CN114000193B - 一种三方相弛豫铁电单晶退极化抑制方法 - Google Patents

一种三方相弛豫铁电单晶退极化抑制方法 Download PDF

Info

Publication number
CN114000193B
CN114000193B CN202111199232.0A CN202111199232A CN114000193B CN 114000193 B CN114000193 B CN 114000193B CN 202111199232 A CN202111199232 A CN 202111199232A CN 114000193 B CN114000193 B CN 114000193B
Authority
CN
China
Prior art keywords
single crystal
compressive stress
ferroelectric single
depolarization
tripartite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111199232.0A
Other languages
English (en)
Other versions
CN114000193A (zh
Inventor
张双捷
宋丕麒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202111199232.0A priority Critical patent/CN114000193B/zh
Publication of CN114000193A publication Critical patent/CN114000193A/zh
Application granted granted Critical
Publication of CN114000193B publication Critical patent/CN114000193B/zh
Priority to US17/955,864 priority patent/US11678580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种三方相弛豫铁电单晶退极化抑制方法。本发明属于压电材料领域。本发明的目的是为了解决三方相弛豫铁电单晶由于矫顽场较低,在大驱动电场的作用下容易退极化的技术问题。本发明根据晶体畴结构和各向异性特征选择晶体切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向向极化方向旋转,从而确定极化方向和压应力施加方向,并通过施加合适的压应力对单晶退极化场强展开调控,从而增大退极化场强,抑制驰豫铁电单晶退极化。本发明的方法无需使用复杂的直流偏置装置或额外电子元件,不增加整体系统的复杂度,操作简单,易于实现,可提高三方相弛豫铁电单晶所能承受的驱动电场强度,有效提高换能器最大声源级和输出功率。

Description

一种三方相弛豫铁电单晶退极化抑制方法
技术领域
本发明属于压电材料领域,具体涉及一种三方相弛豫铁电单晶退极化抑制方法。
背景技术
水声换能器通常由锆钛酸铅(PbZr0.52Ti0.48O3或PZT)多晶压电陶瓷材料、弛豫铁电单晶或压电陶瓷-聚合物复合材料等压电材料驱动。作为声纳系统的最前端,水声换能器承担着发射与接收声波的任务,广泛应用于船舶和潜艇声纳、海洋资源勘探、环境保护和医疗装备等领域。为实现对水下安静目标的远距离探测与识别,需要水声换能器输出功率尽可能高的声波。
压电材料能够实现电能与机械能的相互转换,是水声换能器的核心组成部分。相比传统锆钛酸铅(PbZr0.52Ti0.48O3或PZT)多晶压电陶瓷材料,以Pb(Zn1/3Nb2/3)O3-PbTiO3(PZN-PT)、Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)和Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIN-PMN-PT)为代表的三方相铅基弛豫铁电固溶体单晶具有更加优异的压电性能和应变能力,能够实现大带宽、高效率、高响应的换能器设计。
为了获得最大输出功率,换能器通常由交流电场驱动以谐振模式向传播介质中辐射声波,声波的振幅大小由压电效应、机械品质因数以及驱动电场共同决定。换能器能够承受的最大正、负向驱动电场分别受驰豫铁电单晶材料的相变场强和退极化场强限制,以保证单晶处于最佳极化状态的三方相,能够稳定工作。然而,由于驰豫铁电单晶矫顽场较低,在大负向驱动电场的作用下容易退极化,严重影响换能器的电学稳定性。
发明内容
本发明的目的是为了解决三方相弛豫铁电单晶由于矫顽场较低,在大驱动电场的作用下容易退极化的技术问题,而提供一种三方相弛豫铁电单晶退极化抑制方法。
本发明的一种三方相弛豫铁电单晶退极化抑制方法按以下步骤进行:
步骤1:根据三方相弛豫铁电单晶畴结构和各向异性特征选择切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向能够在压应力的作用下向极化方向旋转,从而确定极化方向和压应力施加方向;
步骤2:按照步骤1确定的压应力施加方向,向所选三方相弛豫铁电单晶施加一定大小的压应力,然后根据步骤1确定的极化方向,使用直流电源向所选三方相弛豫铁电单晶施加与该极化方向相反的负向电场,测量不同电场强度下的单晶应变,绘制电场-应变曲线,从而得到该压应力作用下的退极化场强;
步骤3:重复步骤2若干次,以得到不同压应力作用下的退极化场强,每次重复步骤2的操作前需要使退极化后的三方相弛豫铁电单晶重新极化,然后再重复步骤2的操作,最终得到三方相弛豫铁电单晶的压应力-退极化场强曲线;
步骤4:根据步骤1确定的压应力施加方向和步骤3得到的压应力-退极化场强曲线确定实际应用时抑制三方相弛豫铁电单晶退极化所需的压应力方向和大小,所述压应力不小于实际应用时所需驱动电场强度在步骤3得到的压应力-退极化场强曲线中所对应的压应力。
进一步限定,所述三方相弛豫铁电单晶为二元固溶体、三元固溶体或更高元固溶体的弛豫基铁电或压电单晶的切片。
进一步限定,所述三方相弛豫铁电单晶具体为Pb(Zn1/3Nb2/3)O3、Pb(Mg1/3Nb2/3)O3、Pb(In1/2Nb1/2)O3、Pb(Sc1/2Nb1/2)O3、Pb(Fe1/2Nb1/2)O3、Pb(Yb1/2Nb1/2)O3、Pb(Lu1/2Nb1/2)O3、Pb(Mn1/2Nb1/2)O3、PbZrO3和PbTiO3,以及由上述物质改性和/或掺杂衍生物中的一种或多种。
进一步限定,步骤1中所述三方相弛豫铁电单晶为[0-11]1×[100]2×[011]3切割的[011]3极化单晶,其中[011]3是纵向方向,[0-11]1和[100]2是两个横向方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶的压应力施加方向为[100]2方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶为[100]1×[010]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[100]1和[010]2是两个横向方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶的压应力施加方向为[100]1或[010]2方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶为[110]1×[1-10]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[110]1和[1-10]2是两个横向方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶的压应力施加方向为[110]1或[1-10]2方向。
进一步限定,步骤2中所述压应力通过质量块施加,或者通过弹簧与预应力螺栓施加,或者通过预应力筋或张拉膜施加。
进一步限定,步骤2中所述测量不同电场场强下的单晶应变的方法为接触式方法或非接触式方法,其中接触式方法为采用应变仪、千分表、或线性可变差动变压器,非接触式方法为采用激光测振仪。
本发明与现有技术相比具有的显著效果:
1)本发明通过调整施加在弛豫铁电单晶上的压应力,实现对其退极化现象的调控和抑制,增大退极化场强,克服弛豫铁电单晶矫顽场和退极化场强较低的限制,实现换能器最大声源级和输出功率的有效提高。
2)本发明的方法无需使用复杂的直流偏置装置或额外电子元件,不增加整体系统的复杂度,操作简单,易于实现,能够提高三方相弛豫铁电单晶所能承受的驱动电场强度,有效提高换能器最大声源级和输出功率。
附图说明
图1为实验装置示意图;其中101-为实验装置上压板,102-晶体夹具,103弛豫铁电单晶,104-晶体夹具,105-实验装置底板,106-应变片,107-连接晶体正极的导线,108-连接晶体负极的导线;
图2为本发明的三方相弛豫铁电单晶的相结构、极化方向、畴结构示意图;
图3为[001]3方向的压应力与[001]3方向的负向电场对[001]3极化的三方相弛豫铁电单晶的影响示意图;其中301-负向电场导致退极化,302-无电场无应力作用,303-压应力与负向电场共同作用导致退极化;
图4为[100]2方向的压应力与[011]3方向的负向电场对[011]3极化的三方相弛豫铁电单晶的影响示意图;其中401-负向电场导致退极化,402-无电场无应力作用,403-压应力抑制退极化;
图5为[010]2方向的压应力与[001]3方向的负向电场对[001]3极化的三方相弛豫铁电单晶的影响示意图;其中501-负向电场导致退极化,502-无电场无应力作用,503-压应力抑制退极化;
图6为[011]3极化的PZN-5.5%PT三方相弛豫铁电单晶的电场-应变曲线图;
图7为[011]3极化的PZN-5.5%PT三方相弛豫铁电单晶的压应力-退极化场强曲线图。
具体实施方式
为了更好的说明发明的目的和优点,下面结合附图对本发明做出详细解释。
图1显示了对弛豫铁电单晶施加压应力的实验装置图。实验装置由上压板、底板,以及晶体夹具组成。通过在上压板上均匀施加压应力,测试弛豫铁电单晶的应变得到弛豫铁电单晶在该压应力下的退极化场强。
图2为三方相弛豫铁电单晶相结构、极化方向、畴结构示意图。弛豫铁电单晶晶格的对称性是由其相结构所决定,与极化无关。然而,由于沿不同方向极化,弛豫铁电单晶所形成的电畴结构不同,因此其宏观对称性与晶体极化方向密切相关。对于三种典型相结构的弛豫铁电单晶,其宏观对称性主要由极化方向来决定,如图1所示。沿自发极化方向极化晶体的宏观对称性与微观对称性相同,其宏观物理性能可反映晶体单畴的性能。沿非极轴方向极化,晶体为多畴状态,此时宏观对称性由极化方向决定。
实施例1:本实施例的一种PZN-5.5%PT三方相弛豫铁电单晶退极化抑制方法按以下步骤进行:
步骤1:根据三方相PZN-5.5%PT弛豫铁电单晶畴结构和各向异性特征选择切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向能够在压应力的作用下向极化方向旋转,从而确定极化方向和压应力施加方向(如图3-5所示);
步骤2:按照步骤1确定的压应力施加方向,向所选三方相弛豫铁电单晶施加一定大小的压应力,然后根据步骤1确定的极化方向,使用直流电源向所选三方相弛豫铁电单晶施加与该极化方向相反的负向电场,测量不同电场强度下的单晶应变,绘制电场-应变曲线,从而得到该压应力作用下的退极化场强;所述压应力通过质量块施加;所述测量不同电场场强下的单晶应变的方法为采用应变仪;
步骤3:重复步骤2若干次,以得到不同压应力作用下的退极化场强,每次重复步骤2的操作前需要使退极化后的三方相弛豫铁电单晶重新极化,然后再重复步骤2的操作,最终得到(对应于图4)三方相弛豫铁电单晶的压应力-退极化场强曲线(如图6-7所示);
步骤4:根据步骤1确定的压应力施加方向和步骤3得到的压应力-退极化场强曲线确定实际应用时抑制三方相弛豫铁电单晶退极化所需的压应力方向和大小,所述压应力不小于实际应用时所需驱动电场强度在步骤3得到的压应力-退极化场强曲线中所对应的压应力。
沿[001]3方向极化的三方相弛豫铁电单晶具备最佳的纵向压电性能,包括[100]1×[010]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,并且[100]1和[010]2是两个侧向或横向方向。但是过大的压应力和负向电场会导致三方至斜方的相变,如图3所示,因此需要适当的直流偏置来增强晶体在大电场、大应力作用下的稳定性。
[011]3极化的弛豫铁电单晶在[100]2方向上具备优异的横向压电性能,沿[100]2方向施加压应力能够促使晶体自发极化方向向极化方向旋转。负向电场需要首先克服该压应力的作用,才能导致退极化,如图4所示。因此可以通过向[100]2方向施加压应力提高[011]3极化的弛豫铁电单晶退极化场强,克服弛豫铁电单晶矫顽场和退极化场强较低的问题,实现换能器最大声源级和输出功率的有效提高。
如图5所示,对于沿[001]3方向的弛豫铁电单晶,沿[010]2方向施加的压应力能够促使晶体的自发极化方向向[001]3极化方向旋转并且在[001]3方向产生负应变。因此,可以通过向[010]2或与之等效的[100]1方向施加压应力,来提高[001]3极化的弛豫铁电单晶的退极化场强,实现增大换能器最大声源级和输出功率的有效提高。

Claims (2)

1.一种三方相弛豫铁电单晶退极化抑制方法,其特征在于,该方法按以下步骤进行:
步骤1:根据三方相弛豫铁电单晶畴结构和各向异性特征选择切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向能够在压应力的作用下向极化方向旋转,从而确定极化方向和压应力施加方向;
所述三方相弛豫铁电单晶为Pb(Zn1/3Nb2/3)O3、Pb(Mg1/3Nb2/3)O3、Pb(In1/2Nb1/2)O3、Pb(Sc1/2Nb1/2)O3、Pb(Fe1/2Nb1/2)O3、Pb(Yb1/2Nb1/2)O3、Pb(Lu1/2Nb1/2)O3、Pb(Mn1/2Nb1/2)O3、PbZrO3和PbTiO3,以及由上述物质改性和/或掺杂衍生物中的一种或多种;
所述三方相弛豫铁电单晶为[0-11]1×[100]2×[011]3切割的[011]3极化单晶,其中[011]3是纵向方向,[0-11]1和[100]2是两个横向方向,压应力施加方向为[100]2方向;
所述三方相弛豫铁电单晶为[100]1×[010]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[100]1和[010]2是两个横向方向,压应力施加方向为[100]1或[010]2方向;
所述三方相弛豫铁电单晶为[110]1×[1-10]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[110]1和[1-10]2是两个横向方向,压应力施加方向为[110]1或[1-10]2方向;
步骤2:按照步骤1确定的压应力施加方向,向所选三方相弛豫铁电单晶施加一定大小的压应力,然后根据步骤1确定的极化方向,使用直流电源向所选三方相弛豫铁电单晶施加与该极化方向相反的负向电场,测量不同电场强度下的单晶应变,绘制电场-应变曲线,从而得到该压应力作用下的退极化场强;
步骤3:重复步骤2若干次,以得到不同压应力作用下的退极化场强,每次重复步骤2的操作前需要使退极化后的三方相弛豫铁电单晶重新极化,然后再重复步骤2的操作,最终得到三方相弛豫铁电单晶的压应力-退极化场强曲线;
步骤4:根据步骤1确定的压应力施加方向和步骤3得到的压应力-退极化场强曲线确定实际应用时抑制三方相弛豫铁电单晶退极化所需的压应力方向和大小,所述压应力不小于实际应用时所需驱动电场强度在步骤3得到的压应力-退极化场强曲线中所对应的压应力。
2.根据权利要求1所述的一种三方相弛豫铁电单晶退极化抑制方法,其特征在于,步骤2中所述压应力通过质量块施加,或者通过弹簧与预应力螺栓施加,或者通过预应力筋或张拉膜施加,步骤2中所述测量不同电场场强下的单晶应变的方法为接触式方法或非接触式方法,其中接触式方法为采用应变仪、千分表、或线性可变差动变压器,非接触式方法为采用激光测振仪。
CN202111199232.0A 2021-10-14 2021-10-14 一种三方相弛豫铁电单晶退极化抑制方法 Active CN114000193B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111199232.0A CN114000193B (zh) 2021-10-14 2021-10-14 一种三方相弛豫铁电单晶退极化抑制方法
US17/955,864 US11678580B2 (en) 2021-10-14 2022-09-29 Method for depolarization suppression of rhombohedral relaxor-based ferroelectric single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111199232.0A CN114000193B (zh) 2021-10-14 2021-10-14 一种三方相弛豫铁电单晶退极化抑制方法

Publications (2)

Publication Number Publication Date
CN114000193A CN114000193A (zh) 2022-02-01
CN114000193B true CN114000193B (zh) 2022-08-02

Family

ID=79922900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111199232.0A Active CN114000193B (zh) 2021-10-14 2021-10-14 一种三方相弛豫铁电单晶退极化抑制方法

Country Status (2)

Country Link
US (1) US11678580B2 (zh)
CN (1) CN114000193B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1243993A (en) * 1967-08-02 1971-08-25 Hitachi Ltd A mechano-electrical coupling device
US5166943A (en) * 1991-06-14 1992-11-24 Amoco Corporation Single domain stabilization in ferroelectric crystals
US7518292B2 (en) * 2003-10-14 2009-04-14 Jfe Mineral Company, Ltd. Piezoelectric single crystal and piezoelectric single-crystal device and method for manufacturing the same
US8241519B2 (en) * 2009-03-17 2012-08-14 Trs Technologies, Inc. Relaxor-PT ferroelectric single crystals
CN107326443B (zh) * 2017-06-05 2019-10-11 西安交通大学 一种非线性光学材料弛豫铁电单晶单畴化的方法

Also Published As

Publication number Publication date
US20230117560A1 (en) 2023-04-20
US11678580B2 (en) 2023-06-13
CN114000193A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
Tian et al. Properties of PMN-PT single crystal piezoelectric material and its application in underwater acoustic transducer
US6643222B2 (en) Wave flextensional shell configuration
Viehland et al. Electromechanical coupling coefficient of< 001>-oriented Pb (Mg1/3Nb2/3) O3–PbTiO3 cystals: Stress and temperature independence
CN103646642B (zh) 多液腔低频宽带水声换能器
CN101909230A (zh) 金属与压电陶瓷和聚合物复合材料宽带水声换能器
CN102169685A (zh) 一种低频宽带小尺寸深水水声换能器
CN105702243B (zh) 一种双壳串联iv型弯张换能器
JP6265573B2 (ja) 超広帯域音および超音波トランスデューサ
Wang et al. Large-area piezoelectric single crystal composites via 3-D-printing-assisted dice-and-insert technology for hydrophone applications
CN114000193B (zh) 一种三方相弛豫铁电单晶退极化抑制方法
US20090115290A1 (en) Ultrawideband Ultrasonic Transducer
Tressler et al. A comparison of the underwater acoustic performance of single crystal versus piezoelectric ceramic-based “cymbal” projectors
Nishi Effects of One‐Dimensional Pressure on the Properties of Several Transducer Ceramics
CN202042175U (zh) 一种低频宽带小尺寸深水水声换能器
US20200128333A1 (en) Diagonal resonance sound and ultrasonic transducer
CN101047225A (zh) 磁电耦合器件
Cheng et al. Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer
Viehland et al. Enhancement of electromechanical coupling coefficient and acoustic power density in conventional “hard” Pb (Zr1− xTix) O3 ceramics by application of uniaxial stress
CN103414987A (zh) Pvdf/压电陶瓷收发换能器
Brosnan et al. Comparison of the properties of tonpilz transducers fabricated with⟨ 001⟩ fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals
Shankar High power evaluation of textured piezoelectric ceramics for SONAR projectors
CN116322266A (zh) 一种2-2型压电复合材料的交流极化设备及方法
Chen et al. Investigation On A Novel Relaxation Ferroelectric Single Crystal Transducer Based On Free Face Shear Mode
Kwok et al. Multifrequency transducers fabricated using PZT/P (VDF-TrFE) 1-3 composite
Lindberg Material challenges for transducer designers in the 21st century

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant