CN114039519A - Permanent magnet synchronous motor torque ripple suppression method, servo system and storage medium - Google Patents
Permanent magnet synchronous motor torque ripple suppression method, servo system and storage medium Download PDFInfo
- Publication number
- CN114039519A CN114039519A CN202110469036.4A CN202110469036A CN114039519A CN 114039519 A CN114039519 A CN 114039519A CN 202110469036 A CN202110469036 A CN 202110469036A CN 114039519 A CN114039519 A CN 114039519A
- Authority
- CN
- China
- Prior art keywords
- robust
- fractional
- controller
- permanent magnet
- order vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 50
- 230000001629 suppression Effects 0.000 title claims description 25
- 238000011217 control strategy Methods 0.000 claims abstract description 16
- 238000013178 mathematical model Methods 0.000 claims abstract description 14
- 238000013461 design Methods 0.000 claims description 39
- 230000006870 function Effects 0.000 claims description 21
- 238000012546 transfer Methods 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 16
- 238000013016 damping Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 230000010349 pulsation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/05—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/10—Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及永磁同步电机转速控制技术领域,尤其涉及一种永磁同步电 机转矩脉动抑制方法、伺服系统及存储介质。The present invention relates to the technical field of rotational speed control of permanent magnet synchronous motors, in particular to a method for suppressing torque ripple of permanent magnet synchronous motors, a servo system and a storage medium.
背景技术Background technique
永磁同步电机因其结构简单、尺寸小、运行可靠、电能损失少、效率高 以及调速性能好等优点已被广泛应用于电动汽车、数控机床和机器人伺服控 制等技术领域。然而参数失配,被控模型的非线性和不确定干扰不可避免地 存在于电机伺服系统中,从而产生转矩脉动,降低跟踪性能和稳定性。因此, 对于永磁同步电机,电机本体的设计的不同和其控制策略的选择对电机转矩 脉动的影响很大。Permanent magnet synchronous motors have been widely used in electric vehicles, CNC machine tools and robot servo control and other technical fields due to their simple structure, small size, reliable operation, low power loss, high efficiency and good speed regulation performance. However, due to parameter mismatch, the nonlinear and uncertain disturbance of the controlled model inevitably exists in the motor servo system, resulting in torque ripple, which reduces the tracking performance and stability. Therefore, for the permanent magnet synchronous motor, the design of the motor body and the choice of its control strategy have a great influence on the motor torque ripple.
目前解决永磁同步电机转矩脉动的方法可分为两大类,一种是通过电机 关键尺寸优化,减小转矩脉动;另外一种是通过在电机速度和电流环设计相 关的控制器从而抑制转矩脉动。而谐振控制器是一种抑制转矩脉动的常用控 制策略,通常在电流环或者速度环并联多个谐振控制器达到减小转矩脉动的 目的。在实际应用中,谐振控制器这一类常用的谐振控制方法,由于其具有 较大增益,并且对谐振频率变化具有鲁棒性,在使用时会存在稳态误差,存 在抑制不完全。鲁棒内模控制是伺服控制系统中一种常用的控制方法,通过设计两个低通滤波器就可以实现预设的动态响应,并且能够对被控对象的参 数变化具有良好的鲁棒性。实际上,任何控制策略的建立都会加大系统的复 杂程度。因此,本领域急需一种能够在有效抑制永磁同步电机转矩脉动,又 能够提高永磁同步电机参数鲁棒性控制的同时,还不会给系统带来很大压力 的控制策略。At present, the methods to solve the torque ripple of permanent magnet synchronous motors can be divided into two categories. One is to reduce the torque ripple by optimizing the key dimensions of the motor; Torque ripple is suppressed. The resonant controller is a common control strategy for suppressing torque ripple. Usually, multiple resonance controllers are connected in parallel in the current loop or speed loop to reduce the torque ripple. In practical applications, the commonly used resonance control methods such as the resonance controller have large gain and robustness to the change of resonance frequency, so there will be steady-state errors and incomplete suppression during use. Robust internal model control is a common control method in servo control systems. By designing two low-pass filters, a preset dynamic response can be achieved, and it has good robustness to the parameter changes of the controlled object. In fact, the establishment of any control strategy will increase the complexity of the system. Therefore, there is an urgent need in the art for a control strategy that can effectively suppress the torque ripple of the permanent magnet synchronous motor and improve the robustness control of the parameters of the permanent magnet synchronous motor without putting a lot of pressure on the system.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种永磁同步电机转矩脉动抑制方法、伺服 系统及存储介质,旨在解决如何能够在有效抑制永磁同步电机转矩脉动,又 能够提高永磁同步电机参数鲁棒性控制的同时,还不会给系统带来很大压力 的控制策略的技术问题。The main purpose of the present invention is to provide a torque ripple suppression method, a servo system and a storage medium for a permanent magnet synchronous motor, which aims to solve how to effectively suppress the torque ripple of the permanent magnet synchronous motor and improve the parameter stability of the permanent magnet synchronous motor. At the same time of sticky control, there is no technical problem of the control strategy that brings great pressure to the system.
为实现上述目的,本发明提供的一种基于鲁棒分数阶矢量谐振的永磁同 步电机转矩脉动抑制方法,所述永磁同步电机转矩脉动抑制方法包括以下步 骤:In order to achieve the above object, a kind of permanent magnet synchronous motor torque ripple suppression method based on robust fractional vector resonance provided by the present invention, described permanent magnet synchronous motor torque ripple suppression method comprises the following steps:
实时采集永磁同步电机的参数,并建立永磁同步电机数学模型;Collect the parameters of the permanent magnet synchronous motor in real time, and establish the mathematical model of the permanent magnet synchronous motor;
设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计鲁棒分数阶矢 量谐振控制器;Design a robust internal mode controller and a fractional-order vector resonance controller to design a robust fractional-order vector resonance controller;
基于所述鲁棒分数阶矢量谐振控制器,采用SVPWM控制策略驱动永磁同 步电机运转。Based on the robust fractional-order vector resonance controller, the SVPWM control strategy is used to drive the permanent magnet synchronous motor to run.
可选地,所述建立永磁同步电机数学模型,具体采用以下形式:Optionally, the establishment of a permanent magnet synchronous motor mathematical model specifically adopts the following form:
公式一: Formula one:
式中Ud、Uq分别为旋转坐标系下的d轴和q轴电压;id、iq分别为d轴和 q轴电流;Rd、Rq分别为d轴和q轴电感;Ld、Lq分别为d轴、q轴电阻;ωh为电机电角频率;Ψf为电机磁链;t为时间;where U d and U q are the d-axis and q-axis voltages in the rotating coordinate system, respectively; id and i q are the d -axis and q-axis currents, respectively; R d and R q are the d-axis and q-axis inductances, respectively; L d and L q are the d-axis and q-axis resistances, respectively; ω h is the electrical angular frequency of the motor; Ψ f is the motor flux linkage; t is the time;
对上述模型进行离散化处理即完成了模型的建立。The discretization of the above model completes the establishment of the model.
可选地,所述设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计 鲁棒分数阶矢量谐振控制器包括:Optionally, the design of a robust internal model controller and a fractional-order vector resonance controller to design a robust fractional-order vector resonance controller includes:
设计鲁棒内模控制器,并对所述鲁棒内模控制器稳定性进行控制,具体 采用以下形式:Design a robust internal model controller, and control the stability of the robust internal model controller, specifically in the following form:
定义所述鲁棒内模控制器预设动态响应传递函数用公式二表示:Defining the preset dynamic response transfer function of the robust internal model controller is expressed by formula 2:
扰动抑制滤波器用公式三表示: The disturbance rejection filter is expressed by Equation 3:
式中τ表示时间常数;λ为一个与所述扰动抑制滤波器带宽有关的常数, 其中,参数选择为1/τ<<1/λ;where τ represents the time constant; λ is a constant related to the bandwidth of the disturbance suppression filter, wherein the parameter selection is 1/τ<<1/λ;
根据公式二和公式三设计所述鲁棒内模控制器用公式四表示:The robust internal model controller designed according to Equation 2 and Equation 3 is expressed by Equation 4:
通过拉普拉斯逆变换可得如下时域控制律用公式五表示:Through the inverse Laplace transform, the following time domain control law can be expressed by Equation 5:
式中 in the formula
为避免积分迭代误差定义如下状态变量:To avoid integration iteration errors, define the following state variables:
x1=e(t)x 1 =e(t)
式中参数满足 The parameters in the formula satisfy
基于积分迭代误差定义,时域控制律由公式五转换用公式六表示:Based on the definition of integral iterative error, the time domain control law is converted from
uIMO=(kpe+kpy)x1+(kie1+kiy1)x2+(kie2+kiy2)x8+kie8x4 u IMO =(k pe +k py )x 1 +(k ie1 +k iy1 )x 2 +(k ie2 +k iy2 )x 8 +k ie8 x 4
电流环传递函数的微分形式用公式七表示: The differential form of the current loop transfer function is expressed by Equation 7:
根据公式六和公式七,得到电流环的状态方程为 According to
当为状态变量,A为赫尔维茨矩阵时,所述鲁棒内模控制 器稳定;when is a state variable, when A is a Hurwitz matrix, the robust internal model controller is stable;
根据设计的所述鲁棒内模控制器和所述分数阶矢量谐振控制器,设计鲁 棒分数阶矢量谐振控制器。According to the designed robust internal mode controller and the fractional-order vector resonance controller, a robust fractional-order vector resonance controller is designed.
可选地,所述设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计 鲁棒分数阶矢量谐振控制器包括:Optionally, the design of a robust internal model controller and a fractional-order vector resonance controller to design a robust fractional-order vector resonance controller includes:
设计分数阶矢量谐振控制器,并对所述分数阶矢量谐振控制器稳定性进 行控制,具体采用以下形式:Design a fractional-order vector resonance controller, and control the stability of the fractional-order vector resonance controller, specifically in the following form:
将分数阶微积分引入到谐振控制器中得到如下分数阶矢量谐振控制器的 控制律用公式八表示:The fractional-order calculus is introduced into the resonant controller to obtain the following control law of the fractional-order vector resonant controller, which is expressed by Equation 8:
式中kr,ωe,α分别表示控制器增益系数,阻尼频率,以及分数阶阶次;where k r , ω e , and α represent the controller gain coefficient, damping frequency, and fractional order, respectively;
将公式八改写为公式九:Rewrite Equation 8 as Equation 9:
式中Y(s)k,R(s)k分别表示所述分数阶矢量谐振控制器kth时刻的输入输 出;where Y(s) k and R(s) k respectively represent the input and output of the fractional-order vector resonance controller at time k th ;
根据设计的所述鲁棒内模控制器和所述分数阶矢量谐振控制器,设计鲁 棒分数阶矢量谐振控制器。According to the designed robust internal mode controller and the fractional-order vector resonance controller, a robust fractional-order vector resonance controller is designed.
可选地,所述设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计 鲁棒分数阶矢量谐振控制器包括:Optionally, the design of a robust internal model controller and a fractional-order vector resonance controller to design a robust fractional-order vector resonance controller includes:
根据设计的所述鲁棒内模控制器和所述分数阶矢量谐振控制器,设计鲁 棒分数阶矢量谐振控制器,具体采用以下形式:According to the designed robust internal model controller and the fractional-order vector resonance controller, a robust fractional-order vector resonance controller is designed, specifically in the following form:
F(s),CA(s)和CB(s)是内模控制器的组成部分,得到如下鲁棒分数阶矢量 谐振控制器的闭环传递函数用公式十表示:F(s), C A (s) and C B (s) are the components of the internal model controller, and the closed-loop transfer function of the robust fractional-order vector resonance controller is obtained as follows:
式中i(s)和iref(s)表示i(t)和iref(t)在s域的传递函数;where i(s) and iref (s) represent the transfer functions of i(t) and iref (t) in the s domain;
在GFOVR(s)中的分数阶零极点通过Outstaloup方法得到整数阶零极点的传 递函数为公式十一: The fractional-order zero-pole in G FOVR (s) is obtained by the Outstaloup method to obtain the integer-order zero-pole transfer function as Equation 11:
对上述公式进行导入化处理即完成所述鲁棒分数阶矢量谐振控制器的设 计。The design of the robust fractional-order vector resonance controller is completed by importing the above formula.
可选地,在所述设计鲁棒分数阶矢量谐振控制器之后,所述永磁同步电 机转矩脉动抑制方法还包括:Optionally, after the design of the robust fractional-order vector resonance controller, the method for suppressing torque ripple of the permanent magnet synchronous motor further includes:
对所述鲁棒分数阶矢量谐振控制器进行稳定性分析,具体采用以下形式:The stability analysis of the robust fractional-order vector resonance controller is carried out in the following form:
所述鲁棒分数阶矢量谐振控制器的稳定性当且满足以下条件,用公式十 二:The stability of the robust fractional-order vector resonance controller should satisfy the following conditions, using formula 12:
式中||·||∞表无穷范数; where ||·|| ∞ represents the infinity norm;
根据公式十和公式十一,得到电流环的闭环传递函数公式十三:According to
当A为赫尔维茨矩阵,1+Gp(s)(CA(s)+CB(s))所有的特征根落在s域的左 半平面,则稳定性由下列传递函数公式十四确定:When A is a Hurwitz matrix, and all eigenvalues of 1+G p (s)(C A (s)+C B (s)) fall on the left half-plane of the s domain, the stability is given by the following transfer function formula Fourteen determine:
由小增益定理可得,闭环回路满足以下条件,用公式十五表示:It can be obtained from the small gain theorem that the closed loop meets the following conditions, which is expressed by Equation 15:
若公式十五可以证得公式十二,则所述鲁棒分数阶矢量谐振控制器稳定。If Equation 15 can prove Equation 12, the robust fractional-order vector resonance controller is stable.
可选地,在所述设计鲁棒分数阶矢量谐振控制器之后,所述永磁同步电 机转矩脉动抑制方法还包括:Optionally, after the design of the robust fractional-order vector resonance controller, the method for suppressing torque ripple of the permanent magnet synchronous motor further includes:
对所述鲁棒分数阶矢量谐振控制器进行鲁棒稳定性分析,具体采用以下 形式:The robust stability analysis of the robust fractional-order vector resonant controller is carried out in the following form:
当所述永磁同步电机数学模型失配时,被控对象可用公式十六表示:When the mathematical model of the permanent magnet synchronous motor is mismatched, the controlled object can be represented by formula 16:
式中ΔGp(s)表示模型误差;where ΔG p (s) represents the model error;
所述鲁棒分数阶矢量谐振控制器的鲁棒稳定性当且满足以下条件,用公 式十七表示: The robust stability of the robust fractional-order vector resonant controller is when and satisfying the following conditions, expressed by formula 17:
当所述永磁同步电机数学模型失配时,电流环特征多项式可用公式十八 表示: When the mathematical model of the permanent magnet synchronous motor is mismatched, the current loop characteristic polynomial can be expressed by formula 18:
式中 in the formula
由小增益定理可得,电流环鲁棒稳定性满足以下条件,用公式十九表示:It can be obtained from the small gain theorem that the robust stability of the current loop satisfies the following conditions, expressed by Equation 19:
||Q(s)ΔGp(s)||∞≤||Q(s)||∞||ΔGp(s)||∞<1||Q(s)ΔG p (s)|| ∞ ≤||Q(s)|| ∞ ||ΔG p (s)|| ∞ <1
由此可得公式二十:From this, formula 20 can be obtained:
若公式二十可以证得公式十七,则所述鲁棒分数阶矢量谐振控制器鲁棒 稳定。If Formula 20 can prove Formula 17, then the robust fractional-order vector resonance controller is robust and stable.
此外,为实现上述目的,本发明还提供一种基于鲁棒分数阶矢量谐振的 永磁同步电机转速伺服系统,包括:处理器、永磁同步电机、三相逆变器、 速度PI控制器、空间电压矢量脉宽调制(SVPWM)、鲁棒分数阶矢量谐振控制 器;In addition, in order to achieve the above purpose, the present invention also provides a permanent magnet synchronous motor speed servo system based on robust fractional-order vector resonance, including: a processor, a permanent magnet synchronous motor, a three-phase inverter, a speed PI controller, Space voltage vector pulse width modulation (SVPWM), robust fractional order vector resonance controller;
所述鲁棒分数阶矢量谐振控制器,用于产生控制电压;the robust fractional-order vector resonance controller for generating a control voltage;
所述速度PI控制器,用于产生控制电流;the speed PI controller for generating a control current;
所述处理器,用于采用SVPWM控制策略控制所述三相逆变器功率器的通 断,以驱动所述永磁同步电机运转;The processor is used to control the on-off of the three-phase inverter power device using the SVPWM control strategy to drive the operation of the permanent magnet synchronous motor;
所述处理器,还用于执行如上述中任一项所述的基于鲁棒分数阶矢量谐 振的永磁同步电机转矩脉动抑制方法的步骤。The processor is further configured to execute the steps of the method for suppressing torque ripple of a permanent magnet synchronous motor based on robust fractional-order vector resonance as described in any one of the above.
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述 计算机可读存储介质上存储有转矩脉动抑制程序,所述转矩脉动抑制程序被 处理器执行时实现如上述中任一项所述的基于鲁棒分数阶矢量谐振的永磁同 步电机转矩脉动抑制方法的步骤。In addition, in order to achieve the above object, the present invention also provides a computer-readable storage medium, where a torque ripple suppression program is stored on the computer-readable storage medium, and the torque ripple suppression program is executed by a processor to achieve the above-mentioned The steps of any one of the method for suppressing torque ripple of permanent magnet synchronous motor based on robust fractional-order vector resonance.
本发明首先是实时采集永磁同步电机的参数,并建立永磁同步电机数学 模型,然后设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计鲁棒分 数阶矢量谐振控制器,最后基于所述鲁棒分数阶矢量谐振控制器,采用SVPWM 控制策略驱动永磁同步电机运转。本发明通过鲁棒内模控制和分数阶矢量谐 振控制相结合,不仅提高了永磁同步电机电流环的鲁棒性,还能够有效抑制 永磁同步电机转矩脉动。The present invention first collects the parameters of the permanent magnet synchronous motor in real time, establishes a mathematical model of the permanent magnet synchronous motor, and then designs a robust internal model controller and a fractional-order vector resonance controller, so as to design a robust fractional-order vector resonance controller, Finally, based on the robust fractional-order vector resonance controller, the SVPWM control strategy is used to drive the permanent magnet synchronous motor to run. By combining robust internal model control and fractional-order vector resonance control, the present invention not only improves the robustness of the current loop of the permanent magnet synchronous motor, but also can effectively suppress the torque ripple of the permanent magnet synchronous motor.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或 现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述 的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that are used in the description of the embodiments of the present invention or the prior art. Obviously, the drawings described below are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例方案涉及的基于鲁棒分数阶矢量谐振的永磁同步电 机转速伺服系统运行环境的结构示意图;Fig. 1 is the structural representation of the operating environment of the permanent magnet synchronous motor rotational speed servo system based on robust fractional-order vector resonance that the embodiment scheme of the present invention relates to;
图2为本发明基于鲁棒分数阶矢量谐振的永磁同步电机转矩脉动抑制方 法一实施例的流程示意图;Fig. 2 is a schematic flowchart of an embodiment of a method for suppressing torque ripple of a permanent magnet synchronous motor based on robust fractional-order vector resonance of the present invention;
图3为分数阶矢量谐振控制器框图;Fig. 3 is the block diagram of fractional order vector resonance controller;
图4为分数阶矢量谐振控制器的频率响应图;Fig. 4 is the frequency response diagram of fractional order vector resonance controller;
图5为鲁棒分数阶矢量谐振控制器框图;Figure 5 is a block diagram of a robust fractional-order vector resonance controller;
图6为本发明基于鲁棒分数阶矢量谐振的永磁同步电机转速伺服系统一 实施例的系统结构框图。Fig. 6 is a system structural block diagram of an embodiment of a permanent magnet synchronous motor rotational speed servo system based on robust fractional vector resonance of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步 说明。The realization, functional characteristics and advantages of the object of the present invention will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限 定本发明。It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
参照图1,图1为本发明实施例方案涉及的基于鲁棒分数阶矢量谐振的永 磁同步电机转速伺服系统运行环境的结构示意图。Referring to Fig. 1, Fig. 1 is a schematic structural diagram of the operating environment of the permanent magnet synchronous motor speed servo system based on the robust fractional-order vector resonance according to the embodiment of the present invention.
如图1所示,该基于鲁棒分数阶矢量谐振的永磁同步电机转速伺服系统 可以包括:处理器1001,例如CPU,通信总线1002、用户接口1003,网络接 口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接 通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘 (Keyboard),网络接口1004可选的可以包括标准的有线接口、无线接口(如 WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独 立于前述处理器1001的存储装置。As shown in Figure 1, the permanent magnet synchronous motor speed servo system based on robust fractional vector resonance may include: a
本领域技术人员可以理解,图1中示出的基于鲁棒分数阶矢量谐振的永磁 同步电机转速伺服系统的硬件结构并不构成对永磁同步电机转速伺服系统的 限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的 部件布置。Those skilled in the art can understand that the hardware structure of the permanent magnet synchronous motor speed servo system based on the robust fractional-order vector resonance shown in FIG. 1 does not constitute a limitation on the permanent magnet synchronous motor speed servo system. More or fewer components, or a combination of certain components, or a different arrangement of components.
如图1所示,作为一种计算机可读存储介质的存储器1005中可以包括操作 系统、网络通信模块、用户接口模块以及计算机程序。其中,操作系统是管 理和控制永磁同步电机转速伺服系统和软件资源的程序,支持转矩脉动抑制 程序以及其它软件和/或程序的运行。As shown in FIG. 1, the
在图1所示的永磁同步电机转速伺服系统的硬件结构中,网络接口1004 主要用于接入网络;用户接口1003主要用于侦测确认指令和编辑指令等。而 处理器1001可以用于调用存储器1005中存储的转矩脉动抑制程序,并执行 转矩脉动抑制程序。In the hardware structure of the permanent magnet synchronous motor speed servo system shown in FIG. 1 , the
基于上述基于鲁棒分数阶矢量谐振的永磁同步电机转速伺服系统硬件结 构,提出本发明该永磁同步电机转速伺服系统运行状态的基于鲁棒分数阶矢 量谐振的永磁同步电机转矩脉动抑制方法的各个实施例。Based on the above-mentioned hardware structure of the permanent magnet synchronous motor speed servo system based on the robust fractional-order vector resonance, a permanent magnet synchronous motor torque ripple suppression based on the robust fractional-order vector resonance based on the operation state of the permanent magnet synchronous motor speed servo system of the present invention is proposed. Various embodiments of the method.
参照图2,图2为本发明基于鲁棒分数阶矢量谐振的永磁同步电机转矩脉 动抑制方法一实施例的流程示意图。Referring to FIG. 2, FIG. 2 is a schematic flowchart of an embodiment of a method for suppressing torque ripple of a permanent magnet synchronous motor based on robust fractional-order vector resonance according to the present invention.
本实施例中,一种基于鲁棒分数阶矢量谐振的永磁同步电机转矩脉动抑 制方法,包括以下步骤:In the present embodiment, a method for suppressing torque ripple of permanent magnet synchronous motor based on robust fractional-order vector resonance, comprising the following steps:
步骤S10,实时采集永磁同步电机的参数,并建立永磁同步电机数学模型;Step S10, collect the parameters of the permanent magnet synchronous motor in real time, and establish a mathematical model of the permanent magnet synchronous motor;
步骤S20,设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计鲁棒 分数阶矢量谐振控制器;Step S20, design a robust internal model controller and a fractional-order vector resonance controller, to design a robust fractional-order vector resonance controller;
本实施例中,谐振控制器是一种抑制转矩脉动的常用控制策略,通常在 电流环或者速度环并联多个谐振控制器达到减小转矩脉动的目的。在实际应 用中,谐振控制器是一类常用的谐振控制方法,由于其具有较大增益,并且 对谐振频率变化具有鲁棒性。然而该类控制器,在使用时会存在稳态误差。 因此本文将分数阶微积分引入到谐振控制器的设计中达到进一步抑制电流环 谐波的目的。In this embodiment, the resonance controller is a common control strategy for suppressing torque ripple. Usually, multiple resonance controllers are connected in parallel in the current loop or speed loop to achieve the purpose of reducing torque ripple. In practical applications, the resonant controller is a commonly used resonant control method due to its large gain and robustness to resonant frequency changes. However, this type of controller will have steady-state errors during use. Therefore, this paper introduces the fractional calculus into the design of the resonant controller to further suppress the current loop harmonics.
本实施例中,鲁棒内模控制是一种控制是伺服控制系统中一种常用的控 制方法。其通过设计两个低通滤波器就可以实现预设的动态响应,并且能够 对被控对象的参数变化具有良好的鲁棒性。因此本文将该控制策略应用到电 流环控制器的设计中,从而实现电流环良好的动态响应,并抑制电流环的未 建模干扰。In this embodiment, the robust internal model control is a control method that is commonly used in servo control systems. It can achieve a preset dynamic response by designing two low-pass filters, and has good robustness to the parameter changes of the controlled object. Therefore, this paper applies the control strategy to the design of the current loop controller, so as to achieve a good dynamic response of the current loop and suppress the unmodeled disturbance of the current loop.
步骤S30,基于鲁棒分数阶矢量谐振控制器,采用SVPWM控制策略驱动永 磁同步电机运转。Step S30, based on the robust fractional-order vector resonance controller, the SVPWM control strategy is used to drive the permanent magnet synchronous motor to run.
本实施例中,分数阶矢量谐振控制技术能够有效抑制电流环存在的周期 性谐波,抑制其产生的转矩脉动;鲁棒内模控制用来解决电流环电阻、电感 参数失配造成的非周期扰动,并提高电流环的动态响应。针对传统谐振控制 在增益和相位裕度的不足,将分数阶微积分引入到谐振控制器的设计中,提 高了谐波抑制能力。本发明结合了鲁棒内模控制和分数阶谐振控制的优点, 不仅提高了永磁同步电机电流环的鲁棒性,并且能够有效抑制永磁同步电机 转矩脉动。本发明在有效抑制电流环谐波的同时,可保证控制系统良好的鲁棒性和动态响应性能。In this embodiment, the fractional-order vector resonance control technology can effectively suppress the periodic harmonics existing in the current loop and suppress the torque ripple generated by them. periodic perturbations and improve the dynamic response of the current loop. Aiming at the lack of gain and phase margin of traditional resonance control, fractional calculus is introduced into the design of resonance controller to improve the harmonic suppression ability. The invention combines the advantages of robust internal model control and fractional resonance control, not only improves the robustness of the current loop of the permanent magnet synchronous motor, but also can effectively suppress the torque ripple of the permanent magnet synchronous motor. The present invention can ensure good robustness and dynamic response performance of the control system while effectively suppressing the harmonics of the current loop.
基于上述实施例,本实施例中,步骤S10中建立永磁同步电机数学模型, 具体采用以下形式:Based on the above embodiment, in this embodiment, the mathematical model of the permanent magnet synchronous motor is established in step S10, and the specific form is as follows:
公式一: Formula one:
式中Ud、Uq分别为旋转坐标系下的d轴和q轴电压;id、iq分别为d轴和 q轴电流;Rd、Rq分别为d轴和q轴电感;Ld、Lq分别为d轴、q轴电阻;ωh为电机电角频率;Ψf为电机磁链;t为时间;where U d and U q are the d-axis and q-axis voltages in the rotating coordinate system, respectively; id and i q are the d -axis and q-axis currents, respectively; R d and R q are the d-axis and q-axis inductances, respectively; L d and L q are the d-axis and q-axis resistances, respectively; ω h is the electrical angular frequency of the motor; Ψ f is the motor flux linkage; t is the time;
对上述模型进行离散化处理即完成了模型的建立。The discretization of the above model completes the establishment of the model.
本实施例中,当电机为表贴式电机时(Rd=Rq=R,Ld=Lq=L),电流环模型 可表示为 In this embodiment, when the motor is a surface mount motor (R d =R q =R, L d =L q =L), the current loop model can be expressed as
那么,其名义模型为 Then, its nominal model is
式中Ln,Rn分别表示电流环名义电组、电感,可通过电机测试实时获取。In the formula, L n and R n respectively represent the nominal electric group and inductance of the current loop, which can be obtained in real time through the motor test.
基于上述实施例,本实施例中,步骤S20,设计鲁棒内模控制器和分数阶 矢量谐振控制器,用以设计鲁棒分数阶矢量谐振控制器,包括:Based on the above embodiment, in this embodiment, in step S20, a robust internal model controller and a fractional-order vector resonance controller are designed to design a robust fractional-order vector resonance controller, including:
设计鲁棒内模控制器,并对鲁棒内模控制器稳定性进行控制,具体采用 以下形式:The robust internal model controller is designed and the stability of the robust internal model controller is controlled in the following form:
定义鲁棒内模控制器预设动态响应传递函数用公式二表示:Defining the preset dynamic response transfer function of the robust internal model controller is expressed by formula 2:
扰动抑制滤波器用公式三表示: The disturbance rejection filter is expressed by Equation 3:
式中τ表示时间常数,其值越小动态响应越快;λ为一个与扰动抑制滤 波器带宽有关的常数,其值越小扰动抑制能力约强,但是系统对噪声也越敏 感,因此,在参数选择时优选1/τ<<1/λ,即可实现控制器对电流环干扰具 有良好的鲁棒性;where τ represents the time constant, the smaller the value, the faster the dynamic response; λ is a constant related to the bandwidth of the disturbance suppression filter, the smaller the value, the stronger the disturbance suppression ability, but the more sensitive the system is to noise, therefore, in When selecting parameters, 1/τ<<1/λ is preferred, so that the controller has good robustness to current loop disturbance;
根据公式二和公式三设计鲁棒内模控制器用公式四表示:The robust internal model controller designed according to Equation 2 and Equation 3 is expressed by Equation 4:
通过拉普拉斯逆变换可得如下时域控制律用公式五表示:Through the inverse Laplace transform, the following time domain control law can be expressed by Equation 5:
式中 in the formula
为避免积分迭代误差定义如下状态变量:To avoid integration iteration errors, define the following state variables:
x1=e(t)x 1 =e(t)
式中参数满足 The parameters in the formula satisfy
基于积分迭代误差定义,时域控制律由公式五转换用公式六表示:Based on the definition of integral iterative error, the time domain control law is converted from
uIMO=(kpe+kpy)x1+(kie1+kiy1)x2+(kie2+kiy2)x8+kie8x4 u IMO =(k pe +k py )x 1 +(k ie1 +k iy1 )x 2 +(k ie2 +k iy2 )x 8 +k ie8 x 4
电流环传递函数的微分形式用公式七表示: The differential form of the current loop transfer function is expressed by Equation 7:
根据公式六和公式七,并假设参考电流是缓慢变化的,可得到电流环的 状态方程为 According to
其中,为状态变量,为常值矩阵,其元素in, is the state variable, is a constant-valued matrix whose elements
A(4,1)=-kie8/L,A(4,2)=-(kie2+kiy2)/L,A(4,2)=-(kie2+kiy2)/LA(4,1)=-k ie8 /L, A(4,2)=-(k ie2 +k iy2 )/L, A(4,2)=-(k ie2 +k iy2 )/L
A(4,3)=-(kpe+kpy+R)/L,A(1,2)=A(2,3)=A(3,4)=1A(4,3)=-(k pe +k py +R)/L, A(1,2)=A(2,3)=A(3,4)=1
其余全为0,那么只要A为赫尔维茨矩阵时,,电流环闭环系统是稳定, 电流误差会在有限时间内趋于0,即鲁棒内模控制器稳定;The rest are all 0, then as long as A is the Hurwitz matrix, the current loop closed-loop system is stable, and the current error will tend to 0 in a limited time, that is, the robust internal model controller is stable;
最后根据设计的鲁棒内模控制器和分数阶矢量谐振控制器,设计鲁棒分 数阶矢量谐振控制器。Finally, according to the designed robust internal model controller and fractional-order vector resonance controller, a robust fractional-order vector resonance controller is designed.
参考图3,图3为分数阶矢量谐振控制器框图。Referring to FIG. 3, FIG. 3 is a block diagram of a fractional-order vector resonance controller.
如图所示,基于上述实施例,为解决传统谐振控制器增益不足导致的谐 波抑制能力下降,将分数阶微积分引入到谐振控制器,具体地,在本实施例 中,As shown in the figure, based on the above embodiment, in order to solve the decrease of harmonic suppression capability caused by insufficient gain of the traditional resonance controller, fractional calculus is introduced into the resonance controller. Specifically, in this embodiment,
步骤S20,设计鲁棒内模控制器和分数阶矢量谐振控制器,用以设计鲁棒 分数阶矢量谐振控制器,包括:Step S20, designing a robust internal model controller and a fractional-order vector resonance controller to design a robust fractional-order vector resonance controller, including:
设计分数阶矢量谐振控制器,并对分数阶矢量谐振控制器稳定性进行控 制,具体采用以下形式:The fractional-order vector resonance controller is designed, and the stability of the fractional-order vector resonance controller is controlled, and the specific form is as follows:
将分数阶微积分引入到谐振控制器中得到如下分数阶矢量谐振控制器的 控制律用公式八表示:The fractional-order calculus is introduced into the resonant controller to obtain the following control law of the fractional-order vector resonant controller, which is expressed by Equation 8:
式中kr,ωe,α分别表示控制器增益系数, 阻尼频率,以及分数阶阶次;where k r , ω e , α respectively represent the controller gain coefficient, damping frequency, and fractional order;
将公式八改写为公式九:Rewrite Equation 8 as Equation 9:
式中Y(s)k,R(s)k分别表示分数阶矢量谐振控制器kth时刻的输入输出;where Y(s) k and R(s) k represent the input and output of the fractional-order vector resonance controller at time k th respectively;
根据设计的鲁棒内模控制器和分数阶矢量谐振控制器,设计鲁棒分数阶 矢量谐振控制器。According to the designed robust internal mode controller and fractional-order vector resonance controller, a robust fractional-order vector resonance controller is designed.
进一步地,为了说明参数kr wc和a对谐振控制器频率的影响,本文以谐振 频率w=400πrad/s来对其频率特性进行分析。Further, in order to illustrate the influence of parameters k r w c and a on the frequency of the resonant controller, this paper analyzes its frequency characteristics with the resonant frequency w=400πrad/s.
参考图4,图4为分数阶矢量谐振控制器的频率响应图。Referring to FIG. 4, FIG. 4 is a frequency response diagram of the fractional order vector resonance controller.
本实施例中,(a)当阻尼频率及阶次为固定值10rad/s及1时,谐振控 制器频率响应随增益系数kr的变化曲线。(b)当增益系数及阶次为固定值10 以及1时,谐振控制器频率响应随阻尼频率参数wc的变化曲线。(c)当增益系 数以及阻尼频率为固定值10及10rad/s时,谐振控制器频率响应随阶次a的 变化曲线。In this embodiment, (a) when the damping frequency and order are fixed values of 10 rad/s and 1, the frequency response of the resonance controller varies with the gain coefficient k r . ( b ) When the gain coefficient and order are fixed values of 10 and 1, the frequency response of the resonant controller varies with the damping frequency parameter wc. (c) When the gain coefficient and damping frequency are fixed values of 10 and 10 rad/s, the frequency response of the resonant controller varies with the order a.
图(a)显示了不同的kr和固定的wc=10rad/s和a=1的Bode图。可以观察 到,FOVR控制器的峰值增益是与增益系数正比的。增加其数值可以提高谐振 点的增益,从而改善谐波抑制性能,但是带宽几乎不变。图(b)显示FOVR控 制器的振幅-频率特征,当kr=10和a=1时变化。它表明,减少阻尼频率系数 可以提高增益,但减少带宽,这将导致频率变化的鲁棒性差。在实际控制器设 计中,5~15rad/s是一个参考设计范围。图(c)说明当kr=10rad/s、wc=10时, 阶次对FOVR控制器的影响。可以观察到,较大的阶次可以提高增益,但是, 带宽保持不变,同时频率响应曲线在0°以上移动,这表明相位延迟将在开环 中减少。因此,该参数可视为一个可以调整FOVR控制器的增益和相差的参数。Panel (a) shows the Bode plot for different k r and a fixed w c =10 rad/s and a=1. It can be observed that the peak gain of the FOVR controller is proportional to the gain factor. Increasing its value increases the gain at the resonance point, thereby improving harmonic rejection, but the bandwidth is almost unchanged. Graph (b) shows the amplitude-frequency characteristics of the FOVR controller, varying when k r =10 and a=1. It shows that reducing the damping frequency coefficient can increase the gain, but reduce the bandwidth, which will result in poor robustness to frequency changes. In the actual controller design, 5 ~ 15rad/s is a reference design range. Figure (c) illustrates the effect of order on the FOVR controller when k r =10 rad/s, w c =10. It can be observed that a larger order increases the gain, however, the bandwidth remains the same while the frequency response curve shifts above 0°, indicating that the phase delay will decrease in open loop. Therefore, this parameter can be regarded as a parameter that can adjust the gain and phase difference of the FOVR controller.
对以上参数的分析,表明峰值增益、带宽和相位延迟与传统谐振控制器 相比,对谐振控制器的调节更为平滑。此外,增加阶次可提高VR控制器的自 由度,从而提高谐波抑制性能。The analysis of the above parameters shows that the peak gain, bandwidth and phase delay can be adjusted more smoothly in the resonant controller compared with the traditional resonant controller. In addition, increasing the order increases the degree of freedom of the VR controller, thereby improving the harmonic suppression performance.
参考图5,图5为鲁棒分数阶矢量谐振控制器框图。Referring to FIG. 5, FIG. 5 is a block diagram of a robust fractional-order vector resonance controller.
基于上述实施例,本实施例中,步骤S20,设计鲁棒内模控制器和分数阶 矢量谐振控制器,用以设计鲁棒分数阶矢量谐振控制器,包括:Based on the above embodiment, in this embodiment, in step S20, a robust internal model controller and a fractional-order vector resonance controller are designed to design a robust fractional-order vector resonance controller, including:
根据设计的鲁棒内模控制器和分数阶矢量谐振控制器,设计鲁棒分数阶 矢量谐振控制器,具体采用以下形式:According to the designed robust internal mode controller and fractional-order vector resonance controller, a robust fractional-order vector resonance controller is designed, and the specific form is as follows:
F(s),CA(s)和CB(s)是内模控制器的组成部分,得到如下鲁棒分数阶矢量 谐振控制器的闭环传递函数用公式十表示:F(s), C A (s) and C B (s) are the components of the internal model controller, and the closed-loop transfer function of the robust fractional-order vector resonance controller is obtained as follows:
式中i(s)和iref(s)表示i(t)和iref(t)在s域的传递函数;where i(s) and iref (s) represent the transfer functions of i(t) and iref (t) in the s domain;
在GFOVR(s)中的分数阶算子sa会产生多个分数阶零极点;除谐振控制器本 身的零点z1=-R/L和极点外,GFOVR(s)中的分 数阶零极点通过Outstaloup方法得到整数阶零极点的传递函数为公式十一:The fractional operator s a in G FOVR (s) will generate multiple fractional zeros and poles; dividing the zeros of the resonant controller itself z 1 = -R/L and the poles In addition, the fractional-order zero-pole in G FOVR (s) obtains the integer-order zero-pole transfer function by the Outstaloup method as formula 11:
对上述公式进行导入化处理即完成鲁棒分数阶矢量谐振控制器的设计。The design of the robust fractional-order vector resonance controller is completed by importing the above formula.
进一步地,在步骤S20之后,永磁同步电机转矩脉动抑制方法还包括:Further, after step S20, the method for suppressing torque ripple of the permanent magnet synchronous motor further includes:
对鲁棒分数阶矢量谐振控制器进行稳定性分析,具体采用以下形式:The stability analysis of the robust fractional-order vector resonance controller is carried out in the following form:
鲁棒分数阶矢量谐振控制器的稳定性当且满足以下条件,用公式十二:The stability of the robust fractional-order vector resonant controller satisfies the following conditions, using Equation 12:
式中||·||∞表无穷范数; where ||·|| ∞ represents the infinity norm;
根据公式十和公式十一,得到电流环的闭环传递函数公式十三:According to
当A为赫尔维茨矩阵,控制器CA(s)和CB(s)能够使得1+Gp(s)(CA(s)+CB(s))稳定,即1+Gp(s)(CA(s)+CB(s))所有的特征根落在s域的左半平面,则稳定性由下列 传递函数公式十四确定:When A is a Hurwitz matrix, the controllers C A (s) and C B (s) can make 1+G p (s)(C A (s)+C B (s)) stable, that is, 1+G All the eigenvalues of p (s)(C A (s)+C B (s)) fall on the left half-plane of the s domain, then the stability is determined by the following transfer function formula 14:
由小增益定理可得,闭环回路满足以下条件,用公式十五表示:It can be obtained from the small gain theorem that the closed loop meets the following conditions, which is expressed by Equation 15:
若公式十五可以证得公式十二,则鲁棒分数阶矢量谐振控制器稳定。If Equation 15 can prove Equation 12, then the robust fractional-order vector resonance controller is stable.
进一步地,在步骤S20之后,永磁同步电机转矩脉动抑制方法还包括:Further, after step S20, the method for suppressing torque ripple of the permanent magnet synchronous motor further includes:
对鲁棒分数阶矢量谐振控制器进行鲁棒稳定性分析,具体采用以下形式:The robust stability analysis of the robust fractional-order vector resonant controller is carried out in the following form:
当永磁同步电机数学模型失配时,被控对象可用公式十六表示:When the mathematical model of the permanent magnet synchronous motor is mismatched, the controlled object can be represented by formula 16:
式中ΔGp(s)表示模型误差;where ΔG p (s) represents the model error;
鲁棒分数阶矢量谐振控制器的鲁棒稳定性当且满足以下条件,用公式十 七表示: The robust stability of the robust fractional-order vector resonant controller is when and satisfying the following conditions, expressed by Equation 17:
当永磁同步电机数学模型失配时,电流环特征多项式可用公式十八表示:When the mathematical model of the permanent magnet synchronous motor is mismatched, the current loop characteristic polynomial can be expressed by Equation 18:
式中 in the formula
由小增益定理可得,电流环鲁棒稳定性满足以下条件,用公式十九表示:It can be obtained from the small gain theorem that the robust stability of the current loop satisfies the following conditions, expressed by Equation 19:
||Q(s)ΔGp(s)||∞≤||Q(s)||∞||ΔGp(s)||∞<1||Q(s)ΔG p (s)|| ∞ ≤||Q(s)|| ∞ ||ΔG p (s)|| ∞ <1
由此可得公式二十:From this, formula 20 can be obtained:
若公式二十可以证得公式十七,则鲁棒分数阶矢量谐振控制器鲁棒稳定。If Equation 20 can prove Equation 17, then the robust fractional-order vector resonance controller is robust and stable.
本实施例中,结合了鲁棒内模控制和分数阶谐振控制的优点,不仅提高 了永磁同步电机电流环的鲁棒性,并且能够有效抑制永磁同步电机转矩脉动。 本发明在有效抑制电流环谐波的同时,可保证控制系统良好的鲁棒性和动态 响应性能。In this embodiment, the advantages of robust internal model control and fractional-order resonance control are combined, which not only improves the robustness of the current loop of the permanent magnet synchronous motor, but also can effectively suppress the torque ripple of the permanent magnet synchronous motor. The present invention can ensure good robustness and dynamic response performance of the control system while effectively suppressing the harmonics of the current loop.
参照图6,图6为本发明基于鲁棒分数阶矢量谐振的永磁同步电机转速伺 服系统一实施例的系统结构框图。Referring to Fig. 6, Fig. 6 is a system structural block diagram of an embodiment of a permanent magnet synchronous motor speed servo system based on robust fractional vector resonance of the present invention.
基于鲁棒分数阶矢量谐振的永磁同步电机转速伺服系统,包括:处理器、 永磁同步电机、三相逆变器、速度PI控制器、空间电压矢量脉宽调制(SVPWM)、 鲁棒分数阶矢量谐振控制器(电流控制器);还包括位置传感器、坐标变换模 块组成。Permanent magnet synchronous motor speed servo system based on robust fractional-order vector resonance, including: processor, permanent magnet synchronous motor, three-phase inverter, speed PI controller, space voltage vector pulse width modulation (SVPWM), robust fractional Order vector resonance controller (current controller); it also includes a position sensor and a coordinate transformation module.
鲁棒分数阶矢量谐振控制器,用于产生控制电压;Robust fractional-order vector resonance controller for generating control voltages;
速度PI控制器,用于产生控制电流;Speed PI controller for generating control current;
处理器,用于采用SVPWM控制策略控制三相逆变器功率器的通断,以驱 动永磁同步电机运转;The processor is used to control the on-off of the three-phase inverter power unit by using the SVPWM control strategy to drive the permanent magnet synchronous motor to run;
处理器,还用于执行如上述中任一项的基于鲁棒分数阶矢量谐振的永磁 同步电机转矩脉动抑制方法的步骤。The processor is further configured to execute the steps of the method for suppressing torque ripple of a permanent magnet synchronous motor based on robust fractional-order vector resonance as described above.
具体地,速度环采用PI控制器产生q轴电流给定值,电流环采用鲁棒分 数阶矢量谐振控制器产生控制电压。采用SVPWM控制策略控制三相逆变器功 率器件的通断,最终驱动永磁同步电机运转。Specifically, the speed loop adopts the PI controller to generate the q-axis current given value, and the current loop adopts the robust fractional-order vector resonance controller to generate the control voltage. The SVPWM control strategy is used to control the on-off of the three-phase inverter power device, and finally drive the permanent magnet synchronous motor to run.
此外,一种计算机可读存储介质,所述计算机可读存储介质上存储有转 矩脉动抑制程序,所述转矩脉动抑制程序被处理器执行时实现如上述中任一 项所述的基于鲁棒分数阶矢量谐振的永磁同步电机转矩脉动抑制方法的步骤。In addition, a computer-readable storage medium storing a torque ripple suppression program on the computer-readable storage medium, when the torque ripple suppression program is executed by a processor, implements the robustness-based method according to any one of the above. Steps of torque ripple suppression method for permanent magnet synchronous motor based on rod fractional vector resonance.
本发明计算机可读存储介质具体实施例与上述基于鲁棒分数阶矢量谐振 的永磁同步电机转矩脉动抑制方法的各实施例基本相同,在此不再详细赘述。The specific embodiments of the computer-readable storage medium of the present invention are basically the same as the above-mentioned embodiments of the method for suppressing torque ripple of a permanent magnet synchronous motor based on robust fractional-order vector resonance, and will not be described in detail here.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体 意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或 者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还 包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情 况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、 方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的 技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体 现出来,该计算机软件产品存储在一个可读存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是计算机、服务器或者网络 设备等)执行本发明各个实施例的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course hardware can also be used, but in many cases the former is better implementation. Based on such understanding, the technical solutions of the present invention essentially or the parts that contribute to the prior art can be embodied in the form of software products, and the computer software products are stored in a readable storage medium (such as ROM/RAM, magnetic disk, optical disc), including several instructions to make a terminal (which may be a computer, a server, or a network device, etc.) execute the methods of the various embodiments of the present invention.
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求 所保护的范围情况下,还可做出很多形式,凡是利用本发明说明书及附图内 容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领 域,这些均属于本发明的保护之内。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, without departing from the scope of protection of the purpose of the present invention and the claims, many forms can be made. Directly or indirectly used in other related technical fields, these all belong to the protection of the present invention.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间 接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied in other related technical fields , are similarly included in the scope of patent protection of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110469036.4A CN114039519A (en) | 2021-04-28 | 2021-04-28 | Permanent magnet synchronous motor torque ripple suppression method, servo system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110469036.4A CN114039519A (en) | 2021-04-28 | 2021-04-28 | Permanent magnet synchronous motor torque ripple suppression method, servo system and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114039519A true CN114039519A (en) | 2022-02-11 |
Family
ID=80134186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110469036.4A Pending CN114039519A (en) | 2021-04-28 | 2021-04-28 | Permanent magnet synchronous motor torque ripple suppression method, servo system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114039519A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115622468A (en) * | 2022-10-21 | 2023-01-17 | 中国科学院长春光学精密机械与物理研究所 | Current loop control method and device for permanent magnet synchronous motor based on cascaded sliding mode resonance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104104297A (en) * | 2014-07-16 | 2014-10-15 | 东南大学 | Flux-switching linear motor based rail transit velocity fluctuation inhibition method |
CN107070341A (en) * | 2017-03-24 | 2017-08-18 | 中国科学院长春光学精密机械与物理研究所 | Permagnetic synchronous motor method for suppressing torque ripple based on Robust Iterative Learning Control |
-
2021
- 2021-04-28 CN CN202110469036.4A patent/CN114039519A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104104297A (en) * | 2014-07-16 | 2014-10-15 | 东南大学 | Flux-switching linear motor based rail transit velocity fluctuation inhibition method |
CN107070341A (en) * | 2017-03-24 | 2017-08-18 | 中国科学院长春光学精密机械与物理研究所 | Permagnetic synchronous motor method for suppressing torque ripple based on Robust Iterative Learning Control |
Non-Patent Citations (1)
Title |
---|
MINGFEI HUANG: "Torque Ripple Suppression of PMSM Using Fractional-Order Vector Resonant and Robust Internal Model Control", IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, vol. 7, no. 3, 20 January 2021 (2021-01-20), pages 1437 - 1453, XP011873005, DOI: 10.1109/TTE.2021.3053063 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115622468A (en) * | 2022-10-21 | 2023-01-17 | 中国科学院长春光学精密机械与物理研究所 | Current loop control method and device for permanent magnet synchronous motor based on cascaded sliding mode resonance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5645956B2 (en) | Power converter | |
CN110890855A (en) | Parameter identification method for permanent magnet synchronous motor of electric vehicle | |
CN106549399B (en) | A kind of APF DC side voltage control methods in parallel based on sliding formwork PI complex control algorithms | |
CN114301355A (en) | Current harmonic disturbance suppression method for permanent magnet synchronous motor | |
CN105897110B (en) | The PI parameter tuning methods of permagnetic synchronous motor high performance controller | |
CN111279609A (en) | System and method for stability control in adjustable speed drives with DC link film capacitors | |
CN108551285A (en) | Direct Torque Control System for Permanent Magnet Synchronous Motor and method based on double synovial membrane structures | |
Konstantopoulos et al. | Bounded nonlinear stabilizing speed regulators for VSI-fed induction motors in field-oriented operation | |
CN113056868B (en) | Control method and control device for electric vehicle | |
CN114567219A (en) | Speed control method and device for permanent magnet synchronous motor | |
CN114039519A (en) | Permanent magnet synchronous motor torque ripple suppression method, servo system and storage medium | |
JP2013121234A (en) | Power conversion device | |
JP2008211933A (en) | Electric motor control device, control method, computer program, and electric motor torque ripple estimation method | |
CN113114230A (en) | Resonant frequency online identification and suppression method for servo system | |
CN112001145A (en) | Unified modeling method for full-modal current of variable-frequency speed regulator | |
KR101303952B1 (en) | Induction motor control apparatus | |
CN114785210B (en) | Permanent magnet synchronous motor current controller parameter setting method, device and system | |
CN106059433A (en) | Train set traction converter non-beat frequency control strategy | |
CN110134004A (en) | A PI control parameter tuning method based on power spring circuit structure | |
CN116191425A (en) | Distributed power supply harmonic compensation control method and related equipment | |
CN112003519B (en) | Single-current flux-weakening control method, device and system for permanent magnet synchronous motor | |
CN109842337B (en) | Flux linkage difference processing method and motor control device | |
CN115395841A (en) | Mixed excitation synchronous motor current PI controller structure and parameter design method | |
CN109245644B (en) | Implementation method of robust two-degree-of-freedom controller of permanent magnet synchronous motor | |
Ma et al. | Stability Analysis and Compensation Methods to Improve Stability for DC Microgrid with Constant Power Loads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |