CN113991651A - 一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法 - Google Patents
一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法 Download PDFInfo
- Publication number
- CN113991651A CN113991651A CN202111253631.0A CN202111253631A CN113991651A CN 113991651 A CN113991651 A CN 113991651A CN 202111253631 A CN202111253631 A CN 202111253631A CN 113991651 A CN113991651 A CN 113991651A
- Authority
- CN
- China
- Prior art keywords
- power
- new energy
- stability margin
- prediction
- voltage stability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003068 static effect Effects 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000012614 Monte-Carlo sampling Methods 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims description 39
- 238000013528 artificial neural network Methods 0.000 claims description 18
- 238000005070 sampling Methods 0.000 claims description 16
- 230000001186 cumulative effect Effects 0.000 claims description 15
- 238000005315 distribution function Methods 0.000 claims description 14
- 238000012549 training Methods 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000008707 rearrangement Effects 0.000 claims description 3
- 238000013135 deep learning Methods 0.000 abstract description 3
- 238000010248 power generation Methods 0.000 abstract description 2
- 238000013136 deep learning model Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Power Engineering (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,具体包括:构建以风电、光伏为代表的新能源的功率预测误差模型;构建基于预测误差模型和蒙特卡洛抽样的风电、光伏静态场景生成模型;构建基于深度学习的单场景静态电压稳定裕度预测方法;采用核密度估计法生成考虑新能源不确定性的电网静态电压稳定裕度概率预测结果。本发明有如下优点:一方面,所提基于新能源预测误差的场景生成模型考虑新能源发电的随机性,所得静态电压稳定裕度概率分布能够为调度人员提供更多的参考信息;另一方面,采用深度学习模型对每一场景的静态电压稳定裕度进行预测,同时保证了概率预测的精度与效率,适用于在线应用。
Description
技术领域
本发明涉及电力系统安全稳定分析研究领域,尤其是涉及一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法。
背景技术
近年来,世界范围内相继发生多起大停电事故,电网安全再度成为各方关注的焦点。对于数量不断增长的停电事故,有自然灾害、意外事故等直接原因,也有频率失稳、电压失稳等深层次原因,相关研究表明,相比于电力系统同步运行稳定和功角稳定,电压稳定呈现出更强的突发性和隐蔽性,由于电压失稳而导致的停电事故占有较大比重。其中,随着电力系统的发展,电网中长线路、重负荷及无功储备不足的现象愈发凸显,系统的静态电压稳定裕度越来越小,而且新能源发电功率的随机性导致静态电压稳定裕度呈现更强的不确定性,这导致由静态电压稳定失稳导致停电事故的可能性增加。因此,对含大量新能源的电力系统的静态电压稳定裕度进行预测对于电网的安全稳定运行具有重大意义。
现有静态电压稳定裕度概率分析研究主要有解析法、近似法和蒙特卡洛模拟法。以半不变量法为代表的解析法需要将输入输出关系进行线性化处理,当功率波动较大时该方法具有较大的误差。而现有点估计法和蒙特卡洛模拟法均要进行多次连续潮流计算,难以满足在线预测的要求。
发明内容
本发明旨在克服上述静态电压稳定裕度概率预测存在的缺陷,提供了一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法。为实现上述目标,本发明采用以下的技术方案:
基于构建的以风电、光伏为代表的新能源的功率预测误差模型,以及基于功率预测误差模型和蒙特卡洛抽样构建的风电、光伏静态场景生成模型,预测方法具体是构建深度神经网络并进行离线训练,基于训练好的深度神经网络在线预测电网静态电压稳定裕度,包括:
步骤1:随机生成大量初始运行状态,采用连续潮流法计算每一种运行状态的静态电压稳定裕度Kp,并建立样本数据库(X,Kp),基于样本数据库对深度神经网络进行离线训练,其中,连续潮流方程如下:
其中,PG表示发电机有功功率;PG0表示发电机初始有功功率;PGd表示发电机有功功率增长方向;PL、QL表示负荷有功、无功功率;PL0、QL0表示负荷初始有功、无功功率;PLd、QLd表示负荷有功、无功功率增长方向,训练结束的条件为损失函数最小;最后训练好的模型为一黑箱;
步骤2:在线预测时,基于网络拓扑结构及源荷预测数据对网络进行潮流计算,获取节点电压幅值V、相角θ作为在线输入X,利用训练好的深度神经网络预测电网静态电压稳定裕度Kp。
在上述的一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,构建以风电、光伏为代表的新能源的功率预测误差模型,具体包括:基于风电、光伏的历史预测功率和实际功率数据,采用分布模型拟合预测误差的统计分布结果,得到能够白表征新能源功率预测误差分布的概率密度函数(PDF)和累计累积分布函数(CDF)。
在上述的一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,风电、光伏的预测误差均有尖峰厚尾的分布特征,因而采用广义误差分布对其进行分布拟合,该模型具体如下:
广义误差分布的概率密度函数为:
广义误差分布的累积分布函数为:
其中,Δp表示风电、光伏功率预测误差的标幺值;α、β为形状拟合参数;μ为位置拟合参数。
在上述的一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,构建基于预测误差模型和蒙特卡洛抽样的风电、光伏静态场景生成模型,具体包括:采用拉丁超立方抽样法对预测误差累积分布函数进行均匀蒙特卡洛抽样,采用Cholesky分解对各新能源场站场景进行重新排列,具体步骤为:
步骤1:预测误差累积分布函数抽样
Yn=Fn(Δpn),(n=1,2...,N)
对每一随机变量Δpn进行M等分抽样,则可以产生一个N×M的矩阵ΔP:
步骤2:采用Cholesky分解进行重新排列
步骤2.1:随机生成一个N×M的矩阵L,矩阵L的第n个行向量由1,2,…,M随机排列产生,代表ΔP矩阵中的第n个行向量应该排列的位置;
步骤2.2:计算矩阵L各行之间的相关系数ρL;ρL是正定对称正定矩阵,将该矩阵通过Cholesky分解成非奇异下三角矩阵D:
ρL=DDT
步骤2.3:按照如下公式计算N×M矩阵G:
G=D-1L
步骤2.4:矩阵L中每一行的元素根据矩阵G中相应行的元素大小的排列顺序代替;
步骤2.5:矩阵ΔP中的每一行元素按照更新后的矩阵L的相应行的元素排列重新换位;
则实际风电、光伏出力场景为:
其中,PWind,i、PPV,i分别为第i个风电场、光伏电站的有功功率出力场景;PWind_f,i、PPV_f,i分别为该时刻风电场、光伏电站的有功功率预测值;ΔPWind,i、ΔPPV,i分别为第i个风电场、光伏电站的有功功率预测误差抽样值。
在上述的一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,还包括采用核密度估计法生成考虑新能源不确定性的电网静态电压稳定裕度概率预测结果,具体是,基于多场景静态电压稳定裕度确定性预测结果,采用核密度估计法对裕度概率分布进行平滑拟合,核密度估计峰值函数如下:
式中,h为带宽;xi为要拟合的稳定裕度样本点;K(·)为核函数,Xi为预测得到的结果Kp,用以估计Xi的分布概率并对分布概率进行平滑拟合。
本发明具有如下技术效果:本发明提供了一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,采用广义误差分布实现对风电、光伏功率预测误差分布的建模,并基于拉丁超立方抽样对新能源预测误差进行抽样,基于抽样结果生成风电、光伏有功出力场景,进一步采用深度神经网络构建网络输入与静态电压稳定裕度的映射关系,实现静态电压稳定裕度的在线预测,最后利用核密度估计得到系统静态电压稳定裕度概率预测结果。
附图说明
图1为本发明方法流程图。
图2为本发明实施例提供的一种风电功率预测误差拟合效果图。
图3为本发明实施例提供的一种光伏功率预测误差拟合效果图。
图4为本发明实施例提供的一种基于拉丁超立方法的抽样示意图。
图5为本发明实施例提供的一种深度神经网络拓扑结构图。
图6为本发明实施例提供的一种静态电压稳定裕度概率分布图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,具体包含:
构建以风电、光伏为代表的新能源的功率预测误差模型;
构建基于预测误差模型和蒙特卡洛抽样的风电、光伏静态场景生成模型;
构建基于深度学习的单场景静态电压稳定裕度预测方法;
采用核密度估计法生成考虑新能源不确定性的电网静态电压稳定裕度概率预测结果。
作为优选,所述构建以风电、光伏为代表的新能源的功率预测误差模型,具体包括基于风电、光伏的历史预测功率和实际功率数据,采用合适的分布模型拟合预测误差的统计分布结果,得到能够白表征新能源功率预测误差分布的概率密度函数(PDF)和累计累积分布函数(CDF)。
特别地,所述的以风电、光伏为代表的新能源功率预测误差模型考虑到风电、光伏的预测误差均有尖峰厚尾的分布特征,因而采用广义误差分布对其进行分布拟合,该模型具体如下:
广义误差分布的概率密度函数为:
广义误差分布的累积分布函数为:
其中,Δp表示风电、光伏功率预测误差的标幺值;α、β为形状拟合参数;μ为位置拟合参数。
特别地,风电功率预测误差拟合效果如图2所示,光伏功率预测误差拟合效果拟合效果如图3所示。
作为优选,所述构建基于预测误差模型和蒙特卡洛抽样的风电、光伏静态场景生成模型,具体包括:采用拉丁超立方抽样法对预测误差累积分布函数进行均匀蒙特卡洛抽样,采用Cholesky分解对各新能源场站场景进行重新排列,具体步骤为:
步骤1:预测误差累积分布函数抽样
Yn=Fn(Δpn),(n=1,2...,N)
对每一随机变量Δpn进行M等分抽样,则可以产生一个N×M的矩阵ΔP:
步骤2:采用Cholesky分解进行重新排列
步骤2.1:随机生成一个N×M的矩阵L,矩阵L的第n个行向量由1,2,…,M随机排列产生,代表ΔP矩阵中的第n个行向量应该排列的位置。
步骤2.2:计算矩阵L各行之间的相关系数ρL。ρL是正定对称正定矩阵,将该矩阵通过Cholesky分解成非奇异下三角矩阵D:
ρL=DDT
步骤2.3:按照如下公式计算N×M矩阵G:
G=D-1L
步骤2.4:矩阵L中每一行的元素根据矩阵G中相应行的元素大小的排列顺序代替。
步骤2.5:矩阵ΔP中的每一行元素按照更新后的矩阵L的相应行的元素排列重新换位。
则实际风电、光伏出力场景为:
其中,PWind,i、PPV,i分别为第i个风电场、光伏电站的有功功率出力场景;PWind_f,i、PPV_f,i分别为该时刻风电场、光伏电站的有功功率预测值;ΔPWind,i、ΔPPV,i分别为第i个风电场、光伏电站的有功功率预测误差抽样值。
特别地,所述采用拉丁超立方抽样法对预测误差累积分布函数进行均匀蒙特卡洛抽样,抽样函数如下所示,具体操作如图4所示。
Δp=F-1(Y)
其中,Δp表示风电、光伏功率预测误差的标幺值;F-1(·)表示新能源误差分布累积分布函数的反函数;Y表示累积分布概率值,值域为[0,1]。
作为优选,所述构建基于深度学习的单场景静态电压稳定裕度预测方法,具体包括构建深度神经网络并进行离线训练,基于训练好的深度神经网络在线预测电网静态电压稳定裕度。
特别地,所述构建深度神经网络并进行离线训练,具体包括搭建多隐藏层神经网络,本发明实施例网络结构如图5所示,进而随机生成大量初始运行状态,采用连续潮流法计算每一种运行状态的静态电压稳定裕度Kp,并建立样本数据库(X,Kp),基于样本数据库对深度神经网络进行离线训练。
其中,连续潮流方程如下:
其中,PG表示发电机有功功率;PG0表示发电机初始有功功率;PGd表示发电机有功功率增长方向;PL、QL表示负荷有功、无功功率;PL0、QL0表示负荷初始有功、无功功率;PLd、QLd表示负荷有功、无功功率增长方向。
特别地,所述基于训练好的深度神经网络在线预测电网静态电压稳定裕度,具体包括基于网络拓扑结构及源荷预测数据对网络进行潮流计算,获取节点电压幅值V、相角θ作为在线输入X,利用训练好的深度神经网络预测电网静态电压稳定裕度Kp。
作为优选,如图6所示,所述采用核密度估计法生成考虑新能源不确定性的电网静态电压稳定裕度概率预测结果,具体包括基于多场景静态电压稳定裕度确定性预测结果,采用核密度估计法对裕度概率分布进行平滑拟合,核密度估计峰值函数如下:
式中,h为带宽;xi为要拟合的稳定裕度样本点;K(·)为核函数。
以上所描述地一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,其有益效果是:采用广义误差分布实现对风电、光伏功率预测误差分布的建模,并基于拉丁超立方抽样对新能源预测误差进行抽样,基于抽样结果生成风电、光伏有功出力场景,进一步采用深度神经网络构建网络输入与静态电压稳定裕度的映射关系,实现静态电压稳定裕度的在线预测,最后利用核密度估计得到系统静态电压稳定裕度概率预测结果,可以为静态电压稳定预防控制措施的制定实施提供重要参考。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。
Claims (5)
1.一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,其特征在于,基于构建的以风电、光伏为代表的新能源的功率预测误差模型,以及基于功率预测误差模型和蒙特卡洛抽样构建的风电、光伏静态场景生成模型,预测方法具体是构建深度神经网络并进行离线训练,基于训练好的深度神经网络在线预测电网静态电压稳定裕度,包括:
步骤1:随机生成大量初始运行状态,采用连续潮流法计算每一种运行状态的静态电压稳定裕度Kp,并建立样本数据库(X,Kp),基于样本数据库对深度神经网络进行离线训练,其中,连续潮流方程如下:
其中,PG表示发电机有功功率;PG0表示发电机初始有功功率;PGd表示发电机有功功率增长方向;PL、QL表示负荷有功、无功功率;PL0、QL0表示负荷初始有功、无功功率;PLd、QLd表示负荷有功、无功功率增长方向,训练结束的条件为损失函数最小;最后训练好的模型为一黑箱;
步骤2:在线预测时,基于网络拓扑结构及源荷预测数据对网络进行潮流计算,获取节点电压幅值V、相角θ作为在线输入X,利用训练好的深度神经网络预测电网静态电压稳定裕度Kp。
2.根据权利要求1所述的一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,其特征在于,构建以风电、光伏为代表的新能源的功率预测误差模型,具体包括:基于风电、光伏的历史预测功率和实际功率数据,采用分布模型拟合预测误差的统计分布结果,得到能够白表征新能源功率预测误差分布的概率密度函数(PDF)和累计累积分布函数(CDF)。
4.根据权利要求1所述的一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法,其特征在于,构建基于预测误差模型和蒙特卡洛抽样的风电、光伏静态场景生成模型,具体包括:采用拉丁超立方抽样法对预测误差累积分布函数进行均匀蒙特卡洛抽样,采用Cholesky分解对各新能源场站场景进行重新排列,具体步骤为:
步骤1:预测误差累积分布函数抽样
Yn=Fn(Δpn),(n=1,2...,N)
对每一随机变量Δpn进行M等分抽样,则可以产生一个N×M的矩阵ΔP:
步骤2:采用Cholesky分解进行重新排列
步骤2.1:随机生成一个N×M的矩阵L,矩阵L的第n个行向量由1,2,…,M随机排列产生,代表ΔP矩阵中的第n个行向量应该排列的位置;
步骤2.2:计算矩阵L各行之间的相关系数ρL;ρL是正定对称正定矩阵,将该矩阵通过Cholesky分解成非奇异下三角矩阵D:
ρL=DDT
步骤2.3:按照如下公式计算N×M矩阵G:
G=D-1L
步骤2.4:矩阵L中每一行的元素根据矩阵G中相应行的元素大小的排列顺序代替;
步骤2.5:矩阵ΔP中的每一行元素按照更新后的矩阵L的相应行的元素排列重新换位;
则实际风电、光伏出力场景为:
其中,PWind,i、PPV,i分别为第i个风电场、光伏电站的有功功率出力场景;PWind_f,i、PPV_f,i分别为该时刻风电场、光伏电站的有功功率预测值;ΔPWind,i、ΔPPV,i分别为第i个风电场、光伏电站的有功功率预测误差抽样值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111253631.0A CN113991651A (zh) | 2021-10-27 | 2021-10-27 | 一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111253631.0A CN113991651A (zh) | 2021-10-27 | 2021-10-27 | 一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113991651A true CN113991651A (zh) | 2022-01-28 |
Family
ID=79742339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111253631.0A Pending CN113991651A (zh) | 2021-10-27 | 2021-10-27 | 一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113991651A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114723128A (zh) * | 2022-04-01 | 2022-07-08 | 国网江苏省电力有限公司宿迁供电分公司 | 一种基于卷积神经网络的静态电压稳定裕度在线预测方法 |
CN114757548A (zh) * | 2022-04-22 | 2022-07-15 | 国网福建省电力有限公司电力科学研究院 | 一种采用场景构建的风电储能设备调节性能评估方法 |
CN116167527A (zh) * | 2023-04-21 | 2023-05-26 | 南方电网数字电网研究院有限公司 | 纯数据驱动的电力系统静态安全运行风险在线评估方法 |
CN117277422A (zh) * | 2023-11-21 | 2023-12-22 | 山东大学 | 一种直驱风电场稳定评估方法、系统、终端及介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105160459A (zh) * | 2015-08-15 | 2015-12-16 | 国家电网公司 | 一种电力系统的稳定运行状况评估方法 |
CN106921161A (zh) * | 2017-04-14 | 2017-07-04 | 太原理工大学 | 电力系统薄弱点识别方法及薄弱点电压分布特性分析方法 |
-
2021
- 2021-10-27 CN CN202111253631.0A patent/CN113991651A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105160459A (zh) * | 2015-08-15 | 2015-12-16 | 国家电网公司 | 一种电力系统的稳定运行状况评估方法 |
CN106921161A (zh) * | 2017-04-14 | 2017-07-04 | 太原理工大学 | 电力系统薄弱点识别方法及薄弱点电压分布特性分析方法 |
Non-Patent Citations (3)
Title |
---|
MENGNAN GAO, ET AL.: "Static Voltage Stability Assessment Considering Harmonic Effects", 2019 IEEE 3RD CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION, 9 April 2020 (2020-04-09), pages 1183 - 1187 * |
卢锦玲 等: "计及风光出力相关性的静态电压稳定概率分析", 华北电力大学学报(自然科学版), vol. 43, no. 1, 30 January 2016 (2016-01-30), pages 62 - 68 * |
李鸿鑫 等: "计及发电功率相关性的静态电压稳定概率评估方法", 广东电力, vol. 28, no. 10, 31 October 2015 (2015-10-31), pages 28 - 33 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114723128A (zh) * | 2022-04-01 | 2022-07-08 | 国网江苏省电力有限公司宿迁供电分公司 | 一种基于卷积神经网络的静态电压稳定裕度在线预测方法 |
CN114757548A (zh) * | 2022-04-22 | 2022-07-15 | 国网福建省电力有限公司电力科学研究院 | 一种采用场景构建的风电储能设备调节性能评估方法 |
CN116167527A (zh) * | 2023-04-21 | 2023-05-26 | 南方电网数字电网研究院有限公司 | 纯数据驱动的电力系统静态安全运行风险在线评估方法 |
CN116167527B (zh) * | 2023-04-21 | 2023-09-12 | 南方电网数字电网研究院有限公司 | 纯数据驱动的电力系统静态安全运行风险在线评估方法 |
CN117277422A (zh) * | 2023-11-21 | 2023-12-22 | 山东大学 | 一种直驱风电场稳定评估方法、系统、终端及介质 |
CN117277422B (zh) * | 2023-11-21 | 2024-03-15 | 山东大学 | 一种直驱风电场稳定评估方法、系统、终端及介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Behera et al. | Solar photovoltaic power forecasting using optimized modified extreme learning machine technique | |
Xie et al. | Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function | |
CN113991651A (zh) | 一种考虑新能源不确定性的电网静态电压稳定裕度概率预测方法 | |
Bahmani-Firouzi et al. | An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties | |
Li et al. | Short-term wind power prediction based on extreme learning machine with error correction | |
Ran et al. | Three‐phase probabilistic load flow for power system with correlated wind, photovoltaic and load | |
Williams et al. | Probabilistic load flow modeling comparing maximum entropy and Gram-Charlier probability density function reconstructions | |
Chen et al. | Effective load carrying capability evaluation of renewable energy via stochastic long-term hourly based SCUC | |
CN105656031B (zh) | 基于高斯混合分布特征的含风电电力系统安全风险评估方法 | |
CN105281372B (zh) | 面向分布式能源的多目标多主体分布式博弈优化方法 | |
Qiu et al. | A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production | |
CN111900713A (zh) | 网源协调下考虑负荷和风电随机性多场景输电网规划方法 | |
Su et al. | Reliability assessment for wind turbines considering the influence of wind speed using Bayesian network | |
CN105656084A (zh) | 一种计及新能源发电预测误差的改进随机潮流算法 | |
Yang et al. | Monitoring data factorization of high renewable energy penetrated grids for probabilistic static voltage stability assessment | |
Wang | Risk assessment of stochastic spinning reserve of a wind‐integrated multi‐state generating system based on a cross‐entropy method | |
CN111797132B (zh) | 考虑时空相关性的多可再生能源电站功率场景生成方法 | |
Abdalla et al. | Generation expansion planning under correlated uncertainty of mass penetration renewable energy sources | |
Zhang et al. | Short‐Term Power Prediction of Wind Power Generation System Based on Logistic Chaos Atom Search Optimization BP Neural Network | |
Ge et al. | Flexibility evaluation of active distribution networks considering probabilistic characteristics of uncertain variables | |
Qin et al. | SR‐based chance‐constrained economic dispatch for power systems with wind power | |
Duan et al. | Security risk assessment using fast probabilistic power flow considering static power-frequency characteristics of power systems | |
Cai et al. | Capacity value evaluation of wind farms considering the correlation between wind power output and load | |
Amarasinghe et al. | Capacity credit evaluation of wind and solar power generation using non-sequential Monte Carlo Simulation | |
Dong et al. | Chance-constrained optimal dispatch of integrated energy systems based on data-driven sparse polynomial chaos expansion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |