CN114042440A - 一种磁固相萃取吸附剂及制备方法和应用 - Google Patents

一种磁固相萃取吸附剂及制备方法和应用 Download PDF

Info

Publication number
CN114042440A
CN114042440A CN202111093174.3A CN202111093174A CN114042440A CN 114042440 A CN114042440 A CN 114042440A CN 202111093174 A CN202111093174 A CN 202111093174A CN 114042440 A CN114042440 A CN 114042440A
Authority
CN
China
Prior art keywords
nsio
msio
pda
solid phase
phase extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111093174.3A
Other languages
English (en)
Inventor
狄斌
严方
戚立凯
江鑫怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202111093174.3A priority Critical patent/CN114042440A/zh
Publication of CN114042440A publication Critical patent/CN114042440A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种磁固相萃取吸附剂及制备方法和应用,所述磁固相萃取吸附剂为Fe3O4@nSiO2@mSiO2@PDA‑C18,制备方法为先制备Fe3O4磁球,然后在Fe3O4磁球表面包覆二氧化硅形成核壳层,然后在核壳层表面包覆介孔二氧化硅作为介孔层,接着在介孔层表面负载多巴胺,最后通过共价键在多巴胺上键合二甲基十八烷基氯化硅烷。本发明的材料能对尿液中的12种毒品及代谢物进行富集,并可以针对检测要求分别进行现场检测和实验室检测,实现涉毒人员的初筛和精筛,本发明提高了现场筛查和实验室检测灵敏度,操作方法简单易掌握,具有重大的实际应用价值。

Description

一种磁固相萃取吸附剂及制备方法和应用
技术领域
本发明属于磁固相萃取材料,尤其涉及一种用于尿液中毒品及代谢物的磁固相萃取吸附剂及制备方法。
背景技术
尿液检测已成功的被运用到涉毒人员筛查,该方法是通过检测尿液中毒品原形和代谢物以判断被筛人员是否涉毒。现场快筛一般采用尿液检测试剂盒(俗称尿检板)对疑似人员进行初筛,后再将潜在涉毒人员的尿液进行实验室检测最终确定吸毒人员。
目前,用于现场快速检测的分析方法主要为酶联免疫法(也称胶体金法),根据已上市的尿检板标称的检测灵敏度,毒品的检测阈值在300ng/mL至 1000ng/mL之间,由于毒品吸食后易在体内代谢排泄,因此吸毒几天后尿中毒品浓度可能已无法达到该检测阈值要求,极易造成涉毒人员漏筛。实验室检测的常用手段是气相质谱联用或液相质谱联用,为了实现对尿液的中毒品的痕量检测,保证涉毒人员即使在微量排泄时也能被筛查出,待检的尿液常需要经固相萃取等前处理方法富集后进一步分析。然而,在实际操作过程中材料的吸附量较低,导致固相萃取耗时长,且需配备特殊装置,操作技术要求高,导致了该方法无法在各现场检测中大规模推广使用。
发明内容
发明目的:本发明的第一目的是提供一种快速富集毒品、可同时实现现场检测和实验室检测以提高检测精度的磁固相萃取吸附剂;本发明的第二目的在于提供上述磁固相萃取吸附剂的制备方法;本发明的第三目的在于提供上述磁固相萃取吸附剂作为尿液中毒品定量分析材料的应用。
技术方案:本发明的一种磁固相萃取吸附剂,所述磁固相萃取吸附剂为 Fe3O4@nSiO2@mSiO2@PDA-C18;其中,Fe3O4位于核心,Fe3O4外层包裹二氧化硅组成核壳层,核壳层外部包裹介孔二氧化硅作为介孔层,介孔层外部负载有呈散点状分布的PDA-C18;所述PDA-C18为多巴胺和二甲基十八烷基氯化硅烷通过共价键结合所得。
本发明还保护所述磁固相萃取吸附剂的制备方法,包括以下步骤:
(1)将Fe3O4磁球超声分散于乙醇中,加入去离子水和浓氨水后,滴加正硅酸丁酯,用磁铁分离得到Fe3O4@nSiO2纳米粒;
(2)将Fe3O4@nSiO2纳米粒和十六烷基三甲基溴化铵混合并超声分散于去离子水和三乙醇胺中,搅拌后加入含有正硅酸乙酯和异丙醇的环己烷溶液,反应后磁铁分离颗粒,洗涤后,用含硝酸的乙醇溶液回流反应去除十六烷基三甲基溴化铵,得到Fe3O4@nSiO2@mSiO2纳米粒;
(3)将Fe3O4@nSiO2@mSiO2纳米粒分散在乙醇和tris缓冲液中,滴加含有盐酸多巴胺的去离子水溶液,机械搅拌反应后真空干燥,磁铁分离得到 Fe3O4@nSiO2@mSiO2@PDA纳米粒;
(4)将Fe3O4@nSiO2@mSiO2@PDA纳米粒超声分散于甲苯溶液中,滴加溶于甲苯的二甲基十八烷基氯化硅烷,室温机械搅拌反应后,磁铁分离得到 Fe3O4@nSiO2@mSiO2@PDA-C18磁固相萃取吸附剂。
进一步的,所述步骤(1)中,Fe3O4纳米粒与正硅酸丁酯的用量比为100mg: 200~2000μL。
进一步的,所述步骤(2)中,Fe3O4@nSiO2纳米粒、十六烷基三甲基溴化铵和环己烷溶液的用量比为100mg:1.5~15g:10~100mL。
进一步的,所述步骤(3)中,Fe3O4@nSiO2@mSiO2纳米粒和盐酸多巴胺的质量比为100:50~500。
进一步的,所述步骤(4)中,Fe3O4@nSiO2@mSiO2@PDA纳米粒与二甲基十八烷基氯化硅烷的质量比为100:80~800。
本发明还进一步保护所述的磁固相萃取吸附剂作为尿液中毒品及代谢物检测材料的应用。
进一步的,所述毒品及代谢物包括6-单乙酰吗啡、吗啡、可待因、甲基苯丙胺、苯丙胺、亚甲基二氧甲基苯丙胺、亚甲基二氧苯丙胺、可卡因、苯甲酰爱康宁、氯胺酮、去甲氯胺酮和甲卡西酮中的任一种。
进一步的,检测为现场检测,具体过程为:将尿液样品调至碱性,加入 Fe3O4@nSiO2@mSiO2@PDA-C18,涡旋混合,磁铁分离,材料中加入洗脱液,再次涡旋,磁铁分离收集洗脱液并调节pH至中性,得到待检液,用毒品尿液检测板检测待检液。
进一步的,检测为实验室检测,具体过程为:将尿液样品调至碱性,加入 Fe3O4@nSiO2@mSiO2@PDA-C18,涡旋混合,磁铁分离得到材料,材料中加入碱性水溶液,涡旋后再次磁铁分离得到材料,材料中加入洗脱液,涡旋后磁铁分离收集洗脱液,氮气吹干洗脱液,复溶液复溶得进样液;将进样液注入LC-MS/MS 中进行检测。
本发明制备的磁固相萃取吸附剂Fe3O4@nSiO2@mSiO2@PDA-C18,同时具备核壳和介孔结构,优选的,磁固相萃取吸附剂呈圆球形,直径为500~550nm;其中,核壳层的直径为450~480nm,介孔层的厚度为50~80nm;其中采用表面包覆二氧化硅的四氧化三铁作为核壳层,一方面四氧化三铁提供了磁性方便纳米颗粒在制备和应用过程中的分离收集,另一方面表面的二氧化硅可以起到保护四氧化三铁的作用,达到避免四氧化三铁被氧化而使磁球磁性下降的效果;进一步,在核壳层表面包覆介孔二氧化硅层,介孔结构能够极大地提高纳米颗粒的比表面积,提供更多的吸附位点;在吸附相同量化合物的时候,介孔结构的引入能够有效地降低材料的使用量;同时,在介孔层表面负载PDA-C18,其中PDA为多巴胺自缩聚的产物,表面存在残余的酚羟基和氨基,可以增加材料在尿液中的浸润性同时可以通过π-π和氢键相互作用来吸附具有芳香环的化合物,而C18采用长链二甲基十八烷基氯化硅烷,PDA上的酚羟基与二甲基十八烷基氯化硅烷上的氯硅烷基反应,形成共价键连接,使得长链结构修饰在材料的表面,更有利于材料对多种不同极性毒品的全面吸附且共价键结合有利于C18基团的稳定。
在实际应用过程中,直接将磁固相萃取吸附剂与尿液样品混合,分别对洗脱液进行胶体金法和LC-MS/MS分析,可以实现针对不同条件和场景的检测,提高了毒品的筛选精度,扩大了吸附剂的应用范围。
有益效果:与现有技术相比,本发明的显著优点为:本发明制备的 Fe3O4@nSiO2@mSiO2@PDA-C18磁固相萃取吸附剂,可以对尿液中12种毒品和代谢物进行提取富集,富集后样品经尿液检测试剂盒或液相质谱仪检测实现对潜在吸毒人员的筛查,能够大幅提升检测灵敏度,简化了不同场景的检测条件。本发明现场快筛方法已经成功地对含冰毒的模拟样品实现了定性检测,结果证实该方法可提高现场快筛的检测能力;实验室检测方法经模拟样品验证,结果符合要求,同时经与现有方法对比,本发明的实验室检测方法定量能力更高。本发明提升了尿液中毒品的检测能力,同时操作技术要求低,满足广大非检测专业人员的要求,具有重大的实际应用价值。
附图说明
图1为磁固相萃取吸附剂Fe3O4@nSiO2@mSiO2@PDA-C18的TEM和SEM 表征图;
图2为磁固相萃取吸附剂Fe3O4@nSiO2@mSiO2@PDA-C18的FT-IR表征图;
图3为磁固相萃取吸附剂Fe3O4@nSiO2@mSiO2@PDA-C18的磁滞回归曲线图;
图4为磁固相萃取在现场检测中的验证及应用结果图;
图5为磁固相萃取吸附剂Fe3O4@nSiO2@mSiO2@PDA-C18重复多次使用后吸附效率变化图;
图6为样品液pH值对磁固相萃取吸附步骤的影响;
图7为磁固相萃取吸附剂Fe3O4@nSiO2@mSiO2@PDA-C18用量对磁固相萃取吸附步骤的影响;
图8为吸附时间对磁固相萃取吸附步骤的影响;
图9为用于实验室检测的磁固相萃取清洗步骤对基质效应影响;
图10为用于实验室检测的磁固相萃取洗脱步骤中洗脱溶剂的筛选结果图;
图11为用于实验室检测的磁固相萃取洗脱步骤中甲酸含量的筛选结果图;
图12为用于实验室检测的磁固相萃取洗脱步骤中洗脱液体积的筛选结果图;
图13为用于实验室检测的磁固相萃取洗脱步骤中洗脱时间的筛选结果图;
图14为用于现场检测的磁固相萃取洗脱步骤中甲酸含量的筛选结果图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步详细说明。
实施例1
Fe3O4@nSiO2@mSiO2@PDA-C18磁固相萃取吸附剂的制备
第一步、将4.05g FeCl3·6H2O、11.56g乙酸铵、1.12g二水合柠檬酸溶于 210mL乙二醇中,170℃剧烈搅拌1h,将反应后的溶液转移到衬有特氟龙的不锈钢高压釜中,200℃反应16h,高压釜自然冷却至室温后,将合成得到的黑色纳米Fe3O4粒子用乙醇和去离子水交替洗涤3次,在60℃真空烘箱中干燥,备用。
第二步、称取100mg合成的Fe3O4纳米颗粒,将其均匀分散在60mL乙醇中,加入25mL去离子水和3.125mL质量浓度为28%的浓氨水溶液,超声30min后室温搅拌15min,滴加400μL正硅酸丁酯后继续搅拌12h,反应结束,磁铁分离收集合成得到的Fe3O4@nSiO2纳米粒,乙醇和去离子水交替洗涤3次,50℃真空干燥过夜,备用。
第三步、称取100mg合成得到的Fe3O4@nSiO2纳米粒和3.0g的CTAB,超声分散于60mL去离子水和0.18mL三乙醇胺中,60℃机械搅拌1h,加入20mL 含有5wt%正硅酸乙酯和2.5wt%异丙醇的环己烷混合物,在60℃搅拌12h,磁铁分离得到磁性固体产物,乙醇和去离子水洗涤3次,将所得磁性固体产物用硝酸 /乙醇溶液在75℃下萃取回流8h,共回流3次,磁铁分离合成得到的 Fe3O4@nSiO2@mSiO2纳米粒,50℃真空干燥后,备用。
第四步、将Fe3O4@nSiO2@mSiO2纳米粒100mg超声分散在20mL乙醇和 20mL 10mMtris缓冲液(pH=8.5)混合溶液中,滴加含有100mg盐酸多巴胺的去离子水60mL,室温搅拌5h后,磁铁分离合成得到的Fe3O4@nSiO2@mSiO2@PDA纳米粒,50℃真空干燥后,备用。
第五步、将Fe3O4@nSiO2@mSiO2@PDA纳米粒100mg超声分散在60mL甲苯溶液中,加入含有160mg二甲基十八烷基氯化硅烷的20mL甲苯溶液,室温条件下机械搅拌12h,反应结束后,用磁铁分离收集制备得到的 Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒,用无水乙醇反复洗涤3次,50℃真空干燥过夜,即得吸附剂。
对制备的Fe3O4@nSiO2@mSiO2@PDA-C18进行表征。
通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了 Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒的表面形貌和尺寸,分别参见图1中 a)和图1中b)。用傅里叶红外(FT-IR)表征证明了Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒含有二氧化硅结构且表面成功修饰了PDA和C18,参见图2。 Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒磁强度通过磁滞回归曲线进行考察,结果参见图3。
SEM和TEM表征结果显示Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒均呈圆球形,Fe3O4磁球直径大约在400nm左右,纳米粒子直径大约为500nm。TEM 呈现明显的核壳和介孔结构,核壳层和介孔层厚度均在70nm左右,PDA包裹层和C18呈散点装分布孔结构表面,从SEM图中可以观察到少量的突起,可能是 PDA和键合了C18导致。根据Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒的FT-IR 图,根据FT-IR的对比图,Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒的558cm-1和1066cm-1处的强峰分别隶属Fe3O4@nSiO2@mSiO2介孔二氧化硅中Fe3O4磁球的Fe-O-Fe振动及核壳层与介孔层二氧化硅的Si-O-Si的伸缩振动峰;而3358, 1609,1470,1251cm-1处及842cm-1处的峰均为PDA层的氨基、羟基伸缩振动峰和苯环及取代苯的伸缩振动峰;相较于Fe3O4@nSiO2@mSiO2@PDA纳米颗粒,键合有C18的纳米粒新增了2849和2914cm-1处的强峰,为甲基和亚甲基的伸缩振动峰,且3200cm-1处峰消失,表明部分羟基被十八烷基二甲基氯硅烷取代所致。综合红外结果表明,Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒成功在核壳介孔二氧化硅表面修饰了PDA和C18。磁滞回归曲线结果表明, Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒呈现超顺磁性,饱和磁化强度约18 emu/g。
实施例2
Fe3O4@nSiO2@mSiO2@PDA-C18磁固相萃取吸附剂的制备
第一步、将4.05g FeCl3·6H2O、11.56g乙酸铵、1.12g二水合柠檬酸溶于 210mL乙二醇中,170℃剧烈搅拌1h,将反应后的溶液转移到衬有特氟龙的不锈钢高压釜中,200℃反应16h,高压釜自然冷却至室温后,将合成得到的黑色纳米Fe3O4粒子用乙醇和去离子水交替洗涤3次,在60℃真空烘箱中干燥,备用。
第二步、称取100mg合成的Fe3O4纳米颗粒,将其均匀分散在60mL乙醇中,加入25mL去离子水和3.125mL质量浓度为28%的浓氨水溶液,超声30min后室温搅拌15min,滴加200μL正硅酸丁酯后继续搅拌12h,反应结束,磁铁分离收集合成得到的Fe3O4@nSiO2纳米粒,乙醇和去离子水交替洗涤3次,50℃真空干燥过夜,备用。
第三步、称取100mg合成得到的Fe3O4@nSiO2纳米粒和1.5g的CTAB,超声分散于60mL去离子水和0.18mL三乙醇胺中,60℃机械搅拌1h,加入10mL 含有5wt%正硅酸乙酯和2.5wt%异丙醇的环己烷混合物,在60℃搅拌12h,磁铁分离得到磁性固体产物,乙醇和去离子水洗涤3次,将所得磁性固体产物用硝酸 /乙醇溶液在75℃下萃取回流8h,共回流3次,磁铁分离合成得到的 Fe3O4@nSiO2@mSiO2纳米粒,50℃真空干燥后,备用。
第四步、将Fe3O4@nSiO2@mSiO2纳米粒100mg超声分散在20mL乙醇和 20mL 10mMtris缓冲液(pH=8.5)混合溶液中,滴加含有50mg盐酸多巴胺的去离子水60mL,室温搅拌5h后,磁铁分离合成得到的Fe3O4@nSiO2@mSiO2@PDA 纳米粒,50℃真空干燥后,备用。
第五步、将Fe3O4@nSiO2@mSiO2@PDA纳米粒100mg超声分散在60mL甲苯溶液中,加入含有80mg二甲基十八烷基氯化硅烷的20mL甲苯溶液,室温条件下机械搅拌12h,反应结束后,用磁铁分离收集制备得到的 Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒,用无水乙醇反复洗涤3次,50℃真空干燥过夜,即得吸附剂。
实施例3
Fe3O4@nSiO2@mSiO2@PDA-C18磁固相萃取吸附剂的制备
第一步、将4.05g FeCl3·6H2O、11.56g乙酸铵、1.12g二水合柠檬酸溶于 210mL乙二醇中,170℃剧烈搅拌1h,将反应后的溶液转移到衬有特氟龙的不锈钢高压釜中,200℃反应16h,高压釜自然冷却至室温后,将合成得到的黑色纳米Fe3O4粒子用乙醇和去离子水交替洗涤3次,在60℃真空烘箱中干燥,备用。
第二步、称取100mg合成的Fe3O4纳米颗粒,将其均匀分散在60mL乙醇中,加入25mL去离子水和3.125mL质量浓度为28%的浓氨水溶液,超声30min后室温搅拌15min,滴加2000μL正硅酸丁酯后继续搅拌12h,反应结束,磁铁分离收集合成得到的Fe3O4@nSiO2纳米粒,乙醇和去离子水交替洗涤3次,50℃真空干燥过夜,备用。
第三步、称取100mg合成得到的Fe3O4@nSiO2纳米粒和5.0g的CTAB,超声分散于60mL去离子水和0.18mL三乙醇胺中,60℃机械搅拌1h,加入100mL 含有5wt%正硅酸乙酯和2.5wt%异丙醇的环己烷混合物,在60℃搅拌12h,磁铁分离得到磁性固体产物,乙醇和去离子水洗涤3次,将所得磁性固体产物用硝酸 /乙醇溶液在75℃下萃取回流8h,共回流3次,磁铁分离合成得到的 Fe3O4@nSiO2@mSiO2纳米粒,50℃真空干燥后,备用。
第四步、将Fe3O4@nSiO2@mSiO2纳米粒100mg超声分散在20mL乙醇和 20mL 10mMtris缓冲液(pH=8.5)混合溶液中,滴加含有500mg盐酸多巴胺的去离子水60mL,室温搅拌5h后,磁铁分离合成得到的 Fe3O4@nSiO2@mSiO2@PDA纳米粒,50℃真空干燥后,备用。
第五步、将Fe3O4@nSiO2@mSiO2@PDA纳米粒100mg超声分散在600mL 甲苯溶液中,加入含有800mg二甲基十八烷基氯化硅烷的200mL甲苯溶液,室温条件下机械搅拌12h,反应结束后,用磁铁分离收集制备得到的 Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒,用无水乙醇反复洗涤3次,50℃真空干燥过夜,即得吸附剂。
实施例4
取实施例1制备的Fe3O4@nSiO2@mSiO2@PDA-C18进行应用检测。
溶液配制
对照品储备液配制:12种目标物包括6-单乙酰吗啡(6-MAM)、吗啡(MOR)、可待因(COD)、苯丙胺(AMP)、甲基苯丙胺(MAMP)、3,4-亚甲双氧甲基苯丙胺(MDMA)、3,4-亚甲双氧苯丙胺(MDA)、氯胺酮(KET)、去甲氯胺酮(NK)、可卡因(COC)、苯甲酰爱康宁(BZE)和甲卡西酮(MC)的1mg/mL对照品溶液各取适量,用甲醇稀释至各溶液中分别含12种目标物为1000ng/mL的储备液;
内标工作液配制:12种氘代内标包括6-单乙酰吗啡-D3(6-MAM-D3)、吗啡-D3(MOR-D3)、可待因-D6(COD-D6)、苯丙胺-D5(AMP-D5)、甲基苯丙胺-D5(MAMP-D5)、3,4-亚甲双氧甲基苯丙胺-D5(MDMA-D5)、3,4-亚甲双氧苯丙胺-D5(MDA-D5)、氯胺酮-D4(KET-D4)、去甲氯胺酮-D4(NK-D4)、可卡因-D3(COC-D3)、苯甲酰爱康宁-D3(BZE-D3)和甲卡西酮-D3(MC-D3))的100μg/mL对照品溶液各取适量混合,用甲醇稀释至溶液中分别含内标物25 ng/mL的混合内标溶液。
现场快检的尿液前处理及检测
取待检尿液5mL,加入圆底离心管中,加入1mol/L氢氧化钠溶液0.1mL,加入上述所合成的Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒50mg,涡旋提取5min,用磁铁分离磁性固体材料,弃去清液后撤离磁铁并加入0.2mL的5%甲酸水溶液,涡旋混匀3min,用磁铁分离材料,收集洗脱后的清液,加入氨水调节 pH值至中性,氨水和洗脱液比例为30:170,得到待检液。
按照尿液检测试剂盒要求将待检液滴至相应位置,读取检测结果。
实验室检测的尿液前处理
取尿液样品5mL,加入4mol/L氢氧化钠溶液0.1mL,加入上述所合成的 Fe3O4@nSiO2@mSiO2@PDA-C18纳米颗粒50mg,涡旋提取5min,用磁铁分离磁性固体材料,弃去清液后撤离磁铁,材料中加入pH=10的水5mL清洗,涡旋1min,用磁铁分离磁性固体材料,弃去清液后撤离磁铁,材料中加入2%甲酸乙腈洗脱,涡旋3min,磁铁分离并收集得到洗脱后的清液,氮气吹干洗脱后的清液,用含 0.1%甲酸和5%乙腈的水溶液0.2mL复溶,涡旋3min,15000rpm离心5min,得到上清进样液。
实验室检测所得进样液分析
采用Shimadzu LCMS-8050三重四级杆液相色谱质谱联用仪(日本Shimadzu 公司)对样品液进行分析。
液相色谱条件:色谱柱为Agilent ZORBAX Eclipse Plus C18(50mm×2.1 mm,1.8μm);流动相A为0.1%甲酸水溶液,流动相B为乙腈;流速为0.4 mL/min;柱温为40℃;进样体积为10μL;梯度洗脱程序如表1所示。
表1 色谱梯度洗脱程序
Figure RE-GDA0003435782930000081
质谱条件:离子源为ESI电喷雾离子源;正离子检测模式;毛细管电压为3.5 kV;雾化气、加热气和干燥气均为N2,流速分别为3L/min、10L/min和10L/min;离子源温度为300℃、DL管温度为250℃、加热块温度为400℃;扫描方式为 MRM;根据质谱扫描结果确定各待测物的MRM监测通道具体见表2。
表2 各待测物的MRM监测通道
Figure RE-GDA0003435782930000082
Figure RE-GDA0003435782930000091
Figure RE-GDA0003435782930000101
实验室检测方法的方法学验证
方法学验证主要包括线性、检测限、定量限、准确度、精密度和基质效应。
(1)线性、检测限和定量限研究
取12种毒品及代谢物对照品储备液各适量,分别加入到未涉毒人员尿液(空白尿)中,制成含各物质1ng/ml的混合液,后将该混合液用空白尿稀释后制成不同浓度的稀释液为测定本发明方法各物质的检测限和定量限,考察结果见表 3,本实施例研究的物质的检测限在0.03ng/mL~0.2ng/mL之间,定量限在 0.05ng/mL~0.4ng/mL之间。
分别取12种毒品及代谢物标对照储备液各适量,加入到空白尿中制成混合标曲母液,其中含MOR、COD均为100ng/mL、含6-MAM、AMP、MDA、MC 均为50ng/mL、含MAMP、KET、NK、BZE均为12.5ng/mL、含MDMA、COC 均为2.5ng/mL。将混合母液用空白尿液逐级稀释至定量限浓度(线性范围见表 3),在各稀释后含待分析物的尿液中分别加入氘代内标(终浓度均为2.5ng/mL),随后经本发明方法前处理和液相质谱仪分析,得到目标峰和内标峰面积。以目标物峰面积与内标峰面积之比为横坐标(X),目标物浓度与内标浓度之比为纵坐标(Y),用加权最小二乘法(权重系数:1/Y2)进行线性回归运算,求得的线性回归方程,并计算相关系数(r,correlation coefficient)。结果如表3所示,经过三次重复分析,各待分析物拟合曲线r均大于0.99,表明本发明方法线性符合要求。
表3 MSPE-UPLC-MS/MS法测定各目标物的标准曲线
Figure RE-GDA0003435782930000102
Figure RE-GDA0003435782930000111
(2)准确度、精密度和基质效应
准确度和精密度对3个浓度点进行了3天的考察(n=6),浓度包括2倍定量限浓度(低浓度点)、定量上限十分之一浓度(中浓度点)和定量上限二分之一浓度(高浓度点),各物质添加浓度(Spiked)具体浓度详见表4。准确度用回收率表示,通过线性计算出实测浓度,比较实测浓度和添加浓度之间比值 (Recovery);精密度考察了多次重复试验后的变化,用相对标准偏差(RSD) 表示。试验结果如表4所示,各物质不同浓度的日内和日间回收率均在 89.8%~104.5%之间,精密度均在14%范围内,符合要求。
基质效应考察的浓度点与准确度一致,通过将来源于未涉毒不同人的尿液 (n=6)经本方法前处理至复溶液复溶之前,分别加入含有表4所标的浓度的混合液进行复溶,复溶后的溶液和不含基质相同浓度的复溶液同时进行液相质谱联用分析,获得将含基质和不含基质的目标物的峰面积。基质效应通过计算含基质和不含基质的目标峰面积的比值获得,结果如表4所示,各回收率均未超过 100%,表明各物质呈现基质抑制效应,且部分物质如MOR的基质抑制效应最强,这可能是其灵敏度较差的原因。
表4 MSPE-UPLC-MS/MS法测定各目标物的准确度与精密度
Figure RE-GDA0003435782930000112
Figure RE-GDA0003435782930000121
实验室检测方法与已报道方法检测能力对比
将本发实施例的方法与已授权专利对比,结果如表5所示。结果表明,本发明方法较已授权专利具有更低的定量限,且线性范围主要针对痕量毒品浓度,可填补该浓度下尿液毒品检测的空白。
表5 本实施例方法与现有方法检测能力对比
Figure RE-GDA0003435782930000122
现场检测方法的验证及模拟样品检测
本实施例采用的尿液检测试剂盒检测物质为冰毒(MAMP),商品化试剂盒标称的检测阈值为1000ng/mL;本实施例可提升现有检测试剂盒的检测能力,尿液中冰毒(MAMP)可检值分别为50ng/mL。
本实施例在现场快检所采用的尿检试剂盒来源于商品化的尿检试剂盒,该试剂盒虽已经国家批准上市,仍需进一步验证同一批次试剂盒的可用性。在未涉毒尿液(空白尿液)中加入冰毒制备的模拟样品,模拟样品中冰毒浓度为 1000ng/mL,经检测,结果如图4中的A所示,呈阳性,表明该批次尿检板可用。将模拟样品以空白尿液稀释至50ng/mL,结果如图4中的B所示,稀释后尿液检测呈阴性,表明由于灵敏度不足,尿检板无法对此浓度的尿液进行检测。
由于本实施例最终检测试剂为调节pH值至中性后的溶液,为验证本实施例的检测液其他物质不干扰最终检测结果,在8%甲酸水和氨水混合液(比例为170: 30)中加入甲基苯丙胺,将溶液中甲基苯丙胺浓度调整为1000ng/mL,检测结果如图4中的C所示,呈阳性,表明检测液中其他物质不干扰尿检板的检测。
为证明本实施例可行性,取尿液模拟样品(50ng/mL)5mL按本方法处理和检测,结果如图4中的D所示,结果呈阳性;表明本实施例方法可突破现有尿检板检测阈值(1000ng/mL),能对50ng/mL以上的尿液实现灵敏检测。
本发明制备吸附剂的重复使用性
将本发明所制备的吸附剂重复使用5次,每次使用后以5%甲酸水、5%甲酸乙腈、5%甲酸异丙醇和水各洗三次,考察每次清洗后对尿液中目标成分的吸附率,结果如图5所示,本实施例1制备的吸附剂经重复5次使用和清洗后,部分物质吸附率略有下降,但下降幅度均在20%以内,表明实施例1制备的吸附剂至少可以重复使用5次以上。
实施例5
Fe3O4@nSiO2@mSiO2@PDA-C18吸附条件考察
(1)溶液pH值的影响
待检的毒品及代谢物均为弱碱性化合物,从酸碱性推测这些化合物在碱性环境中呈现分子状态则可被材料充分吸附,但仍需全面考察溶液的pH值对材料吸附的影响。在实际尿样中考察了不同pH值(pH=3-12)中 Fe3O4@nSiO2@mSiO2@PDA-C18磁性纳米颗粒对12种毒品及代谢物的提取回收情况,结果如图6所示,结果表明,随着溶液pH由酸性变成碱性,所合成的吸附剂对毒品的吸附效率逐渐增强。综合所有物质的吸附情况,当溶液中的pH=10时,吸附剂对12种毒品及代谢物的吸附达到最优。因此,将尿液的pH调节至 10进行后续实验。经测试,欲将5mL尿液调节至pH=10,可在尿液中加入4mol/L 氢氧化钠溶液0.15mL。
(2)吸附剂用量和时间的影响
为研究吸附剂用量对待检成分吸附效果的影响,在含12种毒品及代谢物的 10ng/ml的5mL尿液中分别加入了10、20、30、40和50mg的磁性纳米颗粒进行吸附考察,结果如图7所示,结果表明随着用量的上升,吸附率逐渐升高,当吸附剂用量到达30mg/5mL时,吸附率已接近最大,但为了保证吸附的稳定性,将材料的用量提升至50mg/5mL,即10mg/ml进行后续实验。
同时,也对吸附时间(0.5-10min)进行了考察,结果如图8所示,结果表明,在吸附时间0.5-3min的时间内,吸附率略微上升,3min后吸附率基本保持恒定,表明本发明所制材料可对12种毒品及化合物实现快速吸附,为保证稳定的吸附条件。在随后的实验中,选择5min进行样品吸附。
(3)吸附后以pH=10水溶液清洗次数对实验室检测的基质效应的影响
在磁固相萃取过程中,对基质吸附后材料的清洗可有效地降低最终检测的基质效应,因此分别考察了0至5次pH=10水清洗对基质效应的影响,以含基质目标物峰面积与不含基质目标物峰面积的比值作为基质效应,结果如图9所示,物质基质效应均低于100%,显示各物质均为基质抑制效应,在1次清洗后,基质效应明显降低,部分物质在清洗1次后反复多次清洗可略微降低基质效应,但考虑到多次清洗可造成试剂浪费且易造成吸附材料损失进而导致目标物损失影响最终检测结果,因此后续实验选择1次清洗。
实施例6
Fe3O4@nSiO2@mSiO2@PDA-C18磁性纳米粒洗脱条件考察
(1)洗脱溶剂类型和含酸量的影响
上述吸附实验已证明所涉及检测的物质在碱性条件下可被所制备的吸附剂吸附,且根据图3中a)的结果,酸性环境中可被洗脱,同时考虑备的介孔材料外层为C18基团,其吸附的物质可能会被非极性溶剂所洗脱。因此,考察了含2%甲酸的不同极性的洗脱剂(水、甲醇和乙腈)对洗脱效果的影响,结果如图10 所示,结果表明乙腈较另外两种洗脱剂的洗脱能力更优。同时,对不同含甲酸量 (1%-10%)的乙腈溶液进行研究,结果如图11所示,结果表明随着含酸量上升,洗脱能力略有增强,但增长幅度不明显;同时,当酸含量≥5%时,部分物质洗脱回收率呈现下降趋势,且经观察洗脱后的溶液发现溶液呈黄色,表明材料被部分破坏,综合考虑结果,后续研究采用含2%甲酸的乙腈溶液作为洗脱剂。
(2)洗脱液体积和时间的影响
洗脱液体积越大,洗脱效率越高,但为兼顾后续挥干时间,应尽可能的选用较少的体积。考察了不同的洗脱剂体积(1-5mL)对洗脱效果的影响,结果如图 12所示,结果表明当洗脱液体积≥4mL时已达到洗脱平衡。后续研究洗脱液的体积选择4mL。
洗脱时间是决定洗脱效果的另外一个重要因素,较少的洗脱时间能够提高实验人员的便捷性,考察了1-5min内洗脱液的洗脱效果,结果如图13所示,结果表明,采用高速涡旋仪涡旋洗脱时,3min后即可达到洗脱平衡。洗脱时间选择高速涡旋3min。
(3)现场快检洗脱剂的选择及条件考察
由于现场快检所用的尿液检测板所能检测的溶液仅以水为基质,因此考察不同含甲酸量的水溶液对洗脱效果的影响,考察结果如图14所示;结果表明,随着含酸量上升,洗脱能力逐渐加大,8%甲酸水时洗脱能力达到最优。同时,综合4种待检物质洗脱情况,最终选择8%甲酸水溶液为洗脱液。

Claims (10)

1.一种磁固相萃取吸附剂,其特征在于:所述磁固相萃取吸附剂为Fe3O4@nSiO2@mSiO2@PDA-C18;其中,Fe3O4位于核心,Fe3O4外层包裹二氧化硅组成核壳层,核壳层外部包裹介孔二氧化硅作为介孔层,介孔层外部负载有呈散点状分布的PDA-C18;所述PDA-C18为多巴胺和二甲基十八烷基氯化硅烷通过共价键结合所得。
2.一种权利要求1所述的磁固相萃取吸附剂的制备方法,其特征在于,包括以下步骤:
(1)将Fe3O4磁球超声分散于乙醇中,加入去离子水和浓氨水后,滴加正硅酸丁酯,用磁铁分离得到Fe3O4@nSiO2纳米粒;
(2)将Fe3O4@nSiO2纳米粒和十六烷基三甲基溴化铵混合并超声分散于去离子水和三乙醇胺中,搅拌后加入含有正硅酸乙酯和异丙醇的环己烷溶液,反应后磁铁分离颗粒,洗涤后,用含硝酸的乙醇溶液回流反应去除十六烷基三甲基溴化铵,得到Fe3O4@nSiO2@mSiO2纳米粒;
(3)将Fe3O4@nSiO2@mSiO2纳米粒分散在乙醇和tris缓冲液中,滴加含有盐酸多巴胺的去离子水溶液,机械搅拌反应后真空干燥,磁铁分离得到Fe3O4@nSiO2@mSiO2@PDA纳米粒;
(4)将Fe3O4@nSiO2@mSiO2@PDA纳米粒超声分散于甲苯溶液中,滴加溶于甲苯的二甲基十八烷基氯化硅烷,室温机械搅拌反应后,磁铁分离得到Fe3O4@nSiO2@mSiO2@PDA-C18磁固相萃取吸附剂。
3.根据权利要求2所述的磁固相萃取吸附剂的制备方法,其特征在于:所述步骤(1)中,Fe3O4纳米粒与正硅酸丁酯的用量比为100 mg:200~2000 μL。
4.根据权利要求2所述的磁固相萃取吸附剂的制备方法,其特征在于:所述步骤(2)中,Fe3O4@nSiO2纳米粒、十六烷基三甲基溴化铵和环己烷溶液的用量比为100 mg:1.5~15 g:10~100 mL。
5.根据权利要求2所述的磁固相萃取吸附剂的制备方法,其特征在于:所述步骤(3)中,Fe3O4@nSiO2@mSiO2纳米粒和盐酸多巴胺的质量比为100:50~500。
6.根据权利要求2所述的磁固相萃取吸附剂的制备方法,其特征在于:所述步骤(4)中,Fe3O4@nSiO2@mSiO2@PDA纳米粒与二甲基十八烷基氯化硅烷的质量比为100:80~800。
7.权利要求1所述的磁固相萃取吸附剂作为尿液中毒品及代谢物检测材料的应用。
8.根据权利要求7所述的应用,其特征在于:所述毒品及代谢物包括6-单乙酰吗啡、吗啡、可待因、甲基苯丙胺、苯丙胺、亚甲基二氧甲基苯丙胺、亚甲基二氧苯丙胺、可卡因、苯甲酰爱康宁、氯胺酮、去甲氯胺酮和甲卡西酮中的任一种。
9.根据权利要求7所述的应用,其特征在于,检测为现场检测,具体过程为:将尿液样品调至碱性,加入Fe3O4@nSiO2@mSiO2@PDA-C18,涡旋混合,磁铁分离,材料中加入洗脱液,再次涡旋,磁铁分离收集洗脱液并调节pH至中性,得到待检液,用毒品尿液检测板检测待检液。
10.根据权利要求7所述的应用,其特征在于,检测为实验室检测,具体过程为:将尿液样品调至碱性,加入Fe3O4@nSiO2@mSiO2@PDA-C18,涡旋混合,磁铁分离得到材料,材料中加入碱性水溶液,涡旋后再次磁铁分离得到材料,材料中加入洗脱液,涡旋后磁铁分离收集洗脱液,氮气吹干洗脱液,复溶液复溶得进样液;将进样液注入LC-MS/MS中进行检测。
CN202111093174.3A 2021-09-17 2021-09-17 一种磁固相萃取吸附剂及制备方法和应用 Pending CN114042440A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111093174.3A CN114042440A (zh) 2021-09-17 2021-09-17 一种磁固相萃取吸附剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111093174.3A CN114042440A (zh) 2021-09-17 2021-09-17 一种磁固相萃取吸附剂及制备方法和应用

Publications (1)

Publication Number Publication Date
CN114042440A true CN114042440A (zh) 2022-02-15

Family

ID=80204420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111093174.3A Pending CN114042440A (zh) 2021-09-17 2021-09-17 一种磁固相萃取吸附剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN114042440A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670107A (zh) * 2009-09-29 2010-03-17 哈尔滨工程大学 多功能核壳结构药物载体材料及其制备方法
US20140336040A1 (en) * 2012-01-05 2014-11-13 Nanyang Technological University Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
CN107308987A (zh) * 2017-06-09 2017-11-03 沈阳理工大学 一种Fe3O4@PDA@MOF‑5纳米复合材料的制备方法
CN108226341A (zh) * 2018-01-02 2018-06-29 上海谱实生态环境科技有限公司 农产品中农药残留的精确检测方法
CN108918736A (zh) * 2018-08-08 2018-11-30 上海谱实生态环境科技有限公司 利用磁性固相萃取技术对水果、蔬菜农药残留的检测方法
CN108940213A (zh) * 2018-08-08 2018-12-07 武汉谱信环保科技有限公司 用于磁性固相萃取的磁性纳米材料及其制备方法
CN113341011A (zh) * 2021-06-01 2021-09-03 中国药科大学 一种用于萃取和富集PAHs的固相萃取材料及其在多环芳烃化合物检测的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101670107A (zh) * 2009-09-29 2010-03-17 哈尔滨工程大学 多功能核壳结构药物载体材料及其制备方法
US20140336040A1 (en) * 2012-01-05 2014-11-13 Nanyang Technological University Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres
CN107308987A (zh) * 2017-06-09 2017-11-03 沈阳理工大学 一种Fe3O4@PDA@MOF‑5纳米复合材料的制备方法
CN108226341A (zh) * 2018-01-02 2018-06-29 上海谱实生态环境科技有限公司 农产品中农药残留的精确检测方法
CN108918736A (zh) * 2018-08-08 2018-11-30 上海谱实生态环境科技有限公司 利用磁性固相萃取技术对水果、蔬菜农药残留的检测方法
CN108940213A (zh) * 2018-08-08 2018-12-07 武汉谱信环保科技有限公司 用于磁性固相萃取的磁性纳米材料及其制备方法
CN113341011A (zh) * 2021-06-01 2021-09-03 中国药科大学 一种用于萃取和富集PAHs的固相萃取材料及其在多环芳烃化合物检测的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG XIANYING ET AL.: ""Preparation of C18-functionalized magnetic polydopamine microspheres for the enrichment and analysis of alkylphenols in water samples"", 《TALANTA》 *
尚兵等: "多巴胺聚合机制研究及在萃取吸附材料制备中的应用进展", 《中南药学》 *
张宝生等主编: "《中国证据法治发展报告 2014》", 31 May 2016, 中国政法大学出版社 *

Similar Documents

Publication Publication Date Title
US7815803B2 (en) Preparation of samples for LC-MS/MS using magnetic particles
Wang et al. Amino bearing core-shell structured magnetic covalent organic framework nanospheres: preparation, postsynthetic modification with phenylboronic acid and enrichment of monoamine neurotransmitters in human urine
Sánchez-González et al. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography–tandem mass spectrometry
Tang et al. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC
Long et al. Triphenylamine-functionalized magnetic microparticles as a new adsorbent coupled with high performance liquid chromatography for the analysis of trace polycyclic aromatic hydrocarbons in aqueous samples
Xue et al. Magnetic nanoparticles with hydrophobicity and hydrophilicity for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples
He et al. Facile synthesis of a boronate affinity sorbent from mesoporous nanomagnetic polyhedral oligomeric silsesquioxanes composite and its application for enrichment of catecholamines in human urine
CN114832793B (zh) 一种检测四氢大麻酸及合成大麻素类毒品的磁性纳米材料及其制备方法和应用
Zhang et al. Amino-terminated supramolecular cucurbit [6] uril pseudorotaxane complexes immobilized on magnetite@ silica nanoparticles: A highly efficient sorbent for salvianolic acids
Badragheh et al. Silica-coated magnetic iron oxide functionalized with hydrophobic polymeric ionic liquid: a promising nanoscale sorbent for simultaneous extraction of antidiabetic drugs from human plasma prior to their quantitation by HPLC
Amiri et al. Preparation and characterization of magnetic Wells–Dawson heteropoly acid nanoparticles for magnetic solid-phase extraction of aromatic amines in water samples
Sánchez-González et al. Magnetic molecularly imprinted polymer based–micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography–tandem mass spectrometry
Ding et al. Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectromer.
Li et al. Caramelized carbonaceous shell-coated γ-Fe 2 O 3 as a magnetic solid-phase extraction sorbent for LC-MS/MS analysis of triphenylmethane dyes
CN109331795A (zh) 一种磁性纳米复合材料及其制备和应用
Nadali et al. Synthesize and application of magnetic molecularly imprinted polymers (mag-MIPs) to extract 1-Aminopyrene from the human urine sample
Gao et al. Fabrication of boronate‐decorated polyhedral oligomeric silsesquioxanes grafted cotton fiber for the selective enrichment of nucleosides in urine
Qi et al. Synthesis of a novel polydopamine and C18 dual-functionalized magnetic core-shell mesoporous nanocomposite for enrichment and analysis of widely abused illegal drugs in urine samples on site and in the laboratory
CN113731381B (zh) 一种毒品检测磁性纳米材料及制备方法和应用
Chen et al. Preparation of poly (methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized magnetic polydopamine nanoparticles for the extraction of six cannabinoids in wastewater followed by UHPLC-MS/MS
Yuan et al. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS
Xu et al. Use of phenyl/tetrazolyl-functionalized magnetic microspheres and stable isotope labeled internal standards for significant reduction of matrix effect in determination of nine fluoroquinolones by liquid chromatography-quadrupole linear ion trap mass spectrometry
Wang et al. Synthesis and characterization of core‐shell magnetic molecularly imprinted polymers for selective extraction of allocryptopine from the wastewater of Macleaya cordata (Willd) R. Br.
CN114042440A (zh) 一种磁固相萃取吸附剂及制备方法和应用
Abed et al. Determination of vancomycin hydrochloride in pharmaceutical forms and urine samples using modified magnetic iron oxide nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220215

RJ01 Rejection of invention patent application after publication