CN113986906B - A Trajectory Reconstruction Method Based on Situational Targets - Google Patents
A Trajectory Reconstruction Method Based on Situational Targets Download PDFInfo
- Publication number
- CN113986906B CN113986906B CN202111422153.1A CN202111422153A CN113986906B CN 113986906 B CN113986906 B CN 113986906B CN 202111422153 A CN202111422153 A CN 202111422153A CN 113986906 B CN113986906 B CN 113986906B
- Authority
- CN
- China
- Prior art keywords
- data
- trajectory
- precision
- point
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 96
- 238000005070 sampling Methods 0.000 claims abstract description 76
- 238000012952 Resampling Methods 0.000 claims abstract description 19
- 238000004140 cleaning Methods 0.000 claims abstract description 14
- 238000012937 correction Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 238000004364 calculation method Methods 0.000 claims description 24
- 238000013075 data extraction Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 239000003607 modifier Substances 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 8
- 238000009827 uniform distribution Methods 0.000 abstract description 2
- 238000007781 pre-processing Methods 0.000 abstract 1
- 230000003542 behavioural effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/21—Design, administration or maintenance of databases
- G06F16/215—Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/254—Extract, transform and load [ETL] procedures, e.g. ETL data flows in data warehouses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/258—Data format conversion from or to a database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Remote Sensing (AREA)
- Complex Calculations (AREA)
Abstract
本发明公开了一种基于态势目标的轨迹重构方法,目的是解决现有方法无法处理存在轨迹数据点分布不均的目标轨迹数据的问题。技术方案是:对态势目标轨迹原始数据进行预处理,即对不同手段来源的目标轨迹数据点进行清洗、格式转换以及同一时段数据提取;然后设定采样频率对原始轨迹数据进行给定采样率的轨迹重构,得到采样率f下的重采样数据集;最后基于等时间间隔对重采样数据集进行轨迹数据速度矢量修正,得到轨迹重构数据集。采用本发明可以获得自定义采样率下的轨迹数据点分布均匀的轨迹重构数据集,降低目标轨迹原始数据密集处的噪声,降低目标轨迹数据稀疏处的拟合误差,使目标轨迹数据在三位数字地球上轨迹线清晰,并确保速度矢量精度高。
The invention discloses a trajectory reconstruction method based on a situational target, and aims to solve the problem that the existing method cannot handle target trajectory data with uneven distribution of trajectory data points. The technical scheme is: preprocessing the original data of the situational target trajectory, that is, cleaning, converting the format and extracting the data in the same period of the target trajectory data points from different means; then setting the sampling frequency to perform a given sampling rate on the original trajectory data. Trajectory reconstruction is performed to obtain a resampling data set at the sampling rate f; finally, the trajectory data velocity vector correction is performed on the resampling data set based on equal time intervals to obtain a trajectory reconstruction data set. By adopting the invention, a trajectory reconstruction data set with uniform distribution of trajectory data points under a custom sampling rate can be obtained, the noise of the original data of the target trajectory is reduced, the fitting error of the sparse target trajectory data can be reduced, and the target trajectory data can be divided into three parts. The trajectory lines on the digital earth are clear and ensure high accuracy of the velocity vector.
Description
技术领域technical field
本发明涉及地理信息态势领域,特别是对目标轨迹数据进行重构的一种方法。The invention relates to the field of geographic information situation, in particular to a method for reconstructing target track data.
背景技术Background technique
态势目标轨迹数据监测手段众多、数据来源广泛,使得数据量大、数据繁杂程度高。态势目标轨迹数据包含不同手段监测的同一时刻目标状态数据,其中包括地理空间三维坐标、目标行动速度等,通过三维数字地球等可视化工具虽然能有效展示多维时空的目标轨迹数据,但由于轨迹数据来源于不同手段、不同采集频率,致使三维数字地球可视化轨迹数据杂乱无章,无法观察轨迹规律。为增强对目标的行动轨迹的观察效果,增强目标轨迹数据的利用价值,需对目标轨迹数据进行清洗、重构。There are many monitoring methods and data sources for situational target trajectory data, resulting in a large amount of data and a high degree of complexity. Situational target trajectory data includes target state data monitored by different means at the same time, including three-dimensional coordinates in geographic space, target action speed, etc. Although visualization tools such as 3D digital earth can effectively display multi-dimensional space-time target trajectory data, due to the source of trajectory data Due to different methods and different acquisition frequencies, the visualized trajectory data of the 3D Digital Earth is chaotic, and it is impossible to observe the trajectory rules. In order to enhance the observation effect of the target's action trajectory and enhance the utilization value of the target trajectory data, it is necessary to clean and reconstruct the target trajectory data.
当前对多手段、多种采集频率获取的轨迹数据的处理较为粗糙,一般采用原始数据直接显示于三维数字地球,通过工作人员观察原始数据形成的密集点进行时间序列连线来预估目标的运动行为,这种方法受制于数据的密集程度和观察人员的经验:当原始轨迹点数据分布不均(指某段时间或某一时刻存在大量轨迹数据点、某段时间某一时刻数据点数量过少或缺失)时,工作人员预估目标轨迹运动行为难度增大且预估的准确性难以控制。At present, the processing of trajectory data obtained by multiple methods and multiple acquisition frequencies is relatively rough. Generally, the original data is directly displayed on the 3D digital earth, and the dense points formed by the staff observing the original data are connected in time series to estimate the movement of the target. Behavior, this method is limited by the intensity of data and the experience of observers: when the original trajectory point data is unevenly distributed (referring to a certain period of time or a certain moment there are a large number of trajectory data points, a certain period of time a certain moment the number of data points is too large less or missing), it is more difficult for the staff to predict the target trajectory movement behavior and the accuracy of the prediction is difficult to control.
现有的轨迹数据清洗、重构方法主要包括数据降噪、曲线拟合,由于这些方法处理数据维度单一且对数据分布要求均匀等原因,使得处理由多种手段、多种采集频率获取到的大量轨迹数据结果较差,特别是无法处理轨迹数据点分布不均问题:如常用的滤波拟合方法,当数据点分布不均匀时,数据密集处会产生大量锯齿噪声,数据稀疏处拟合误差偏大,这都加剧部分数据分布稀疏化,使得部分数据大量重合,因此常规的数据清洗、重构方法处理分布不均匀数据往往使得重构后的数据无法表征原始数据信息,不利于后期其他算法对数据进行分析、挖掘以及使用。Existing trajectory data cleaning and reconstruction methods mainly include data noise reduction and curve fitting. Due to the fact that these methods process data with a single dimension and require uniform data distribution, the processing of data obtained by various means and multiple acquisition frequencies is difficult. The results of a large amount of trajectory data are poor, especially the problem of uneven distribution of trajectory data points: such as the commonly used filter fitting method, when the distribution of data points is uneven, a large amount of sawtooth noise will be generated in the dense data, and the fitting error in the sparse data Too large, which exacerbates the sparse distribution of some data, causing a large number of overlaps of some data. Therefore, conventional data cleaning and reconstruction methods to deal with unevenly distributed data often make the reconstructed data unable to represent the original data information, which is not conducive to other later algorithms. Analyze, mine and use data.
如何解决现有轨迹数据清洗、重构方法无法处理存在轨迹数据点分布不均的目标轨迹数据,是本领域技术人员极为关注的技术问题。How to solve the problem that existing trajectory data cleaning and reconstruction methods cannot handle target trajectory data with uneven distribution of trajectory data points is a technical issue that is of great concern to those skilled in the art.
发明内容Contents of the invention
本发明的要解决的技术问题是提供一种基于态势目标的轨迹数据重构方法,解决现有方法无法处理存在轨迹数据点分布不均的目标轨迹数据的问题,降低数据密集处的噪声,降低数据稀疏处的拟合误差。The technical problem to be solved by the present invention is to provide a trajectory data reconstruction method based on situational targets, which solves the problem that the existing methods cannot handle target trajectory data with uneven distribution of trajectory data points, reduces the noise in data-intensive places, and reduces the Fitting error where data is sparse.
为解决上述技术问题,本发明的技术方案是:对态势目标轨迹原始数据进行预处理,即对不同手段来源的目标轨迹数据点进行清洗、格式转换以及同一时段数据提取;然后设定采样频率使用曲线插值算法对原始轨迹数据进行给定采样率的轨迹重构,得到采样率f下的重采样数据集;最后基于等时间间隔对重采样数据集进行轨迹数据速度矢量修正,得到轨迹重构数据集D。In order to solve the above-mentioned technical problems, the technical solution of the present invention is: preprocess the original data of the target trajectory of the situation, that is, clean the target trajectory data points from different means, convert the format and extract the data in the same period; then set the sampling frequency to use The curve interpolation algorithm reconstructs the trajectory of the original trajectory data with a given sampling rate, and obtains the resampled data set at the sampling rate f; finally, based on the equal time interval, the trajectory data velocity vector correction is performed on the resampled data set, and the trajectory reconstruction data is obtained Set D.
本发明包括以下四个步骤:The present invention comprises following four steps:
第一步、构建态势目标轨迹数据重构系统,态势目标轨迹数据重构系统由数据预处理器、轨迹重采样器、速度修正器组成。The first step is to build a situational target trajectory data reconstruction system. The situational target trajectory data reconstruction system is composed of a data preprocessor, a trajectory resampler, and a speed corrector.
数据预处理器与轨迹重采样器相连,数据预处理器从目标轨迹原始数据集读取态势目标轨迹原始数据集Data-original,对Data-original进行数据清洗、数据格式转换、同一时段数据提取,得到预处理数据集Data-precision,将Data-precision发送给轨迹重采样器。The data preprocessor is connected with the trajectory resampler. The data preprocessor reads the original data set of the situational target trajectory Data-original from the original data set of the target trajectory, performs data cleaning, data format conversion, and data extraction at the same time period on the Data-original. Get the preprocessed data set Data-precision, and send the Data-precision to the trajectory resampler.
轨迹重采样器与数据预处理器、速度修正器相连,从数据预处理器接收预处理数据集Data-precision,采用三次样条曲线差值算法对Data-precision进行给定采样率的轨迹重构,得到重采样数据集Data-sample,将Data-sample发送给速度修正器。The trajectory resampler is connected with the data preprocessor and the speed corrector, receives the preprocessed data set Data-precision from the data preprocessor, and uses the cubic spline curve difference algorithm to reconstruct the trajectory with a given sampling rate for the Data-precision , get the resampled data set Data-sample, and send the Data-sample to the speed corrector.
速度修正器与轨迹重采样器相连,从轨迹重采样器接收Data-sample,对Data-sample中重采样数据点进行轨迹数据速度矢量修正,得到轨迹重构数据集D。The velocity corrector is connected with the trajectory resampler, receives the Data-sample from the trajectory resampler, performs trajectory data velocity vector correction on the resampled data points in the Data-sample, and obtains the trajectory reconstruction data set D.
第二步、数据预处理器对态势目标轨迹原始数据集Data-original进行预处理,包括对态势目标轨迹数据进行清洗、格式转换以及同一时段数据提取,得到目标采样周期[T1,T2]内的轨迹数据集Data-precision,方法如下:The second step, the data preprocessor preprocesses the original data set of the situational target trajectory Data-original, including cleaning the situational target trajectory data, format conversion, and data extraction at the same time period, to obtain the target sampling period [T 1 , T 2 ] The trajectory data set Data-precision in the method is as follows:
2.1:数据预处理器从目标轨迹原始数据集读取态势目标轨迹原始数据集Data-original,2.1: The data preprocessor reads the original data set Data-original of the target trajectory from the original data set of the target trajectory,
Data-original={(ti,longi,lati,alti,vi,vθi)|i=1,…,I} (1)Data-original={(t i ,long i ,lat i ,alt i ,v i ,vθ i )|i=1,...,I} (1)
Data-original为目标在采样周期[T1,T2](ti∈[T1,T2],T1是用户设置的采样周期起点,T2是用户设置的采样周期终点,采样是指对态势目标行动状态进行采样的过程,采样周期是指对态势目标行动状态进行采样的时间间隔)内,通过多种手段采集到的I个数据点组成的集合,I为正整数,第i个采样点数据包含6个维度,每个维度分别为:Data-original is the target in the sampling period [T 1 ,T 2 ](t i ∈[T 1 ,T 2 ], T 1 is the starting point of the sampling period set by the user, T 2 is the end point of the sampling period set by the user, and sampling refers to The process of sampling the behavioral state of the situational target, the sampling period refers to the time interval for sampling the behavioral state of the situational target), a collection of I data points collected by various means, I is a positive integer, and the i-th The sampling point data contains 6 dimensions, and each dimension is:
时刻ti(数据格式:"年-月–日时:分:秒");Time t i (data format: "year-month-day hour: minute: second");
数据点的经度坐标longi,(数据格式:"(E/W)度:分:秒")The longitude coordinate long i of the data point, (data format: "(E/W) degrees: minutes: seconds")
数据点的纬度坐标lati(数据格式:"(N/S)度:分:秒");The latitude coordinate lat i of the data point (data format: "(N/S) degree: minute: second");
高度alti,表示海拔高度,单位为米;Altitude alt i , indicating the altitude above sea level, in meters;
速度大小vi,表示目标某一时刻速度大小,单位为km/h;Velocity v i represents the velocity of the target at a certain moment, and the unit is km/h;
速度方向vθi,表示目标某一时刻速度方向(数据格式:"度:分:秒"),正北方向为0,顺时针为正);Velocity direction vθ i indicates the velocity direction of the target at a certain moment (data format: "degree:minute:second"), the direction of true north is 0, and the direction of clockwise is positive);
2.2:数据预处理器对Data-original进行数据清洗,剔除经度、纬度或高度字段缺失的数据,得到清洗后的数据集Data-noNAN,方法是;2.2: The data preprocessor performs data cleaning on Data-original, removes missing data in longitude, latitude or height fields, and obtains the cleaned data set Data-noNAN, the method is;
2.2.1:令i=1;2.2.1: Let i=1;
2.2.2:判断Data-original中的第i个数据点是否存在经度或纬度或高度字段的缺失,若这3项中有任意一项缺少,则从Data-original删除第i个数据点,若这3项都没有缺失,则将第i个数据点保存至Data-noNAN;2.2.2: Determine whether the i-th data point in the Data-original has missing longitude, latitude, or altitude fields. If any of these three items is missing, delete the i-th data point from the Data-original. If If none of these three items is missing, save the i-th data point to Data-noNAN;
2.2.3:令i=i+1;若i≤I,转2.2.2;若i>I,说明剔除完毕,得到清洗后的数据集Data-noNAN;2.2.3: let i=i+1; if i≤I, go to 2.2.2; if i>I, it means that the elimination is completed, and the cleaned data set Data-noNAN is obtained;
Data-noNAN={(tin,longin,latin,altin,vin,vθin)|in=1,…,IN} (2)Data-noNAN={(t in ,long in ,lat in ,alt in ,v in ,vθ in )|in=1,...,IN} (2)
IN为Data-noNAN中数据点的个数,1≤IN≤I。IN is the number of data points in Data-noNAN, 1≤IN≤I.
2.3:数据预处理器对Data-noNAN中的数据点进行格式转换:将时刻转换为时间戳,将经度、纬度转换为单位为弧度的双精度(北纬为正、南纬为负;东经为正,西经为负),将高度转换为单位为米的双精度(海平面为0),将速度大小转换为单位为m/s的双精度,将速度方向转换为单位为弧度的双精度(正北方向为0,顺时针为正),方法是:2.3: The data preprocessor converts the format of the data points in Data-noNAN: converts the time to a timestamp, and converts longitude and latitude to double precision in radians (north latitude is positive, south latitude is negative; east longitude is positive , west longitude is negative), convert the altitude to a double in meters (sea level is 0), convert the velocity magnitude to a double in m/s, and convert the velocity direction to a double in radians ( North is 0, clockwise is positive), the method is:
2.3.1:令in=1;2.3.1: let in=1;
2.3.2:使用时刻转换函数ft、经度转换函数flong、纬度转换函数flat、高度转换函数fal、速度大小转换函数fv、速度方向转换函数fvθ对Data-noNAN中第in个数据点(tin,longin,latin,altin,vin,vθin)中的每项分别进行转换:2.3.2: Use time conversion function ft, longitude conversion function flong, latitude conversion function flat, height conversion function fal, speed size conversion function fv, speed direction conversion function fvθ to the in-th data point in Data-noNAN (t in , long in ,lat in ,alt in ,v in ,vθ in ) are converted separately:
令转换后的时刻tin′=ft(tin);ft(tin)表示使用java时间工具类,将tin的格式:"年-月–日时:分:秒"转换为时间戳(时间戳(即格林威治时间起至当前时间的总秒数));Make the converted moment t in ′=ft(t in ); ft(t in ) means to use the java time tool class to convert the format of t in : "year-month-day hour: minute: second" into a timestamp ( Timestamp (that is, the total number of seconds from GMT to the current time));
令转换后的经度坐标longin′=flong(longin),flong(longin)表示将longin的经度数据格式:"(E/W)度:分:秒"转为双精度浮点数,单位为弧度(精度:保留小数点后三位,即将角度单位为度分秒转为国际统一单位弧度制,(E/W)表示东经和西经),方法是:以本初子午线为0,东经为正,西经为负,确定longin是正还是负,若是负在longin前加“-”,转为弧度制后将longin的精度保留小数点后三位;Make the converted longitude coordinate long in ′=flong(long in ), and flong(long in ) means that the longitude data format of long in : "(E/W) degree: minute: second" is converted into a double-precision floating-point number, and the unit is In radians (accuracy: retain three decimal places, that is, convert the angle unit from degrees, minutes, and seconds to the international unified unit of radians, (E/W) means east longitude and west longitude), the method is: take the prime meridian as 0, and the east longitude as Positive, west meridian is negative, determine whether long in is positive or negative, if negative, add "-" before long in , after converting to radian system, keep the accuracy of long in to three decimal places;
令转换后的纬度坐标latin′=flat(latin),flat(latin)表示将latin的纬度数据格式:"(N/S)度:分:秒"转为双精度浮点数,单位为弧度(精度:保留小数点后三位,即将角度单位为度分秒转为国际统一单位弧度制,(N/S)表示北纬和南纬),方法是:以赤道为0,北纬为正,南纬为负,确定latin是正还是负,若是负在latin前加“-”,转为弧度制后并将latin的精度保留小数点后三位;Make the converted latitude coordinate lat in '=flat(lat in ), flat(lat in ) means to convert the latitude data format of lat in : "(N/S) degree: minute: second" into a double-precision floating-point number, unit In radians (accuracy: keep three decimal places, that is, convert the angle unit from degrees, minutes and seconds to the international unified unit of radians, (N/S) means north latitude and south latitude), the method is: take the equator as 0, and the north latitude as positive, If the south latitude is negative, determine whether lat in is positive or negative. If it is negative, add "-" before lat in , convert to radian system and keep the accuracy of lat in to three decimal places;
令转换后的高度altin′=fal(altin),fal(altin)表示将高度altin转换为单位为米的双精度,方法是:以海平面为0,海平面以上为正,海平面以下为负,确定altin是正还是负,若是负在altin前加“-”,并将altin的精度保留小数点后三位;Make the converted height alt in '=fal(alt in ), fal(alt in ) means that the height alt in is converted into the double precision with the unit of meter, the method is: take sea level as 0, above sea level as positive, sea level Below the plane is negative, determine whether alt in is positive or negative, if negative, add "-" before alt in , and keep the accuracy of alt in to three decimal places;
令转换后的速度大小vin′=fv(vin),fv(vin)表示将速度大小vin(单位为km/h)转换为双精度浮点数(单位为m/s,精度:保留小数点后三位);Make the converted speed v in '=fv(v in ), fv(v in ) means that the speed v in (in km/h) is converted into a double-precision floating-point number (in m/s, precision: reserved three decimal places);
令转换后的速度方向vθin′=fvθ(vθin),fvθ(vθin)表示将速度方向vθin(数据格式:"度:分:秒")转换为双精度浮点数(即将角度单位为度分秒转为国际统一单位弧度制),方法是:正北方向为0,顺时针为正,逆时针为负,确定vθin是正还是负,若是负在vθin前加“-”,并将altin的精度保留小数点后四位;Make the converted velocity direction vθ in ′=fvθ(vθ in ), fvθ(vθ in ) means converting the velocity direction vθ in (data format: "degree:minute:second") into a double-precision floating-point number (that is, the angle unit is degrees, minutes and seconds into the international unified unit radian system), the method is: the direction of true north is 0, clockwise is positive, counterclockwise is negative, determine whether vθ in is positive or negative, if negative, add "-" before vθ in , and Keep the precision of alt in to four decimal places;
将转换后的第in个数据点(即(tin′,longin′,latin′,altin′,vin′,vθin′)保存至转换后数据Data-format;Save the converted in-th data point (ie (t in ′, long in ′, lat in ′, alt in ′, v in ′, vθ in ′) to the converted data Data-format;
2.3.3:令i=i+1;若i≤IN,转2.3.2;若i>IN,说明转换完毕,得到格式转换后的数据集Data-format;2.3.3: let i=i+1; if i≤IN, go to 2.3.2; if i>IN, it means that the conversion is completed, and the data set Data-format after format conversion is obtained;
Data-format={((tin′,longin′,latin′,altin′,vin′,vθin′))|in=1,…,IN} (3)Data-format={((t in ′,long in ′,lat in ′,alt in ′,v in ′,vθ in ′))|in=1,…,IN} (3)
2.4:对Data-format进行[T1,T2]内同一时段数据提取。由于数据为多手段采集得到,往往同一时刻或较短时间范围内有大量数据点,且这些数据点精度不一(例如:时刻数据,有的精确到秒,有的精确到分,导致转换后小数位数不一),因此需要对Data-format在[T1,T2]内进行同一时段(同一时段为同一时刻或较短时间范围)数据提取,方法为:2.4: Extract the data of the same time period within [T 1 , T 2 ] for Data-format. Because the data is collected by multiple methods, there are often a large number of data points at the same time or in a short time range, and the accuracy of these data points is different (for example: time data, some are accurate to the second, and some are accurate to the minute, resulting in The number of decimal places is different), so it is necessary to extract data from Data-format in the same time period (the same time period is the same time or a shorter time range) within [T 1 , T 2 ], the method is:
将采样周期[T1,T2]划分为P个时间段dt(dt一般取60秒),从Data-format获取每个时间段内的数据点,比较各数据点精度,取精度维度数PN(小数点位数满足2.3步格式转换后的小数点位数的维度的个数为精度维度数),将PN最大的数据点作为该dt内的特征点,具体方法如下:Divide the sampling period [T 1 , T 2 ] into P time periods dt (dt generally takes 60 seconds), obtain data points in each time period from Data-format, compare the accuracy of each data point, and take the precision dimension PN (The number of decimal places satisfying the number of dimensions of decimal places after format conversion in step 2.3 is the number of precision dimensions), and the data point with the largest PN is used as the feature point in the dt. The specific method is as follows:
2.4.1:令变量p=1;2.4.1: Let the variable p=1;
2.4.1.1:令Data-format的第p个时间段dtp内有数据点L+1个,令这L+1个数据点组成dtp内数据点集合DDp:2.4.1.1: Let there be L+1 data points in the pth time period dt p of Data-format, and let these L+1 data points form the data point set DD p in dt p :
DDp={Dp0,Dp1,…,DpL|st:max(tp0,tp1,…,tpL)-min(tp0,tp1,…,tpL)≤dtp} (4)DD p ={D p0 ,D p1 ,…,D pL |st:max(t p0 ,t p1 ,…,t pL )-min(t p0 ,t p1 ,…,t pL )≤dt p } (4 )
Dpl为第l+1个数据点,放入DDp的数据点满足DDp中L+1个数据点的时刻最大值max(tp0,tp1,…,tpL)与DDp中L+1个数据点的时刻最小值min(tp0,tp1,…,tpL)的差在dtp范围内。D pl is the l+1th data point, and the data points placed in DD p satisfy the maximum value max(t p0 ,t p1 ,…,t pL ) of the L+1 data points in DD p and L in DD p The difference between the minimum value min(t p0 ,t p1 ,…,t pL ) of +1 data point is within the range of dt p .
2.4.1.2:计算Dp0,Dp1,…,DpL的精度维度数PN:2.4.1.2: Calculate the number of precision dimensions PN of D p0 , D p1 ,..., D pL :
(由于(tin′,longin′,latin′,altin′,vin′,vθin′)中时间维度为整数。不需要计算精度有效位数,因此PN最大为5),仅计算longin′,latin′,altin′,vin′,vθin′这5个维度的精度维度数,方法是:(Because the time dimension in (t in ′, long in ′, lat in ′, alt in ′, v in ′, vθ in ′) is an integer. It is not necessary to calculate the effective digits of precision, so the maximum PN is 5), only calculate Long in ′, lat in ′, alt in ′, v in ′, vθ in ′, the precision dimensions of these 5 dimensions, the method is:
2.4.1.2.1令变量l=0;2.4.1.2.1 Let the variable l=0;
2.4.1.2.2检查Dpl的longin′,latin′,altin′,vin′,vθin′的数据精度有效位数个数,若有w个维度满足2.3步格式转换后的小数点位数,则令Dpl的精度维度数 2.4.1.2.2 Check the number of effective digits of data precision of long in ′, lat in ′, alt in ′, v in ′, vθ in ′ of D pl , if there are w dimensions that satisfy the decimal point after format conversion in step 2.3 digits, then let the precision dimension of D pl be
2.4.1.2.3令l=l+1;若l≤L,转2.4.1.2.2;若l>L,计算完毕,得到Dp0,Dp1,…,Dpl的数据精度维度数为转2.4.1.3;2.4.1.2.3 Let l=l+1; if l≤L, go to 2.4.1.2.2; if l>L, the calculation is completed, and the number of data precision dimensions of D p0 , D p1 ,...,D pl is Go to 2.4.1.3;
2.4.1.3:找到中的最大值,令该最大值的数据点为Dpmax:2.4.1.3: Found The maximum value in , let the data point of the maximum value be D p max:
Dpmax=(dptp,dplongp,dplatp,dpaltp,dpvp,dpvθp) (5)D p max=(dpt p ,dplong p ,dplat p ,dpalt p ,dpv p ,dpvθ p ) (5)
其中dptp,dplongp,dplatp,dpaltp,dpvp,dpvθp分别为精度维度数最大值在第p个时间段dtp内对应的数据点的6个维度的值。Among them, dpt p , dplong p , dplat p , dpalt p , dpv p , and dpvθ p are the values of the six dimensions of the data points corresponding to the maximum number of precision dimensions in the p-th time period dt p .
2.4.2:将Dpmax放到轨迹数据集Data-precision;2.4.2: Put D p max in the trajectory data set Data-precision;
2.4.3:令p=p+1;若p≤P,转2.4.1.1;若p>P,说明同一时段数据提取完毕,得到目标在[T1,T2]时间段内的轨迹数据集Data-precision:2.4.3: Let p=p+1; if p≤P, go to 2.4.1.1; if p>P, it means that the data extraction in the same period is completed, and the trajectory data set of the target within the time period [T 1 , T 2 ] is obtained Data-precision:
其中P是采样周期[T1,T2]划分的时间段个数,也即Data-precision中轨迹数据的个数。Where P is the number of time segments divided by the sampling period [T 1 , T 2 ], that is, the number of trajectory data in Data-precision.
第三步、轨迹重采样器基于三次样条曲线差值算法对Data-precision进行给定采样率的轨迹重构,得到采样率f下的重采样数据集Data-sample,方法是:In the third step, the trajectory resampler reconstructs the trajectory with a given sampling rate for Data-precision based on the cubic spline curve difference algorithm, and obtains the resampled data set Data-sample at the sampling rate f. The method is:
3.1:对[T1,T2]设定采样率f(采样率一般取1,即每间隔1秒采集一次数据)(令采集时间间隔tf=1/f),生成IS-1个等间隔时刻点的时刻,IS为正整数,为时刻集合Tf的样本容量,将这IS-1个等间隔时刻点和T1,T2放到采样率f的时刻集合Tf中,最后一个时刻取T1+(IS-1)×tf,T2的最小值:3.1: Set the sampling rate f for [T 1 , T 2 ] (the sampling rate is generally taken as 1, that is, data is collected every 1 second) (let the collection time interval t f =1/f), generate IS-1, etc. At the time of the interval time point, IS is a positive integer, which is the sample capacity of the time set T f . Put these IS-1 equal interval time points and T 1 , T 2 into the time set T f of the sampling rate f, and the last Take the minimum value of T 1 + (IS-1)×t f , T 2 at all times:
Tf={T1,T1+1×tf,T1+2×tf,…,min(T1+(IS-1)×tf,T2)} (7)T f ={T 1 ,T 1 +1×t f ,T 1 +2×t f ,…,min(T 1 +(IS-1)×t f ,T 2 )} (7)
3.2:使用三次样条曲线差值算法(三次样条插值算法参见:[1]宋阳.基于自适应三次样条插值的ACARS航迹重构算法研究.中国民航大学,2017.)计算Tf中各时刻对应的经度、维度、高度、速度大小以及速度方向,形成采样率f下的重采样数据集,具体方法是:3.2: Use cubic spline curve difference algorithm (cubic spline interpolation algorithm see: [1] Song Yang. Research on ACARS track reconstruction algorithm based on adaptive cubic spline interpolation. Civil Aviation University of China, 2017.) to calculate T f The longitude, latitude, height, velocity, and velocity direction corresponding to each moment in , form a resampling data set under the sampling rate f, the specific method is:
3.2.1从Data-precision中选取数据,组合成二维数据(X,Y),其中X={dptp|p=1,…,P}为时间数据,Y={Yk|k=1,…,5}包含其他5个维度数据;3.2.1 Select data from Data-precision and combine them into two-dimensional data (X, Y), where X={dpt p |p=1,...,P} is time data, Y={Y k |k=1 ,...,5} contains other 5 dimension data;
3.2.2:令k=1;3.2.2: let k=1;
3.2.3:对数据集(X,Yk),设P个数据点为(x0,y0),(x1,y1),…,(xP-1,yP-1),使用三次样条曲线差值算法求解每一曲线段三次样条曲线系数向量(aq,bq,cq,dq),使得在每一个区间xq≤x≤xq+1,q=0,1,…,P-1,数据拟合的样条函数为:3.2.3: For the data set (X,Y k ), set P data points as (x 0 ,y 0 ),(x 1 ,y 1 ),…,(x P-1 ,y P-1 ), Use the cubic spline difference algorithm to solve the cubic spline coefficient vector (a q ,b q ,c q ,d q ) of each curve segment, so that in each interval x q ≤x≤x q+1 , q= 0,1,…,P-1, the spline function for data fitting is:
fq(x)=(aq,bq,cq,dq)×(1,(x-xq),(x-xq)2,(x-xq)3)T (9)f q (x)=(a q ,b q ,c q ,d q )×(1,(xx q ),(xx q ) 2 ,(xx q ) 3 ) T (9)
3.2.4:将采样时间带入公式(9),计算拟合结果,并将拟合结果存放到重采样数据集Data-sample中,方法是:3.2.4: Bring the sampling time into formula (9), calculate the fitting result, and store the fitting result in the resampling data set Data-sample, the method is:
3.2.4.1:令is=1,3.2.4.1: let is=1,
3.2.4.2取时刻集合Tf的第is个数据,令为tis,tis=T1+(is-1)×tf;3.2.4.2 Take the is-th data of time set T f , let it be t is , t is =T 1 +(is-1)×t f ;
3.2.4.3:计算时刻tis的第k维数据 3.2.4.3: Calculate the k-th dimension data at time t is
3.2.4.4:将保存于拟合后矩阵的k行第is个数据上;3.2.4.4: Will Save in the fitted matrix On the is-th data of k row;
3.2.4.5:令is=is+1:3.2.4.5: Let is=is+1:
若is≤IS,第k维数据未拟合计算完,转3.2.4.2,If is≤IS, the k-th dimension data has not been fitted and calculated, go to 3.2.4.2,
若is>IS,第k维数据拟合计算完,转3.2.4.6;If is>IS, the k-th dimension data fitting calculation is completed, go to 3.2.4.6;
3.2.4.6:令k=k+1:3.2.4.6: Let k=k+1:
若k≤5,转3.2.3;If k≤5, go to 3.2.3;
若k>5,所有维度数据拟合计算完,生成拟合矩阵为:If k>5, all dimension data fitting calculations are completed, and a fitting matrix is generated for:
基于时间数据Tf和其他5个维度拟合后的数据得到采样率f下的重采样数据集Data-sample:Fitted data based on time data T f and other 5 dimensions Get the resampled data set Data-sample at the sampling rate f:
Data-sample={(dstis,dslongis,dslatis,dsaltis,dsvis,dsvθis)|tis∈Tf,is=1,…,IS}(12)Data-sample={(dst is ,dslong is ,dslat is ,dsalt is ,dsv is ,dsvθ is )|t is ∈T f ,is=1,...,IS}(12)
时刻dstis=Tf,is(Tf,is表示Tf的第is个数据);Moment dst is =T f, is (T f, is represents the is data of T f );
dslongis,dslatis,dsaltis,dsvis,dsvθis为每个维度的数据拟合出的结果,即 dslong is ,dslat is ,dsalt is ,dsv is ,dsvθ is are the results of data fitting for each dimension, namely
第四步、速度修正器基于等时间间隔对Data-sample进行轨迹数据速度矢量修正,得到轨迹重构数据集D,方法是:In the fourth step, the speed corrector corrects the trajectory data velocity vector of the Data-sample based on equal time intervals to obtain the trajectory reconstruction data set D. The method is:
数据集Data-sample为等时间间隔下的数据,而速度矢量为监测数据的重采样,在实际中速度矢量可以根据时间、经度、维度、高度进行计算得出,为了不引入计算误差,现有方法一般对速度矢量通过传感器进行观测,但传感器采集的速度矢量波动性大、不能直接用于数据分析,为确保速度矢量精度较高,本发明使用计算的空间速度矢量与传感器观测采集的速度矢量进行对比修正,获得较好的速度矢量数据,具体步骤如下:The data set Data-sample is the data at equal time intervals, and the velocity vector is the resampling of the monitoring data. In practice, the velocity vector can be calculated according to time, longitude, latitude, and height. In order not to introduce calculation errors, the existing The method generally observes the velocity vector through a sensor, but the velocity vector collected by the sensor has large fluctuations and cannot be directly used for data analysis. Perform comparison and correction to obtain better velocity vector data, the specific steps are as follows:
4.1:根据Data-sample计算各数据点的空间速度,得到空间速度重采样数据集,方法是:4.1: Calculate the space velocity of each data point according to the Data-sample, and obtain the space velocity resampling data set, the method is:
4.1.1:令is=1;4.1.1: let is=1;
4.1.2根据Data-sample中的第is个数据点4.1.2 According to the is data point in Data-sample
(dstis,dslongis,dslatis,dsaltis,dsvis,dsvθis)的时间、经度、纬度以及高度值计算,得到空间速度大小与空间速度方向方法如下:(dst is ,dslong is ,dslat is ,dsalt is ,dsv is ,dsvθ is ) time, longitude, latitude and height value calculation to get the space velocity and space velocity direction Methods as below:
4.1.2.1使用Haversine公式根据经纬度计算第is项数据点和第js项数据点(dstjs,dslongjs,dslatjs,dsaltjs,dsvjs,dsvθjs)(js=is+λ,λ为步长,默认为1)在水平面上的距离,Haversin公式为:4.1.2.1 Use the Haversine formula to calculate the is-th data point and js-th data point according to latitude and longitude (dst js , dslong js , dslat js , dsalt js , dsv js , dsvθ js ) (js=is+λ, λ is the step size , the default is 1) the distance on the horizontal plane, the Haversin formula is:
其中:haversin(θ)=sin2(θ/2)=(1-cos(θ))/2,R为地球半径,取6371km;Among them: haversin(θ)=sin 2 (θ/2)=(1-cos(θ))/2, R is the radius of the earth, which is 6371km;
计算得出第is项数据点和第js项数据点水平面上的距离dis,js为:The distance d is,js on the horizontal plane between the data point of the is item and the data point of the js item is calculated as:
4.1.2.2计算空间速度大小与空间速度方向方法为:4.1.2.2 Calculation of space velocity and space velocity direction The method is:
a,b为计算过程的参数,参数a为cos(latis+1)sin(longis+1-longis);a, b are the parameters of the calculation process, and the parameter a is cos(lat is+1 )sin(long is+1 -long is );
参数b为 The parameter b is
4.1.3将放到空间速度重采样数据集 4.1.3 Will into the space velocity resampling dataset
4.1.4令is=is+1;若is≤IS,转4.1.2;若is>IS,说明计算完毕,得到速度重采样数据集:4.1.4 Let is=is+1; if is≤IS, go to 4.1.2; if is>IS, it means that the calculation is completed, and the speed resampling data set is obtained:
4.2:根据设定误差率(η)修正速度矢量,方法是:4.2: Correct the velocity vector according to the set error rate (η), the method is:
以计算的空间速度矢量为标准,对Data-sample中采集的速度矢量进行修正,若采集的速度矢量在误差率范围内则保留采集的速度矢量,否则用计算的空间速度矢量代替Data-sample中采集的速度矢量。Based on the calculated space velocity vector as the standard, correct the velocity vector collected in the Data-sample. If the collected velocity vector is within the error rate range, keep the collected velocity vector; otherwise, use the calculated space velocity vector to replace the data in the Data-sample. Acquired velocity vector.
4.2.1从键盘接收用户输入的误差率h,一般取0.05;4.2.1 The error rate h for receiving user input from the keyboard is generally 0.05;
4.2.2:令is=1;4.2.2: let is=1;
4.2.3取Data-sample的第is项数据点的速度大小dsvis、速度方向dsvθis,取中第is项数据点的空间速度大小与空间速度方向计算dsvis和的差距、dsvθis和的差距,根据差距与h的关系,确定修正后的速度矢量的大小vis*和速度方向vθis*,方法如公式(18)所示:4.2.3 Take the velocity magnitude dsv is and the velocity direction dsvθ is of the data point of the is item of Data-sample, and take The space velocity of the is item data point in and space velocity direction Calculate dsv is and The gap, dsvθ is and According to the relationship between the gap and h, determine the magnitude of the velocity vector v is * and the velocity direction vθ is * after correction, the method is shown in formula (18):
4.2.4采用(vis*,vθis*)替换数据集Data-sample中的(dsvis,dsvθis),将(dstis,dslongis,dslatis,dsaltis,vis*,vθis*)放到轨迹重构数据集D中。4.2.4 Use (v is *, vθ is *) to replace (dsv is , dsvθ is ) in the data set Data-sample, and replace (dst is , dslong is , dslat is , dsalt is , v is *, vθ is * ) into the trajectory reconstruction data set D.
4.2.5令is=is+1;若is≤IS,转4.2.2;若is>IS,说明替换完毕,得到目标时间段[T1,T2]设定采样率f的轨迹重构数据,包括轨迹重构数据集D和Tf:4.2.5 Let is=is+1; if is≤IS, go to 4.2.2; if is>IS, it means that the replacement is completed, and the trajectory reconstruction data with the sampling rate f set in the target time period [T 1 , T 2 ] is obtained , including trajectory reconstruction datasets D and T f :
采用本发明对原始轨迹数据进行处理,可得到设定采样率下的轨迹重构数据集。采用本发明可以达到以下技术效果:By adopting the present invention to process the original trajectory data, the trajectory reconstruction data set under the set sampling rate can be obtained. Adopt the present invention can reach following technical effect:
1.采用本发明可以获得自定义采样率下的轨迹数据点分布均匀的轨迹重构数据集,解决了现有方法无法处理存在轨迹数据点分布不均的目标轨迹数据的问题。1. By adopting the present invention, a trajectory reconstruction data set with uniform distribution of trajectory data points under a self-defined sampling rate can be obtained, which solves the problem that existing methods cannot process target trajectory data with uneven distribution of trajectory data points.
2.本发明第二步数据预处理器采用同一时段数据提取方法过滤了大量同一时段的数据点,从而降低了目标轨迹原始数据密集处的噪声。2. In the second step of the present invention, the data preprocessor adopts the data extraction method of the same time period to filter a large number of data points of the same time period, thereby reducing the noise at places where the original data of the target trajectory is dense.
3.本发明第三步轨迹重采样器采用给定采样率的轨迹重构方法进行轨迹重构,使用设定的采样率使得目标轨迹数据点在时间维度上分布均匀,降低了目标轨迹数据稀疏处的拟合误差,使得拟合后的目标轨迹数据在三位数字地球上轨迹线清晰。3. The trajectory resampler in the third step of the present invention uses a trajectory reconstruction method with a given sampling rate to reconstruct the trajectory, and uses the set sampling rate to make the target trajectory data points evenly distributed in the time dimension, reducing the sparseness of the target trajectory data The fitting error at , makes the trajectory line of the fitted target trajectory data clear on the three-digit Earth.
4.本发明第四步速度修正器基于等时间间隔使用计算的空间速度矢量与传感器观测采集的速度矢量进行对比修正,获得较好的速度矢量数据,能确保速度矢量精度较高。4. The speed corrector in the fourth step of the present invention compares and corrects the calculated space velocity vector and the velocity vector observed and collected by the sensor based on equal time intervals to obtain better velocity vector data and ensure high velocity vector accuracy.
采用本发明获得的轨迹重构数据集能帮助研究人员更好地运用轨迹数据进行数据分析,能帮助一线工作人员更好的观察目标活动的清晰过程,增强对目标的行动轨迹的观察效果,增强目标轨迹数据的利用价值。The trajectory reconstruction data set obtained by the present invention can help researchers to better use trajectory data for data analysis, help front-line staff to better observe the clear process of target activities, enhance the observation effect of the target's action trajectory, and enhance Utilization value of target trajectory data.
附图说明Description of drawings
图1是本发明总体流程图。Fig. 1 is the overall flow chart of the present invention.
图2是本发明第一步构建的态势目标轨迹重构系统逻辑结构图。Fig. 2 is a logical structure diagram of the situation target trajectory reconstruction system constructed in the first step of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明作进一步详细的说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1是本发明总体流程图,包括四个步骤。Fig. 1 is the general flowchart of the present invention, including four steps.
第一步、构建态势目标轨迹数据重构系统,态势目标轨迹数据重构系统如图2所示,由数据预处理器、轨迹重采样器、速度修正器组成。The first step is to build a situational target trajectory data reconstruction system. The situational target trajectory data reconstruction system is shown in Figure 2, which is composed of a data preprocessor, a trajectory resampler, and a speed corrector.
数据预处理器与轨迹重采样器相连,数据预处理器从目标轨迹原始数据集读取态势目标轨迹原始数据集Data-original,对Data-original进行数据清洗、数据格式转换、同一时段数据提取,得到预处理数据集Data-precision,将Data-precision发送给轨迹重采样器。The data preprocessor is connected with the trajectory resampler. The data preprocessor reads the original data set of the situational target trajectory Data-original from the original data set of the target trajectory, performs data cleaning, data format conversion, and data extraction at the same time period on the Data-original. Get the preprocessed data set Data-precision, and send the Data-precision to the trajectory resampler.
轨迹重采样器与数据预处理器、速度修正器相连,从数据预处理器接收预处理数据集Data-precision,采用三次样条曲线差值算法对Data-precision进行给定采样率的轨迹重构,得到重采样数据集Data-sample,将Data-sample发送给速度修正器。The trajectory resampler is connected with the data preprocessor and the speed corrector, receives the preprocessed data set Data-precision from the data preprocessor, and uses the cubic spline curve difference algorithm to reconstruct the trajectory with a given sampling rate for the Data-precision , get the resampled data set Data-sample, and send the Data-sample to the speed corrector.
速度修正器与轨迹重采样器相连,从轨迹重采样器接收Data-sample,对Data-sample中重采样数据点进行轨迹数据速度矢量修正,得到轨迹重构数据集D。The velocity corrector is connected with the trajectory resampler, receives the Data-sample from the trajectory resampler, performs trajectory data velocity vector correction on the resampled data points in the Data-sample, and obtains the trajectory reconstruction data set D.
第二步、数据预处理器对态势目标轨迹原始数据集Data-original进行预处理,包括对态势目标轨迹数据进行清洗、格式转换以及同一时段数据提取,得到目标采样周期[T1,T2]内的轨迹数据集Data-precision,方法如下:The second step, the data preprocessor preprocesses the original data set of the situational target trajectory Data-original, including cleaning the situational target trajectory data, format conversion, and data extraction at the same time period, to obtain the target sampling period [T 1 , T 2 ] The trajectory data set Data-precision in the method is as follows:
2.1:数据预处理器从目标轨迹原始数据集读取态势目标轨迹原始数据集Data-original,2.1: The data preprocessor reads the original data set Data-original of the target trajectory from the original data set of the target trajectory,
Data-original={(ti,longi,lati,alti,vi,vθi)|i=1,…,I} (2)Data-original={(t i ,longi,lat i ,alt i ,v i ,vθ i )|i=1,...,I} (2)
Data-original为目标在采样周期[T1,T2](ti∈[T1,T2],T1是用户设置的采样周期起点,T2是用户设置的采样周期终点,采样是指对态势目标行动状态进行采样的过程,采样周期是指对态势目标行动状态进行采样的时间间隔)内,通过多种手段采集到的I个数据点组成的集合,I为正整数,第i个采样点数据包含6个维度,每个维度分别为:Data-original is the target in the sampling period [T 1 ,T 2 ](t i ∈[T 1 ,T 2 ], T 1 is the starting point of the sampling period set by the user, T 2 is the end point of the sampling period set by the user, and sampling refers to The process of sampling the behavioral state of the situational target, the sampling period refers to the time interval for sampling the behavioral state of the situational target), a collection of I data points collected by various means, I is a positive integer, and the i-th The sampling point data contains 6 dimensions, and each dimension is:
时刻ti(数据格式:"年-月–日时:分:秒",如2021-08-15 12:20:35);Time t i (data format: "year-month-day hour: minute: second", such as 2021-08-15 12:20:35);
数据点的经度坐标longi,(数据格式:"(E/W)度:分:秒")The longitude coordinate long i of the data point, (data format: "(E/W) degrees: minutes: seconds")
数据点的纬度坐标lati(数据格式:"(N/S)度:分:秒",如N23:35:15北纬23度35分15秒);The latitude coordinate lat i of the data point (data format: "(N/S) degree: minute: second", such as N23:35:15 north latitude 23 degrees 35 minutes and 15 seconds);
高度alti,表示海拔高度,单位为米;Altitude alt i , indicating the altitude above sea level, in meters;
速度大小vi,表示目标某一时刻速度大小,单位为km/h;Velocity v i represents the velocity of the target at a certain moment, and the unit is km/h;
速度方向vθi,表示目标某一时刻速度方向(数据格式:"度:分:秒"),正北方向为0,顺时针为正,如23:35:15为北偏东23度35分15秒);Velocity direction vθ i indicates the velocity direction of the target at a certain moment (data format: "degree:minute:second"), the true north direction is 0, clockwise is positive, for example, 23:35:15 is 23 degrees 35 minutes east of north 15 seconds);
2.2:数据预处理器对Data-original进行数据清洗,剔除经度、纬度或高度字段缺失的数据,得到清洗后的数据集Data-noNAN,方法是;2.2: The data preprocessor performs data cleaning on Data-original, removes missing data in longitude, latitude or height fields, and obtains the cleaned data set Data-noNAN, the method is;
2.2.1:令i=1;2.2.1: Let i=1;
2.2.2:判断Data-original中的第i个数据点是否存在经度或纬度或高度字段的缺失,若这3项中有任意一项缺少,则从Data-original删除第i个数据点,若这3项都没有缺失,则将第i个数据点保存至Data-noNAN;2.2.2: Determine whether the i-th data point in the Data-original has missing longitude, latitude, or altitude fields. If any of these three items is missing, delete the i-th data point from the Data-original. If If none of these three items is missing, save the i-th data point to Data-noNAN;
2.2.3:令i=i+1;若i≤I,转2.2.2;若i>I,说明剔除完毕,得到清洗后的数据集Data-noNAN;2.2.3: let i=i+1; if i≤I, go to 2.2.2; if i>I, it means that the elimination is completed, and the cleaned data set Data-noNAN is obtained;
Data-noNAN={(tin,longin,latin,altin,vin,vθin)|in=1,…,IN} (2)Data-noNAN={(t in ,long in ,lat in ,alt in ,v in ,vθ in )|in=1,...,IN} (2)
IN为Data-noNAN中数据点的个数,1≤IN≤I。IN is the number of data points in Data-noNAN, 1≤IN≤I.
2.3:数据预处理器对Data-noNAN中的数据点进行格式转换:将时刻转换为时间戳,将经度、纬度转换为单位为弧度的双精度(北纬为正、南纬为负;东经为正,西经为负),将高度转换为单位为米的双精度(海平面为0),将速度大小转换为单位为m/s的双精度,将速度方向转换为单位为弧度的双精度(正北方向为0,顺时针为正),方法是:2.3: The data preprocessor converts the format of the data points in Data-noNAN: converts the time to a timestamp, and converts longitude and latitude to double precision in radians (north latitude is positive, south latitude is negative; east longitude is positive , west longitude is negative), convert the altitude to a double in meters (sea level is 0), convert the velocity magnitude to a double in m/s, and convert the velocity direction to a double in radians ( North is 0, clockwise is positive), the method is:
2.3.1:令in=1;2.3.1: let in=1;
2.3.2:使用时刻转换函数ft、经度转换函数flong、纬度转换函数flat、高度转换函数fal、速度大小转换函数fv、速度方向转换函数fvθ对Data-noNAN中第in个数据点(tin,longin,latin,altin,vin,vθin)中的每项分别进行转换:2.3.2: Use time conversion function ft, longitude conversion function flong, latitude conversion function flat, height conversion function fal, speed size conversion function fv, speed direction conversion function fvθ to the in-th data point in Data-noNAN (t in , long in ,lat in ,alt in ,v in ,vθ in ) are converted separately:
令转换后的时刻tin′=ft(tin);ft(tin)表示使用java时间工具类,将tin的格式:"年-月–日时:分:秒"转换为时间戳(时间戳(格林威治时间起至当前时间的总秒数)),例如:"2021-10-01 12:12:12"转化为时间戳:1633061532000;Make the converted moment t in ′=ft(t in ); ft(t in ) means to use the java time tool class to convert the format of t in : "year-month-day hour: minute: second" into a timestamp ( Timestamp (the total number of seconds from Greenwich Mean Time to the current time), for example: "2021-10-01 12:12:12" is converted to a timestamp: 1633061532000;
令转换后的经度坐标longin′=flong(longin),flong(longin)表示将longin的经度数据格式:"(E/W)度:分:秒"转为双精度浮点数,单位为弧度(精度:保留小数点后三位,即将角度单位为度分秒转为国际统一单位弧度制,(E/W)表示东经和西经),方法是:以本初子午线为0,东经为正,西经为负,确定longin是正还是负,若是负在longin前加“-”,转为弧度制后将longin的精度保留小数点后三位,例如北京天安门广场的经度(东经:116°23′17〃)转换后为(2.030rad);Make the converted longitude coordinate long in ′=flong(long in ), and flong(long in ) means that the longitude data format of long in : "(E/W) degree: minute: second" is converted into a double-precision floating-point number, and the unit is In radians (accuracy: retain three decimal places, that is, convert the angle unit from degrees, minutes, and seconds to the international unified unit of radians, (E/W) means east longitude and west longitude), the method is: take the prime meridian as 0, and the east longitude as Positive, west longitude is negative, determine whether long in is positive or negative, if negative, add "-" before long in , and after converting to radian system, keep the accuracy of long in to three decimal places, such as the longitude of Tiananmen Square in Beijing (East longitude: 116°23′17″) converted to (2.030rad);
令转换后的纬度坐标latin′=flat(latin),flat(latin)表示将latin的纬度数据格式:"(N/S)度:分:秒"转为双精度浮点数,单位为弧度(精度:保留小数点后三位,即将角度单位为度分秒转为国际统一单位弧度制,(N/S)表示北纬和南纬),方法是:以赤道为0,北纬为正,南纬为负,确定latin是正还是负,若是负在latin前加“-”,转为弧度制后并将latin的精度保留小数点后三位,例如北京天安门广场纬度(北纬:39°54′27〃)转换后为(0.696rad);Make the converted latitude coordinate lat in '=flat(lat in ), flat(lat in ) means to convert the latitude data format of lat in : "(N/S) degree: minute: second" into a double-precision floating-point number, unit In radians (accuracy: keep three decimal places, that is, convert the angle unit from degrees, minutes and seconds to the international unified unit of radians, (N/S) means north latitude and south latitude), the method is: take the equator as 0, and the north latitude as positive, South latitude is negative, determine whether lat in is positive or negative, if it is negative, add "-" before lat in , convert to radian system and keep the accuracy of lat in to three decimal places, such as the latitude of Tiananmen Square in Beijing (North latitude: 39° 54′27″) converted to (0.696rad);
令转换后的高度altin′=fal(altin),fal(altin)表示将高度altin转换为单位为米的双精度,方法是:以海平面为0,海平面以上为正,海平面以下为负,确定altin是正还是负,若是负在altin前加“-”,并将altin的精度保留小数点后三位,例如高度122.455m转换为海拔122.455m,深度122.455m转换为海拔-122.455m;Make the converted height alt in '=fal(alt in ), fal(alt in ) means that the height alt in is converted into the double precision with the unit of meter, the method is: take sea level as 0, above sea level as positive, sea level Below the plane is negative, determine whether alt in is positive or negative, if negative, add "-" before alt in , and keep the accuracy of alt in to three decimal places, for example, the altitude of 122.455m is converted to 122.455m above sea level, and the depth of 122.455m is converted to Altitude -122.455m;
令转换后的速度大小vin′=fv(vin),fv(vin)表示将速度大小vin(单位为km/h)转换为双精度浮点数(单位为m/s,精度:保留小数点后三位),例如360.000km/h转换后为100.000m/s;Make the converted speed v in '=fv(v in ), fv(v in ) means that the speed v in (in km/h) is converted into a double-precision floating-point number (in m/s, precision: reserved Three digits after the decimal point), for example, 360.000km/h is converted to 100.000m/s;
令转换后的速度方向vθin′=fvθ(vθin),fvθ(vθin)表示将速度方向vθin(数据格式:"度:分:秒")转换为双精度浮点数(即将角度单位为度分秒转为国际统一单位弧度制),方法是:正北方向为0,顺时针为正,逆时针为负,确定vθin是正还是负,若是负在vθin前加“-”,并将altin的精度保留小数点后四位,例如北偏东23度35分15秒转化为0.4115rad;Make the converted velocity direction vθ in ′=fvθ(vθ in ), fvθ(vθ in ) means converting the velocity direction vθ in (data format: "degree:minute:second") into a double-precision floating-point number (that is, the angle unit is degrees, minutes and seconds into the international unified unit radian system), the method is: the direction of true north is 0, clockwise is positive, counterclockwise is negative, determine whether vθ in is positive or negative, if negative, add "-" before vθ in , and Keep the accuracy of alt in to four decimal places, for example, convert 23 degrees 35 minutes and 15 seconds north to east into 0.4115rad;
将转换后的第in个数据点(即(tin′,longin′,latin′,altin′,vin′,vθin′)保存至转换后数据Data-format;Save the converted in-th data point (ie (t in ′, long in ′, lat in ′, alt in ′, v in ′, vθ in ′) to the converted data Data-format;
2.3.3:令i=i+1;若i≤IN,转2.3.2;若i>IN,说明转换完毕,得到格式转换后的数据集Data-format;2.3.3: let i=i+1; if i≤IN, go to 2.3.2; if i>IN, it means that the conversion is completed, and the data set Data-format after format conversion is obtained;
Data-format={((tin′,longin′,latin′,altin′,vin′,vθin′))|in=1,…,IN} (3)Data-format={((t in ′,long in ′,lat in ′,alt in ′,v in ′,vθ in ′))|in=1,…,IN} (3)
2.4:对Data-format进行[T1,T2]内同一时段数据提取。由于数据为多手段采集得到,往往同一时刻或较短时间范围内有大量数据点,且这些数据点精度不一(例如:时刻数据,有的精确到秒,有的精确到分,导致转换后小数位数不一),因此需要对Data-format在[T1,T2]内进行同一时段(同一时段为同一时刻或较短时间范围)数据提取,方法为:2.4: Extract the data of the same time period within [T 1 , T 2 ] for Data-format. Because the data is collected by multiple methods, there are often a large number of data points at the same time or in a short time range, and the accuracy of these data points is different (for example: time data, some are accurate to the second, and some are accurate to the minute, resulting in The number of decimal places is different), so it is necessary to extract data from Data-format in the same time period (the same time period is the same time or a shorter time range) within [T 1 , T 2 ], the method is:
将采样周期[T1,T2]划分为P个时间段dt(dt一般取60秒),从Data-format获取每个时间段内的数据点,比较各数据点精度,取精度维度数PN(小数点位数满足约定有效数字位数的维度为精度维度数,如时间戳1633061532000的数据(2.030,0.696,122.455,100.000,0.4115),其5个维度的数据的小数点位数均满足2.3步格式转换后的有效数字位数,精度维度数PN为5);将PN最大的数据点作为该dt内的特征点,具体方法如下:Divide the sampling period [T 1 , T 2 ] into P time periods dt (dt generally takes 60 seconds), obtain data points in each time period from Data-format, compare the accuracy of each data point, and take the precision dimension PN (The dimension whose number of decimal points satisfies the agreed number of valid digits is the number of precision dimensions, such as the data of timestamp 1633061532000 (2.030, 0.696, 122.455, 100.000, 0.4115), the number of decimal places of the data in the five dimensions all meet the 2.3 step format The number of significant digits after conversion, the number of precision dimensions PN is 5); the data point with the largest PN is used as the feature point in the dt, the specific method is as follows:
2.4.1:令变量p=1;2.4.1: Let the variable p=1;
2.4.1.1:令Data-format的第p个时间段dtp内有数据点L+1个,令这L+1个数据点组成dtp内数据点集合DDp:2.4.1.1: Let there be L+1 data points in the pth time period dt p of Data-format, and let these L+1 data points form the data point set DD p in dt p :
DDp={Dp0,Dp1,…,DpL|st:max(tp0,tp1,…,tpL)-min(tp0,tp1,…,tpL)≤dtp} (4)DD p ={D p0 ,D p1 ,…,D pL |st:max(t p0 ,t p1 ,…,t pL )-min(t p0 ,t p1 ,…,t pL )≤dt p } (4 )
Dpl为第l+1个数据点,放入DDp的数据点满足DDp中L+1个数据点的时刻最大值max(tp0,tp1,…,tpL)与DDp中L+1个数据点的时刻最小值min(tp0,tp1,…,tpL)的差在dtp范围内。D pl is the l+1th data point, and the data points placed in DD p satisfy the maximum value max(t p0 ,t p1 ,…,t pL ) of the L+1 data points in DD p and L in DD p The difference between the minimum value min(t p0 ,t p1 ,…,t pL ) of +1 data point is within the range of dt p .
2.4.1.2:计算Dp0,Dp1,…,DpL的精度维度数PN:2.4.1.2: Calculate the number of precision dimensions PN of D p0 , D p1 ,..., D pL :
(由于(tin′,longin′,latin′,altin′,vin′,vθin′)中时间维度为整数。不需要计算精度有效位数,因此PN最大为5),仅计算longin′,latin′,altin′,vin′,vθin′这5个维度的精度维度数,方法是:(Because the time dimension in (t in ′, long in ′, lat in ′, alt in ′, v in ′, vθ in ′) is an integer. It is not necessary to calculate the effective digits of precision, so the maximum PN is 5), only calculate Long in ′, lat in ′, alt in ′, v in ′, vθ in ′, the precision dimensions of these 5 dimensions, the method is:
2.4.1.2.1令变量l=0;2.4.1.2.1 Let the variable l=0;
2.4.1.2.2检查Dpl的longin′,latin′,altin′,vin′,vθin′的数据精度有效位数个数,若有w个维度满足2.3步格式转换后的小数点位数,则令Dpl的精度维度数 2.4.1.2.2 Check the number of effective digits of data precision of long in ′, lat in ′, alt in ′, v in ′, vθ in ′ of D pl , if there are w dimensions that satisfy the decimal point after format conversion in step 2.3 number of digits, then let the number of precision dimensions of D pl be
2.4.1.2.3令l=l+1;若l≤L,转2.4.1.2.2;若l>L,计算完毕,得到Dp0,Dp1,…,Dpl的数据精度维度数为转2.4.1.3;2.4.1.2.3 Let l=l+1; if l≤L, go to 2.4.1.2.2; if l>L, the calculation is completed, and the number of data precision dimensions of D p0 , D p1 ,...,D pl is Go to 2.4.1.3;
2.4.1.3:找到中的最大值,令该最大值的数据点为Dpmax:2.4.1.3: Found The maximum value in , let the data point of the maximum value be D p max:
Dpmax=(dptp,dplongp,dplatp,dpaltp,dpvp,dpvθp) (5)D p max=(dpt p ,dplong p ,dplat p ,dpalt p ,dpv p ,dpvθ p ) (5)
其中dptp,dplongp,dplatp,dpaltp,dpvp,dpvθp分别为精度维度数最大值在第p个时间段dtp内对应的数据点的6个维度的值。Among them, dpt p , dplong p , dplat p , dpalt p , dpv p , and dpvθ p are the values of the six dimensions of the data points corresponding to the maximum number of precision dimensions in the p-th time period dt p .
2.4.2:将Dpmax放到轨迹数据集Data-precision;2.4.2: Put D p max in the trajectory data set Data-precision;
2.4.3:令p=p+1;若p≤P,转2.4.1.1;若p>P,说明同一时段数据提取完毕,得到目标在[T1,T2]时间段内的轨迹数据集Data-precision:2.4.3: Let p=p+1; if p≤P, go to 2.4.1.1; if p>P, it means that the data extraction in the same period is completed, and the trajectory data set of the target within the time period [T 1 , T 2 ] is obtained Data-precision:
其中P是采样周期[T1,T2]划分的时间段个数,也即Data-precision中轨迹数据的个数。Where P is the number of time segments divided by the sampling period [T 1 , T 2 ], that is, the number of trajectory data in Data-precision.
第三步、轨迹重采样器基于三次样条曲线差值算法对Data-precision进行给定采样率的轨迹重构,得到采样率f下的重采样数据集Data-sample,方法是:In the third step, the trajectory resampler reconstructs the trajectory with a given sampling rate for Data-precision based on the cubic spline curve difference algorithm, and obtains the resampled data set Data-sample at the sampling rate f. The method is:
3.1:对[T1,T2]设定采样率f(采样率一般取1,即每间隔1秒采集一次数据)(令采集时间间隔tf=1/f),生成IS-1个等间隔时刻点的时刻,IS为正整数,为时刻集合Tf的样本容量,将这IS-1个等间隔时刻点和T1,T2放到采样率f的时刻集合Tf中,最后一个时刻取T1+(IS-1)×tf,T2的最小值:3.1: Set the sampling rate f for [T 1 , T 2 ] (the sampling rate is generally taken as 1, that is, data is collected every 1 second) (let the collection time interval t f =1/f), generate IS-1, etc. At the time of the interval time point, IS is a positive integer, which is the sample capacity of the time set T f . Put these IS-1 equal interval time points and T 1 , T 2 into the time set T f of the sampling rate f, and the last Take the minimum value of T 1 +(IS-1)×t f , T 2 at all times:
Tf={T1,T1+1×tf,T1+2×tf,…,min(T1+(IS-1)×tf,T2)} (7)T f ={T 1 ,T 1 +1×t f ,T 1 +2×t f ,…,min(T 1 +(IS-1)×t f ,T 2 )} (7)
3.2:使用三次样条曲线差值算法(三次样条插值算法参见:[1]宋阳.基于自适应三次样条插值的ACARS航迹重构算法研究.中国民航大学,2017.)计算Tf中各时刻对应的经度、维度、高度、速度大小以及速度方向,形成采样率f下的重采样数据集,具体方法是:3.2: Use cubic spline curve difference algorithm (cubic spline interpolation algorithm see: [1] Song Yang. Research on ACARS track reconstruction algorithm based on adaptive cubic spline interpolation. Civil Aviation University of China, 2017.) to calculate T f The longitude, latitude, height, velocity, and velocity direction corresponding to each moment in , form a resampling data set under the sampling rate f, the specific method is:
3.2.1从Data-precision中选取数据,组合成二维数据(X,Y),其中X={dptp|p=1,…,P}为时间数据,Y={Yk|k=1,…,5}包含其他5个维度数据;3.2.1 Select data from Data-precision and combine them into two-dimensional data (X, Y), where X={dpt p |p=1,...,P} is time data, Y={Y k |k=1 ,...,5} contains other 5 dimension data;
3.2.2:令k=1;3.2.2: let k=1;
3.2.3:对数据集(X,Yk),设P个数据点为(x0,y0),(x1,y1),…,(xP-1,yP-1),使用三次样条曲线差值算法求解每一曲线段三次样条曲线系数向量(aq,bq,cq,dq),使得在每一个区间xq≤x≤xq+1,q=0,1,…,P-1,数据拟合的样条函数为:3.2.3: For the data set (X,Y k ), set P data points as (x 0 ,y 0 ),(x 1 ,y 1 ),…,(x P-1 ,y P-1 ), Use the cubic spline difference algorithm to solve the cubic spline coefficient vector (a q ,b q ,c q ,d q ) of each curve segment, so that in each interval x q ≤x≤x q+1 , q= 0,1,…,P-1, the spline function for data fitting is:
fq(x)=(aq,bq,cq,dq)×(1,(x-xq),(x-xq)2,(x-xq)3)T (9)f q (x)=(a q ,b q ,c q ,d q )×(1,(xx q ),(xx q ) 2 ,(xx q ) 3 ) T (9)
3.2.4:将采样时间带入公式(9),计算拟合结果,并将拟合结果存放到重采样数据集Data-sample中,方法是:3.2.4: Bring the sampling time into formula (9), calculate the fitting result, and store the fitting result in the resampling data set Data-sample, the method is:
3.2.4.1:令is=1,3.2.4.1: let is=1,
3.2.4.2取时刻集合Tf的第is个数据,令为tis,tis=T1+(is-1)×tf;3.2.4.2 Take the is-th data of time set T f , let it be t is , t is =T 1 +(is-1)×t f ;
3.2.4.3:计算时刻tis的第k维数据 3.2.4.3: Calculate the k-th dimension data at time t is
3.2.4.4:将保存于拟合后矩阵的k行第is个数据上;3.2.4.4: Will Save in the fitted matrix On the is-th data of k row;
3.2.4.5:令is=is+1:3.2.4.5: let is=is+1:
若is≤IS,第k维数据未拟合计算完,转3.2.4.2,If is≤IS, the k-th dimension data has not been fitted and calculated, go to 3.2.4.2,
若is>IS,第k维数据拟合计算完,转3.2.4.6;If is>IS, the k-th dimension data fitting calculation is completed, go to 3.2.4.6;
3.2.4.6:令k=k+1:3.2.4.6: Let k=k+1:
若k≤5,转3.2.3;If k≤5, go to 3.2.3;
若k>5,所有维度数据拟合计算完,生成拟合矩阵为:If k>5, all dimension data fitting calculations are completed, and a fitting matrix is generated for:
基于时间数据Tf和其他5个维度拟合后的数据得到采样率f下的重采样数据集Data-sample:Fitted data based on time data T f and other 5 dimensions Get the resampled data set Data-sample at the sampling rate f:
Data-sample={(dstis,dslongis,dslatis,dsaltis,dsvis,dsvθis)|tis∈Tf,is=1,…,IS} (12)Data-sample={(dst is ,dslong is ,dslat is ,dsalt is ,dsv is ,dsvθ is )|t is ∈T f ,is=1,…,IS} (12)
时刻dstis=Tf,is(Tf,is表示Tf的第is个数据);Moment dst is =T f, is (T f, is represents the is data of T f );
dslongis,dslatis,dsaltis,dsvis,dsvθis为每个维度的数据拟合出的结果,即 dslong is ,dslat is ,dsalt is ,dsv is ,dsvθ is are the results of data fitting for each dimension, namely
第四步、速度修正器基于等时间间隔对Data-sample进行轨迹数据速度矢量修正,得到轨迹重构数据集D,方法是:In the fourth step, the speed corrector corrects the trajectory data velocity vector of the Data-sample based on equal time intervals to obtain the trajectory reconstruction data set D. The method is:
数据集Data-sample为等时间间隔下的数据,而速度矢量为监测数据的重采样,在实际中速度矢量可以根据时间、经度、维度、高度进行计算得出,为了不引入计算误差,现有方法一般对速度矢量通过传感器进行观测,但传感器采集的速度矢量波动性大、不能直接用于数据分析,为确保速度矢量精度较高,本发明使用计算的空间速度矢量与传感器观测采集的速度矢量进行对比修正,获得较好的速度矢量数据,具体步骤如下:The data set Data-sample is the data at equal time intervals, and the velocity vector is the resampling of the monitoring data. In practice, the velocity vector can be calculated according to time, longitude, latitude, and height. In order not to introduce calculation errors, the existing The method generally observes the velocity vector through a sensor, but the velocity vector collected by the sensor has large fluctuations and cannot be directly used for data analysis. Perform comparison and correction to obtain better velocity vector data, the specific steps are as follows:
4.1:根据Data-sample计算各数据点的空间速度,得到空间速度重采样数据集,方法是:4.1: Calculate the space velocity of each data point according to the Data-sample, and obtain the space velocity resampling data set, the method is:
4.1.1:令is=1;4.1.1: let is=1;
4.1.2根据Data-sample中的第is个数据点4.1.2 According to the is data point in Data-sample
(dstis,dslongis,dslatis,dsaltis,dsvis,dsvθis)的时间、经度、纬度以及高度值计算,得到空间速度大小与空间速度方向方法如下:(dst is ,dslong is ,dslat is ,dsalt is ,dsv is ,dsvθ is ) time, longitude, latitude and height value calculation to get the space velocity and space velocity direction Methods as below:
4.1.2.1使用Haversine公式根据经纬度计算第is项数据点和第js项数据点(dstjs,dslongjs,dslatjs,dsaltjs,dsvjs,dsvθjs)(js=is+λ,λ为步长,默认为1)在水平面上的距离,Haversin公式为:4.1.2.1 Use the Haversine formula to calculate the is-th data point and js-th data point according to latitude and longitude (dst js , dslong js , dslat js , dsalt js , dsv js , dsvθ js ) (js=is+λ, λ is the step size , the default is 1) the distance on the horizontal plane, the Haversin formula is:
其中:haversin(θ)=sin2(θ/2)=(1-cos(θ))/2,R为地球半径,取6371km;Among them: haversin(θ)=sin 2 (θ/2)=(1-cos(θ))/2, R is the radius of the earth, which is 6371km;
计算得出第is项数据点和第js项数据点水平面上的距离dis,js为:The distance d is,js on the horizontal plane between the data point of the is item and the data point of the js item is calculated as:
4.1.2.2计算空间速度大小与空间速度方向方法为:4.1.2.2 Calculation of space velocity and space velocity direction The method is:
a,b为计算过程的参数,参数a为cos(latis+1)sin(longis+1-longis);a, b are the parameters of the calculation process, and the parameter a is cos(lat is+1 )sin(long is+1 -long is );
参数b为 The parameter b is
4.1.3将放到空间速度重采样数据集 4.1.3 Will into the space velocity resampling dataset
4.1.4令is=is+1;若is≤IS,转4.1.2;若is>IS,说明计算完毕,得到速度重采样数据集:4.1.4 Let is=is+1; if is≤IS, go to 4.1.2; if is>IS, it means that the calculation is completed, and the speed resampling data set is obtained:
4.2:根据设定误差率(h)修正速度矢量,方法是:4.2: Correct the velocity vector according to the set error rate (h), the method is:
以计算的空间速度矢量为标准,对Data-sample中采集的速度矢量进行修正,若采集的速度矢量在误差率范围内则保留采集的速度矢量,否则用计算的空间速度矢量代替Data-sample中采集的速度矢量。Based on the calculated space velocity vector as the standard, correct the velocity vector collected in the Data-sample. If the collected velocity vector is within the error rate range, keep the collected velocity vector; otherwise, use the calculated space velocity vector to replace the data in the Data-sample. Acquired velocity vector.
4.2.1从键盘接收用户输入的误差率h,一般取0.05;4.2.1 The error rate h for receiving user input from the keyboard is generally 0.05;
4.2.2:令is=1;4.2.2: let is=1;
4.2.3取Data-sample的第is项数据点的速度大小dsvis、速度方向dsvθis,取中第is项数据点的空间速度大小与空间速度方向计算dsvis和的差距、dsvθis和的差距,根据差距与h的关系,确定修正后的速度矢量的大小vis*和速度方向vθis*,方法如公式(18)所示:4.2.3 Take the velocity magnitude dsv is and the velocity direction dsvθ is of the data point of the is item of Data-sample, and take The space velocity of the data point of the is item in and space velocity direction Calculate dsv is and The gap, dsvθ is and According to the relationship between the gap and h, determine the magnitude of the velocity vector v is * and the velocity direction vθ is * after correction, the method is shown in formula (18):
4.2.4采用(vis*,vθis*)替换数据集Data-sample中的(dsvis,dsvθis),将(dstis,dslongis,dslatis,dsaltis,vis*,vθis*)放到轨迹重构数据集D中。4.2.4 Use (v is *, vθ is *) to replace (dsv is , dsvθ is ) in the data set Data-sample, and replace (dst is , dslong is , dslat is , dsalt is , v is *, vθ is * ) into the trajectory reconstruction data set D.
4.2.5令is=is+1;若is≤IS,转4.2.2;若is>IS,说明替换完毕,得到目标时间段[T1,T2]设定采样率f的轨迹重构数据,包括轨迹重构数据集D和Tf:4.2.5 Let is=is+1; if is≤IS, go to 4.2.2; if is>IS, it means that the replacement is completed, and the trajectory reconstruction data with the sampling rate f set in the target time period [T 1 , T 2 ] is obtained , including trajectory reconstruction datasets D and T f :
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111422153.1A CN113986906B (en) | 2021-11-26 | 2021-11-26 | A Trajectory Reconstruction Method Based on Situational Targets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111422153.1A CN113986906B (en) | 2021-11-26 | 2021-11-26 | A Trajectory Reconstruction Method Based on Situational Targets |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113986906A CN113986906A (en) | 2022-01-28 |
CN113986906B true CN113986906B (en) | 2022-11-04 |
Family
ID=79732117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111422153.1A Active CN113986906B (en) | 2021-11-26 | 2021-11-26 | A Trajectory Reconstruction Method Based on Situational Targets |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113986906B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117576294B (en) * | 2024-01-16 | 2024-03-26 | 太原理工大学 | Data transmission parameter optimization method for mining equipment digital twin system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107450472B (en) * | 2017-08-31 | 2019-06-07 | 华中科技大学 | The method for realizing cutter path parameter arc length based on three bezier curve interpolation |
CN107450471B (en) * | 2017-08-31 | 2019-06-11 | 华中科技大学 | A method for realizing arc length of tool path parameters based on cubic PH curve interpolation |
-
2021
- 2021-11-26 CN CN202111422153.1A patent/CN113986906B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113986906A (en) | 2022-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mitasova et al. | Modelling spatially and temporally distributed phenomena: new methods and tools for GRASS GIS | |
CN110197035B (en) | Channel underwater terrain change analysis system and method | |
CN112560595A (en) | River cross section flow calculation method based on river surface flow velocity | |
CN101050961A (en) | Method for fine correcting satellite remote sensing image geometry based on topographic line | |
CN111046737B (en) | Efficient intelligent sensing acquisition method for microseism signal detection | |
CN113986906B (en) | A Trajectory Reconstruction Method Based on Situational Targets | |
CN105118090A (en) | Adaptive point-cloud filtering method for complex terrain structure | |
CN113642544B (en) | Automatic extraction method and system of suspected ground disaster hidden danger area based on InSAR deformation information | |
CN117409168B (en) | Flood forecasting and flood simulation method and system for real-time dynamic rendering | |
CN116563718B (en) | Remote sensing mapping-based carbon reserve estimation method | |
Moenning et al. | Fast marching farthest point sampling for implicit surfaces and point clouds | |
CN110084740A (en) | A kind of generation of spherical surface image and conversion method based on normalization structure | |
CN110852474B (en) | Land water reserve prediction method, device and equipment based on decision tree algorithm | |
CN112241676A (en) | Method for automatically identifying terrain sundries | |
Changjun et al. | A point clouds filtering algorithm based on grid partition and moving least squares | |
CN118503578B (en) | Lake water storage remote sensing monitoring precision evaluation method and system | |
Yan et al. | GEOP-Net: Shape reconstruction of buildings from LiDAR point clouds | |
CN103984748B (en) | A kind of solar wind data partition, coding and the access method of large scale solar-terrestrial physics | |
CN115424131B (en) | Cloud detection optimal threshold selection method, cloud detection method and cloud detection system | |
CN117291042A (en) | Underwater three-dimensional temperature field reconstruction method and device based on peak surface feature consideration | |
Debella-Gilo | Bare-earth extraction and dtm generation from photogrammetric point clouds with a partial use of an existing lower resolution DTM | |
CN113792105B (en) | Geospatial point data sampling method based on half-variogram | |
Cheng et al. | Tree skeleton extraction from a single range image | |
Liang et al. | Three-Dimensional Reconstruction and Phenotype Nondestructive Measurement Technology for Rape Roots | |
CN113821850B (en) | Geological boundary optimization method for steep slope oblique photography model by utilizing point offset technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |