CN114000193B - 一种三方相弛豫铁电单晶退极化抑制方法 - Google Patents
一种三方相弛豫铁电单晶退极化抑制方法 Download PDFInfo
- Publication number
- CN114000193B CN114000193B CN202111199232.0A CN202111199232A CN114000193B CN 114000193 B CN114000193 B CN 114000193B CN 202111199232 A CN202111199232 A CN 202111199232A CN 114000193 B CN114000193 B CN 114000193B
- Authority
- CN
- China
- Prior art keywords
- single crystal
- compressive stress
- ferroelectric single
- depolarization
- tripartite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 106
- 230000028161 membrane depolarization Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000005764 inhibitory process Effects 0.000 title description 3
- 230000010287 polarization Effects 0.000 claims abstract description 36
- 230000005684 electric field Effects 0.000 claims abstract description 33
- 230000009471 action Effects 0.000 claims abstract description 10
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 8
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 7
- 230000000452 restraining effect Effects 0.000 claims abstract 2
- 210000002435 tendon Anatomy 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 4
- 229910020215 Pb(Mg1/3Nb2/3)O3PbTiO3 Inorganic materials 0.000 description 2
- 229910020684 PbZr Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/04—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
- H10N30/045—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/32—Titanates; Germanates; Molybdates; Tungstates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8548—Lead-based oxides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种三方相弛豫铁电单晶退极化抑制方法。本发明属于压电材料领域。本发明的目的是为了解决三方相弛豫铁电单晶由于矫顽场较低,在大驱动电场的作用下容易退极化的技术问题。本发明根据晶体畴结构和各向异性特征选择晶体切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向向极化方向旋转,从而确定极化方向和压应力施加方向,并通过施加合适的压应力对单晶退极化场强展开调控,从而增大退极化场强,抑制驰豫铁电单晶退极化。本发明的方法无需使用复杂的直流偏置装置或额外电子元件,不增加整体系统的复杂度,操作简单,易于实现,可提高三方相弛豫铁电单晶所能承受的驱动电场强度,有效提高换能器最大声源级和输出功率。
Description
技术领域
本发明属于压电材料领域,具体涉及一种三方相弛豫铁电单晶退极化抑制方法。
背景技术
水声换能器通常由锆钛酸铅(PbZr0.52Ti0.48O3或PZT)多晶压电陶瓷材料、弛豫铁电单晶或压电陶瓷-聚合物复合材料等压电材料驱动。作为声纳系统的最前端,水声换能器承担着发射与接收声波的任务,广泛应用于船舶和潜艇声纳、海洋资源勘探、环境保护和医疗装备等领域。为实现对水下安静目标的远距离探测与识别,需要水声换能器输出功率尽可能高的声波。
压电材料能够实现电能与机械能的相互转换,是水声换能器的核心组成部分。相比传统锆钛酸铅(PbZr0.52Ti0.48O3或PZT)多晶压电陶瓷材料,以Pb(Zn1/3Nb2/3)O3-PbTiO3(PZN-PT)、Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)和Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIN-PMN-PT)为代表的三方相铅基弛豫铁电固溶体单晶具有更加优异的压电性能和应变能力,能够实现大带宽、高效率、高响应的换能器设计。
为了获得最大输出功率,换能器通常由交流电场驱动以谐振模式向传播介质中辐射声波,声波的振幅大小由压电效应、机械品质因数以及驱动电场共同决定。换能器能够承受的最大正、负向驱动电场分别受驰豫铁电单晶材料的相变场强和退极化场强限制,以保证单晶处于最佳极化状态的三方相,能够稳定工作。然而,由于驰豫铁电单晶矫顽场较低,在大负向驱动电场的作用下容易退极化,严重影响换能器的电学稳定性。
发明内容
本发明的目的是为了解决三方相弛豫铁电单晶由于矫顽场较低,在大驱动电场的作用下容易退极化的技术问题,而提供一种三方相弛豫铁电单晶退极化抑制方法。
本发明的一种三方相弛豫铁电单晶退极化抑制方法按以下步骤进行:
步骤1:根据三方相弛豫铁电单晶畴结构和各向异性特征选择切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向能够在压应力的作用下向极化方向旋转,从而确定极化方向和压应力施加方向;
步骤2:按照步骤1确定的压应力施加方向,向所选三方相弛豫铁电单晶施加一定大小的压应力,然后根据步骤1确定的极化方向,使用直流电源向所选三方相弛豫铁电单晶施加与该极化方向相反的负向电场,测量不同电场强度下的单晶应变,绘制电场-应变曲线,从而得到该压应力作用下的退极化场强;
步骤3:重复步骤2若干次,以得到不同压应力作用下的退极化场强,每次重复步骤2的操作前需要使退极化后的三方相弛豫铁电单晶重新极化,然后再重复步骤2的操作,最终得到三方相弛豫铁电单晶的压应力-退极化场强曲线;
步骤4:根据步骤1确定的压应力施加方向和步骤3得到的压应力-退极化场强曲线确定实际应用时抑制三方相弛豫铁电单晶退极化所需的压应力方向和大小,所述压应力不小于实际应用时所需驱动电场强度在步骤3得到的压应力-退极化场强曲线中所对应的压应力。
进一步限定,所述三方相弛豫铁电单晶为二元固溶体、三元固溶体或更高元固溶体的弛豫基铁电或压电单晶的切片。
进一步限定,所述三方相弛豫铁电单晶具体为Pb(Zn1/3Nb2/3)O3、Pb(Mg1/3Nb2/3)O3、Pb(In1/2Nb1/2)O3、Pb(Sc1/2Nb1/2)O3、Pb(Fe1/2Nb1/2)O3、Pb(Yb1/2Nb1/2)O3、Pb(Lu1/2Nb1/2)O3、Pb(Mn1/2Nb1/2)O3、PbZrO3和PbTiO3,以及由上述物质改性和/或掺杂衍生物中的一种或多种。
进一步限定,步骤1中所述三方相弛豫铁电单晶为[0-11]1×[100]2×[011]3切割的[011]3极化单晶,其中[011]3是纵向方向,[0-11]1和[100]2是两个横向方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶的压应力施加方向为[100]2方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶为[100]1×[010]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[100]1和[010]2是两个横向方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶的压应力施加方向为[100]1或[010]2方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶为[110]1×[1-10]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[110]1和[1-10]2是两个横向方向。
进一步限定,步骤1中所述三方相弛豫铁电单晶的压应力施加方向为[110]1或[1-10]2方向。
进一步限定,步骤2中所述压应力通过质量块施加,或者通过弹簧与预应力螺栓施加,或者通过预应力筋或张拉膜施加。
进一步限定,步骤2中所述测量不同电场场强下的单晶应变的方法为接触式方法或非接触式方法,其中接触式方法为采用应变仪、千分表、或线性可变差动变压器,非接触式方法为采用激光测振仪。
本发明与现有技术相比具有的显著效果:
1)本发明通过调整施加在弛豫铁电单晶上的压应力,实现对其退极化现象的调控和抑制,增大退极化场强,克服弛豫铁电单晶矫顽场和退极化场强较低的限制,实现换能器最大声源级和输出功率的有效提高。
2)本发明的方法无需使用复杂的直流偏置装置或额外电子元件,不增加整体系统的复杂度,操作简单,易于实现,能够提高三方相弛豫铁电单晶所能承受的驱动电场强度,有效提高换能器最大声源级和输出功率。
附图说明
图1为实验装置示意图;其中101-为实验装置上压板,102-晶体夹具,103弛豫铁电单晶,104-晶体夹具,105-实验装置底板,106-应变片,107-连接晶体正极的导线,108-连接晶体负极的导线;
图2为本发明的三方相弛豫铁电单晶的相结构、极化方向、畴结构示意图;
图3为[001]3方向的压应力与[001]3方向的负向电场对[001]3极化的三方相弛豫铁电单晶的影响示意图;其中301-负向电场导致退极化,302-无电场无应力作用,303-压应力与负向电场共同作用导致退极化;
图4为[100]2方向的压应力与[011]3方向的负向电场对[011]3极化的三方相弛豫铁电单晶的影响示意图;其中401-负向电场导致退极化,402-无电场无应力作用,403-压应力抑制退极化;
图5为[010]2方向的压应力与[001]3方向的负向电场对[001]3极化的三方相弛豫铁电单晶的影响示意图;其中501-负向电场导致退极化,502-无电场无应力作用,503-压应力抑制退极化;
图6为[011]3极化的PZN-5.5%PT三方相弛豫铁电单晶的电场-应变曲线图;
图7为[011]3极化的PZN-5.5%PT三方相弛豫铁电单晶的压应力-退极化场强曲线图。
具体实施方式
为了更好的说明发明的目的和优点,下面结合附图对本发明做出详细解释。
图1显示了对弛豫铁电单晶施加压应力的实验装置图。实验装置由上压板、底板,以及晶体夹具组成。通过在上压板上均匀施加压应力,测试弛豫铁电单晶的应变得到弛豫铁电单晶在该压应力下的退极化场强。
图2为三方相弛豫铁电单晶相结构、极化方向、畴结构示意图。弛豫铁电单晶晶格的对称性是由其相结构所决定,与极化无关。然而,由于沿不同方向极化,弛豫铁电单晶所形成的电畴结构不同,因此其宏观对称性与晶体极化方向密切相关。对于三种典型相结构的弛豫铁电单晶,其宏观对称性主要由极化方向来决定,如图1所示。沿自发极化方向极化晶体的宏观对称性与微观对称性相同,其宏观物理性能可反映晶体单畴的性能。沿非极轴方向极化,晶体为多畴状态,此时宏观对称性由极化方向决定。
实施例1:本实施例的一种PZN-5.5%PT三方相弛豫铁电单晶退极化抑制方法按以下步骤进行:
步骤1:根据三方相PZN-5.5%PT弛豫铁电单晶畴结构和各向异性特征选择切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向能够在压应力的作用下向极化方向旋转,从而确定极化方向和压应力施加方向(如图3-5所示);
步骤2:按照步骤1确定的压应力施加方向,向所选三方相弛豫铁电单晶施加一定大小的压应力,然后根据步骤1确定的极化方向,使用直流电源向所选三方相弛豫铁电单晶施加与该极化方向相反的负向电场,测量不同电场强度下的单晶应变,绘制电场-应变曲线,从而得到该压应力作用下的退极化场强;所述压应力通过质量块施加;所述测量不同电场场强下的单晶应变的方法为采用应变仪;
步骤3:重复步骤2若干次,以得到不同压应力作用下的退极化场强,每次重复步骤2的操作前需要使退极化后的三方相弛豫铁电单晶重新极化,然后再重复步骤2的操作,最终得到(对应于图4)三方相弛豫铁电单晶的压应力-退极化场强曲线(如图6-7所示);
步骤4:根据步骤1确定的压应力施加方向和步骤3得到的压应力-退极化场强曲线确定实际应用时抑制三方相弛豫铁电单晶退极化所需的压应力方向和大小,所述压应力不小于实际应用时所需驱动电场强度在步骤3得到的压应力-退极化场强曲线中所对应的压应力。
沿[001]3方向极化的三方相弛豫铁电单晶具备最佳的纵向压电性能,包括[100]1×[010]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,并且[100]1和[010]2是两个侧向或横向方向。但是过大的压应力和负向电场会导致三方至斜方的相变,如图3所示,因此需要适当的直流偏置来增强晶体在大电场、大应力作用下的稳定性。
[011]3极化的弛豫铁电单晶在[100]2方向上具备优异的横向压电性能,沿[100]2方向施加压应力能够促使晶体自发极化方向向极化方向旋转。负向电场需要首先克服该压应力的作用,才能导致退极化,如图4所示。因此可以通过向[100]2方向施加压应力提高[011]3极化的弛豫铁电单晶退极化场强,克服弛豫铁电单晶矫顽场和退极化场强较低的问题,实现换能器最大声源级和输出功率的有效提高。
如图5所示,对于沿[001]3方向的弛豫铁电单晶,沿[010]2方向施加的压应力能够促使晶体的自发极化方向向[001]3极化方向旋转并且在[001]3方向产生负应变。因此,可以通过向[010]2或与之等效的[100]1方向施加压应力,来提高[001]3极化的弛豫铁电单晶的退极化场强,实现增大换能器最大声源级和输出功率的有效提高。
Claims (2)
1.一种三方相弛豫铁电单晶退极化抑制方法,其特征在于,该方法按以下步骤进行:
步骤1:根据三方相弛豫铁电单晶畴结构和各向异性特征选择切型、极化方向和压应力施加方向,以确保所选三方相弛豫铁电单晶的自发极化方向能够在压应力的作用下向极化方向旋转,从而确定极化方向和压应力施加方向;
所述三方相弛豫铁电单晶为Pb(Zn1/3Nb2/3)O3、Pb(Mg1/3Nb2/3)O3、Pb(In1/2Nb1/2)O3、Pb(Sc1/2Nb1/2)O3、Pb(Fe1/2Nb1/2)O3、Pb(Yb1/2Nb1/2)O3、Pb(Lu1/2Nb1/2)O3、Pb(Mn1/2Nb1/2)O3、PbZrO3和PbTiO3,以及由上述物质改性和/或掺杂衍生物中的一种或多种;
所述三方相弛豫铁电单晶为[0-11]1×[100]2×[011]3切割的[011]3极化单晶,其中[011]3是纵向方向,[0-11]1和[100]2是两个横向方向,压应力施加方向为[100]2方向;
所述三方相弛豫铁电单晶为[100]1×[010]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[100]1和[010]2是两个横向方向,压应力施加方向为[100]1或[010]2方向;
所述三方相弛豫铁电单晶为[110]1×[1-10]2×[001]3切割的[001]3极化单晶,其中[001]3是纵向方向,[110]1和[1-10]2是两个横向方向,压应力施加方向为[110]1或[1-10]2方向;
步骤2:按照步骤1确定的压应力施加方向,向所选三方相弛豫铁电单晶施加一定大小的压应力,然后根据步骤1确定的极化方向,使用直流电源向所选三方相弛豫铁电单晶施加与该极化方向相反的负向电场,测量不同电场强度下的单晶应变,绘制电场-应变曲线,从而得到该压应力作用下的退极化场强;
步骤3:重复步骤2若干次,以得到不同压应力作用下的退极化场强,每次重复步骤2的操作前需要使退极化后的三方相弛豫铁电单晶重新极化,然后再重复步骤2的操作,最终得到三方相弛豫铁电单晶的压应力-退极化场强曲线;
步骤4:根据步骤1确定的压应力施加方向和步骤3得到的压应力-退极化场强曲线确定实际应用时抑制三方相弛豫铁电单晶退极化所需的压应力方向和大小,所述压应力不小于实际应用时所需驱动电场强度在步骤3得到的压应力-退极化场强曲线中所对应的压应力。
2.根据权利要求1所述的一种三方相弛豫铁电单晶退极化抑制方法,其特征在于,步骤2中所述压应力通过质量块施加,或者通过弹簧与预应力螺栓施加,或者通过预应力筋或张拉膜施加,步骤2中所述测量不同电场场强下的单晶应变的方法为接触式方法或非接触式方法,其中接触式方法为采用应变仪、千分表、或线性可变差动变压器,非接触式方法为采用激光测振仪。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111199232.0A CN114000193B (zh) | 2021-10-14 | 2021-10-14 | 一种三方相弛豫铁电单晶退极化抑制方法 |
US17/955,864 US11678580B2 (en) | 2021-10-14 | 2022-09-29 | Method for depolarization suppression of rhombohedral relaxor-based ferroelectric single crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111199232.0A CN114000193B (zh) | 2021-10-14 | 2021-10-14 | 一种三方相弛豫铁电单晶退极化抑制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114000193A CN114000193A (zh) | 2022-02-01 |
CN114000193B true CN114000193B (zh) | 2022-08-02 |
Family
ID=79922900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111199232.0A Active CN114000193B (zh) | 2021-10-14 | 2021-10-14 | 一种三方相弛豫铁电单晶退极化抑制方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11678580B2 (zh) |
CN (1) | CN114000193B (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1243993A (en) * | 1967-08-02 | 1971-08-25 | Hitachi Ltd | A mechano-electrical coupling device |
US5166943A (en) * | 1991-06-14 | 1992-11-24 | Amoco Corporation | Single domain stabilization in ferroelectric crystals |
US7518292B2 (en) * | 2003-10-14 | 2009-04-14 | Jfe Mineral Company, Ltd. | Piezoelectric single crystal and piezoelectric single-crystal device and method for manufacturing the same |
US8241519B2 (en) * | 2009-03-17 | 2012-08-14 | Trs Technologies, Inc. | Relaxor-PT ferroelectric single crystals |
CN107326443B (zh) * | 2017-06-05 | 2019-10-11 | 西安交通大学 | 一种非线性光学材料弛豫铁电单晶单畴化的方法 |
-
2021
- 2021-10-14 CN CN202111199232.0A patent/CN114000193B/zh active Active
-
2022
- 2022-09-29 US US17/955,864 patent/US11678580B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20230117560A1 (en) | 2023-04-20 |
US11678580B2 (en) | 2023-06-13 |
CN114000193A (zh) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | Properties of PMN-PT single crystal piezoelectric material and its application in underwater acoustic transducer | |
US6643222B2 (en) | Wave flextensional shell configuration | |
Viehland et al. | Electromechanical coupling coefficient of< 001>-oriented Pb (Mg1/3Nb2/3) O3–PbTiO3 cystals: Stress and temperature independence | |
CN103646642B (zh) | 多液腔低频宽带水声换能器 | |
CN101909230A (zh) | 金属与压电陶瓷和聚合物复合材料宽带水声换能器 | |
CN102169685A (zh) | 一种低频宽带小尺寸深水水声换能器 | |
CN105702243B (zh) | 一种双壳串联iv型弯张换能器 | |
JP6265573B2 (ja) | 超広帯域音および超音波トランスデューサ | |
Wang et al. | Large-area piezoelectric single crystal composites via 3-D-printing-assisted dice-and-insert technology for hydrophone applications | |
CN114000193B (zh) | 一种三方相弛豫铁电单晶退极化抑制方法 | |
US20090115290A1 (en) | Ultrawideband Ultrasonic Transducer | |
Tressler et al. | A comparison of the underwater acoustic performance of single crystal versus piezoelectric ceramic-based “cymbal” projectors | |
Nishi | Effects of One‐Dimensional Pressure on the Properties of Several Transducer Ceramics | |
CN202042175U (zh) | 一种低频宽带小尺寸深水水声换能器 | |
US20200128333A1 (en) | Diagonal resonance sound and ultrasonic transducer | |
CN101047225A (zh) | 磁电耦合器件 | |
Cheng et al. | Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer | |
Viehland et al. | Enhancement of electromechanical coupling coefficient and acoustic power density in conventional “hard” Pb (Zr1− xTix) O3 ceramics by application of uniaxial stress | |
CN103414987A (zh) | Pvdf/压电陶瓷收发换能器 | |
Brosnan et al. | Comparison of the properties of tonpilz transducers fabricated with⟨ 001⟩ fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals | |
Shankar | High power evaluation of textured piezoelectric ceramics for SONAR projectors | |
CN116322266A (zh) | 一种2-2型压电复合材料的交流极化设备及方法 | |
Chen et al. | Investigation On A Novel Relaxation Ferroelectric Single Crystal Transducer Based On Free Face Shear Mode | |
Kwok et al. | Multifrequency transducers fabricated using PZT/P (VDF-TrFE) 1-3 composite | |
Lindberg | Material challenges for transducer designers in the 21st century |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |