) * 2022-03-18 2023-09-21 Enanta Pharmaceuticals, Inc. Processes for the preparation of substituted spirooxindole derivatives

Also Published As

Publication number Publication date
CN114057624B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN114057624A (zh) 一种茶香酮拼接氧化吲哚类化合物及其制备方法及应用
Zhao et al. Enantioselective Intermolecular Rauhut–Currier Reaction of Electron‐Deficient Allenes with Maleimides
Candeias et al. Boronic acids and esters in the Petasis-borono Mannich multicomponent reaction
Zhou et al. Organocatalytic Sequential Hetero-Diels–Alder and Friedel–Crafts Reaction: Constructions of Fused Heterocycles with Scaffold Diversity
Xia et al. Catalytic ugi-type condensation of α-isocyanoacetamide and chiral cyclic imine: Access to asymmetric construction of several heterocycles
Bandyopadhyay et al. Novel synthesis of 3-pyrrole substituted β-lactams via microwave-induced bismuth nitrate-catalyzed reaction
Yang et al. Access to α, γ-diamino diacid derivatives via organocatalytic asymmetric 1, 4-addition of azlactones and dehydroalanines
Fayol et al. Synthesis of polysubstituted 4, 5, 6, 7-tetrahydrofuro [2, 3-c] pyridines by a novel multicomponent reaction
Schultz et al. Intramolecular alkene carboamination reactions for the synthesis of enantiomerically enriched tropane derivatives
Akaev et al. 3-(2-Azidoethyl) oxindoles: advanced building blocks for one-pot assembly of spiro [pyrrolidine-3, 3′-oxindoles]
Lin et al. Organocatalytic asymmetric synthesis of 3, 3′-pyrrolidinyl-bispirooxindoles via Michael/N-hemiketalization cascade reaction between 3-aminooxindoles and isatin-derived β, γ-unsaturated α-keto esters
Lomlim et al. Proline derived spirobarbiturates as highly effective β-turn mimetics incorporating polar and functionalizable constraint elements
Gao et al. Synergistic N-heterocyclic carbene/palladium-catalyzed [3+ 2] annulation of vinyl enolates with 1-tosyl-2-vinylaziridine
Xie et al. Catalytic Aza-Wacker annulation: tuning mechanism by the activation mode of amide and enantioselective syntheses of melinonine-E and strychnoxanthine
Cruz-Hernández et al. Proline-Glycine dipeptidic derivatives of chiral phosphoramides as organocatalysts for the enantiodivergent aldol reaction of aryl aldehydes and isatins with cyclohexanone in the presence of water
Xiao et al. Construction of Non-Biaryl Atropisomeric Amide Scaffolds Bearing a C–N Axis via Enantioselective Catalysis
Waechtler et al. Praziquantel–50 years of research
CN103012241B (zh) 多取代吲哚、合成方法及其应用于吲哚美辛的合成
Tecle et al. Design and Synthesis of m1-Selective Muscarinic Agonists:(R)-(−)-(Z)-1-Azabicyclo [2.2. 1] heptan-3-one, O-(3-(3 ‘-Methoxyphenyl)-2-propynyl)-oxime Maleate (CI-1017), a Functionally m1-Selective Muscarinic Agonist
Yue et al. Stereoselective process for a CCR3 antagonist
Wu et al. An expeditious enantioselective synthesis of antimycin A3b
Lescop et al. A new synthesis of 2-azabicyclo [2.1. 1] hexanes
Chen et al. Enantioselective Michael addition of 3-ethyl carboxylate substituted pyrazolones to 5-alkenyl thiazolones catalyzed by squaramide organocatalyst
CN102180828A (zh) 手性吲哚啉酮螺五环骨架化合物及不对称合成
Jiang et al. Synthesis of polycyclic spirooxindoles via an asymmetric catalytic one-pot stepwise Aldol/chloroetherification/aromatization procedure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant