CN113981328B - 表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法 - Google Patents

表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法 Download PDF

Info

Publication number
CN113981328B
CN113981328B CN202111101224.8A CN202111101224A CN113981328B CN 113981328 B CN113981328 B CN 113981328B CN 202111101224 A CN202111101224 A CN 202111101224A CN 113981328 B CN113981328 B CN 113981328B
Authority
CN
China
Prior art keywords
stainless steel
austenitic stainless
aluminum
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111101224.8A
Other languages
English (en)
Other versions
CN113981328A (zh
Inventor
文玉华
沈林
何伟
彭华备
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202111101224.8A priority Critical patent/CN113981328B/zh
Publication of CN113981328A publication Critical patent/CN113981328A/zh
Application granted granted Critical
Publication of CN113981328B publication Critical patent/CN113981328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Abstract

本发明提供的表面自发连续生成Al2O3膜的含铝奥氏体不锈钢,其特征在于室温下奥氏体基体内有体积分数为5~20%的NiAl第二相。该合金是由本发明提供的方法制备的,该方法是将熔炼获得的由Fe、Ni、Cr、Al、Mn、Nb、C、Si、B元素组成的奥氏体不锈钢经铸造或锻造或热轧或冷轧或冷拉的板材,在温度高于1100℃下固溶处理至少0.5小时后,再在800~1050℃下进行时效处理至少5小时。经本发明制备的含铝奥氏体不锈钢,经高温氧化或在高温使用过程中表面能自发连续生成Al2O3膜,避免局部富Cr的M3O4类型氧化瘤的生成。

Description

表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制 备方法
技术领域
本发明属于奥氏体不锈钢领域,具体涉及一种表面能自发连续生成Al2O3膜的含铝奥氏体不锈钢及其制备方法。用该方法制备的含铝奥氏体不锈钢经高温氧化或在高温使用过程中在其表面能自发生成连续致密的Al2O3膜,可在石油化工、海洋工程、先进核能等领域获得应用。
背景技术
奥氏体不锈钢广泛应用于石油化工、海洋工程、先进核能等领域。在这些高温腐蚀环境下奥氏体钢普遍存在氢损伤问题,会导致材料力学性能失效或脆性断裂,严重影响其服役安全性。Al2O3涂层具有优良的高温抗氧化性能、极低的氢渗透率和抗辐照损伤等优点,被认为是高温综合使用性能最好的阻氢涂层材料。此外,Al2O3涂层还具有优良的耐液态金属腐蚀能力,可用于铅铋快堆结构材料的防护涂层。例如,在316L奥氏体钢上制备Al2O3涂层能有效防止材料在液态铅铋环境中的溶解腐蚀。目前,涂层的主要制备方法有物理气相沉积(PVD)、化学气相沉积(CVD)和等离子喷涂等。但采用上述表面工程的方法在奥氏体不锈钢表面制备的Al2O3涂层与基体存在界面结合力差、制备工艺复杂、加工成本较高的问题。此外,奥氏体不锈钢的热膨胀系数(17.8×10-6K-1)是Al2O3的热膨胀系数(3.8×10-6 K-1)的近5倍。因而,Al2O3涂层还存在耐热循环能力差的问题。对工程应用而言,采用上述表面工程的方法制备涂层还受到零件形状和尺寸的限制,难以在大尺寸、结构复杂的零件上实施,不适合工业化生产。
研究表明含铝的奥氏体不锈钢在650~1100℃高温氧化过程中能在表面自发生成Al2O3膜。由于是在表面自发生长的,因而Al2O3膜与基体不仅具有好的界面结合力和耐热循环的能力,而且不受零件的形状和尺寸限制。含铝奥氏体钢通过添加Y、Hf等稀土元素来促进 Al向表面扩散形成Al2O3膜,从而提高钢的抗氧化性能。但是稀土的价格昂贵,且在熔炼过程中稀土的添加工艺复杂,添加稀土势必会大幅增加生产成本,不利于工业化生产。Nb能与C形成纳米级NbC析出相,因此Nb的添加能提高含铝奥氏体钢的高温蠕变性能。此外, B元素的添加能提高晶界稳定性,也有利于提高钢的高温力学性能。专利号为ZL201010232851.0的专利公开了一种Al含量为2.5~4.5%(质量百分比)的含铝奥氏体耐热不锈钢,该钢在高温氧化过程中表面能够自发形成Al2O3膜。但这种含铝的奥氏体耐热不锈钢自发形成的Al2O3膜并不是连续的,局部存在大块、不致密的富Cr的M3O4(M为Cr,Fe,Mn)类型的氧化瘤(Kang J Y.et al.Scripta Materialia,2015,102,P63;Brady M P.etal.Oxidation of metals,2009,72,P311;Brady M P.et al.Oxidation of metals,2011,75,P337)。此外,在含铝奥氏体钢中Mn的加入有增加钢液流动性、利于钢的脱硫、降低成本等优点,但在氧化过程中Mn会导致CrMn1.5O4等氧化物形成,破坏Al2O3膜的连续性,因此需要控制钢中的Mn含量(Xu X Q.et al.Oxidation of metals,2012,78,P349)。
发明内容
本发明的目的是针对含铝奥氏体不锈钢经高温氧化或在高温使用时表面自发生成 Al2O3膜的过程中,由于局部富Cr的M3O4类型氧化瘤形成导致的氧化膜不连续的问题以及含铝奥氏体不锈钢中添加稀土导致工业化生产成本较高的问题,提供一种表面能自发连续生成Al2O3膜的含铝奥氏体不锈钢及其制备方法。
本发明提供的表面自发连续生成Al2O3膜的含铝奥氏体不锈钢,该钢由Fe、Ni、Cr、Al、Mn、Nb、C、Si、B元素组成,其特征在于室温下奥氏体基体中有体积分数为5~20%的NiAl第二相,各元素的质量百分比为:Ni 12~35%,Cr 10~25%,Al 2.5~5.5%,Mn 0~2%,Nb 0.6~3.0%,C 0.06~0.3%,Si 0.1~0.2%,B 0.006~0.01%,余量为Fe。本发明提供的这种表面自发连续生成Al2O3膜的含铝奥氏体不锈钢是由本发明提供的方法制备的,该制备方法是将熔炼获得的由Fe、Ni、Cr、Al、Mn、Nb、C、Si和B元素组成的奥氏体不锈钢经铸造或锻造或热轧或冷轧或冷拉的板材,在温度高于1100℃下固溶处理至少0.5小时后,再在800~1050℃下进行时效处理至少5小时,其特征在于室温下奥氏体基体内有体积分数为5~20%的NiAl 第二相,各元素的质量百分比为:Ni 12~35%,Cr 10~25%,Al 2.5~5.5%,Mn 0~2%,Nb 0.6~3.0%,C 0.06~0.3%,Si 0.1~0.2%,B 0.006~0.01%,余量为Fe。
从热力学角度分析,在氧化过程中更稳定的Al2O3膜应优先形成。但在氧化初期,局部地方由于成分的不均匀或Al的扩散受到阻碍,动力学上富Cr的M3O4类型氧化瘤会优先形成。而固溶在面心立方晶体结构奥氏体中的Al扩散较慢,近表面的Al无法及时得到补充,随着氧化时间的延长氧化瘤不断长大,最终出现剥落。其结果是表面的Al2O3膜不能连续生成。因此,促进Al在氧化初期的扩散是抑制富Cr的M3O4类型氧化瘤形成和长大的关键。
目前公开的含铝奥氏体不锈钢通常是经过高温固溶获得单相奥氏体后直接在650-1100℃进行高温氧化或使用。由于热力学平衡的要求,高温固溶的含Al奥氏体不锈钢在高温氧化过程中奥氏体基体中会有NiAl第二相析出。但研究发现在紧靠表面氧化膜界面的奥氏体基体中无NiAl相存在,形成NiAl贫化区(如图1a所示)。分析认为析出的NiAl相会发生分解来提供Al元素,以维持表面Al2O3的生长。即NiAl相可作为Al元素的存储器,在高温氧化过程中为Al2O3膜生长提供Al元素。本发明通过固溶后时效使奥氏体基体预先析出NiAl第二相,在高温氧化初期通过其快速分解来提供Al2O3膜形成所需的Al元素,使Al2O3膜能快速在表面自发连续形成,进而抑制局部富Cr的M3O4类型氧化瘤形成(如图1b所示)。
热力学上,较低的时效温度虽然可以析出更多的NiAl相,但需要较长的时间,不利于工程化。较高的时效温度可以加速NiAl相的析出,但析出的数量少,尺寸大,分布不均匀,难以保证Al2O3膜的连续形成。此外,过多的NiAl相析出会导致Al、Cr、Ni等元素在奥氏体钢中重新分布,使得钢在氧化过程中发生Al的内氧化,不能在表面形成连续Al2O3膜。因此本发明的时效温度选择800~1050℃,优选850~950℃,时效时间为5~20小时。经过优选温度和时间时效后,析出的NiAl析出相的体积分数为5~20%,尺寸为0.5~10μm。
附图说明
图1为不同热处理状态的奥氏体钢在高温氧化过程中的组织形态示意图。
图2为本发明时效处理后实施例3样品的XRD结果及析出相SEM图。
图3为本发明时效处理后实施例4样品的XRD结果及析出相SEM图。
图4为本发明时效处理后实施例4样品高温氧化后的表面形貌图。
图5为实施例4样品高温氧化后的截面SEM图和EDS能谱分析结果。
图6为不经过时效处理直接高温氧化对比例1样品的表面形貌图。
图7为对比例1样品氧化瘤的截面SEM图和EDS能谱分析结果。
图8为不经过时效处理直接高温氧化对比例2样品的表面形貌图。
图9为对比例3样品时效后组织的SEM结果及其高温氧化后的表面形貌图。
具体实施方式
下面给出实施例,以对本发明做进一步说明。值得指出的是,给出的实施例不能理解为对本发明保护范围的限制,该领域的技术熟练人员根据上述本发明的内容对本发明作出的一些非本质的改进和调整都应涵盖在本发明的保护范围之内。
本发明实施例1-7奥氏体耐热钢的化学成分如表1所示。在具体实施过程中,本发明提供一种能连续生成Al2O3膜的奥氏体耐热钢板材,其高温氧化工艺流程为:时效处理→金属表面预处理→高温氧化→Al2O3膜的形成。对实施例1-7时效后的样品通过XRD和SEM 方法表征NiAl第二相,并采用Image-Pro软件统计NiAl相的尺寸和体积分数,结果见表2。
表1实施例和对比例奥氏体耐热钢的化学成分
Figure GDA0003395773730000041
实施例1。
实施例1采用下述方法制备,具体步骤如下。
(1)对试样进行时效处理:将尺寸为20mm×10mm×3mm的固溶态试样放入坩埚内,在950℃时效5小时析出NiAl相,其含量为15.3%,尺寸约为1~8μm。
(2)金属表面预处理:将时效后的试样用砂纸从80#逐级打磨至2000#,经酒精超声清洗后烘干。
(3)连续致密Al2O3膜形成:将烘干后的试样放入坩埚内,在1100℃的空气环境中高温氧化100小时后取出。
通过上述方法可在含铝奥氏体耐热钢表面形成一层连续致密的Al2O3膜。
实施例2-7。
在实施例2-7中,奥氏体钢的其他表面处理工艺与实施例1一样,其不同之处在于,采用了不同的时效处理工艺,高温氧化温度和时间也有不同。实施例1-7采用的时效工艺及氧化条件见表2。
表2实施例和对比例的热处理工艺及其氧化结果
Figure GDA0003395773730000051
从表2可以看出,含铝奥氏体不锈钢固溶后在850-950℃时效处理,使得基体中预先析出 NiAl第二相,有利于Al2O3膜的形成,能够抑制氧化瘤的产生。同时,含铝奥氏体不锈钢中 Mn的添加量控制在2wt.%以下时,不会影响其表面Al2O3膜的连续形成。其中实施例3和4 样品的XRD和SEM结果分别见图2和3,SEM图中析出相对应的EDS分析结果见表3。结合XRD和EDS结果分析可知,经本发明时效处理后实施例3和4的奥氏体钢基体中有大量 NiAl相析出,计算得到其NiAl相的体积分数分别为9.5%和8.7%。实施例4中的奥氏体钢在 900℃时效10小时后再经1050℃氧化100h的试样表面形貌见图4,观察可见试样表面平整光洁、无大块氧化瘤形成。从试样的截面SEM图及EDS能谱分析结果可见,经本发明时效处理后再高温氧化的奥氏体钢表面能形成连续致密的Al2O3膜,其厚度约为2μm,见图5。
表3实施例3和4样品SEM图中析出相对应的EDS分析结果
Figure GDA0003395773730000061
对比例1。
将20mm×10mm×3mm尺寸的奥氏体耐热钢(化学成分与实施例4相同,见表1) 试样用砂纸逐级打磨至2000目,经酒精超声清洗后烘干备用。然后将烘干后的试样放入坩埚内,在1050℃的空气环境中高温氧化100小时。与实施例4的不同之处在于:试样没有采用时效处理先析出NiAl相后再进行高温氧化,而是固溶后直接高温氧化。图6为高温氧化后试样的表面形貌,可见试样表面有大块氧化瘤形成。氧化瘤的SEM分析结果见图7,该氧化瘤主要为富Cr的氧化物。
对比例2。
将20mm×10mm×3mm尺寸的奥氏体耐热钢(化学成分与实施例5相同,见表1) 试样用砂纸逐级打磨至2000目,经酒精超声清洗后烘干备用。然后将烘干后的试样放入坩埚内,在800℃的空气环境中高温氧化300小时。与实施例5的不同之处在于:试样没有采用时效处理先析出NiAl相后再进行高温氧化,而是固溶后直接高温氧化。图8为高温氧化后试样的表面形貌,可见试样表面有大块氧化瘤形成。
对比例3。
将20mm×10mm×3mm尺寸的奥氏体耐热钢(化学成分与实施例6相同,见表1) 试样用砂纸逐级打磨至2000目,经酒精超声清洗后烘干备用。然后将烘干后的试样放入坩埚内,在750℃的空气环境中高温氧化300小时。与实施例6的不同之处在于:试样的时效温度为1100℃,时效时间为2小时。图9为试样时效后组织的SEM结果及其高温氧化后的表面形貌图,可见时效后试样的NiAl相含量低于5%,尺寸小于0.5μm,经750℃高温氧化后试样表面有氧化瘤形成。
实施例与对比例的结果表明,本发明通过固溶后在850-950℃时效处理使奥氏体基体中预先析出NiAl第二相,在高温氧化过程中Al2O3膜能够快速在含铝奥氏体钢的表面自发连续形成,从而抑制了氧化瘤的形成。

Claims (3)

1.一种表面自发连续生成Al2O3膜的含铝奥氏体不锈钢,该钢由Fe、Ni、Cr、Al、Mn、Nb、C、Si和B元素组成,其特征在于室温下奥氏体基体中有体积分数为5~20%、尺寸为0.5~10μm的NiAl第二相,各元素的质量百分比为:Ni 12~35%, Cr 10~25%, Al 2.5~5.5%, Mn 0~2%,Nb 0.6~3.0%, C 0.06~0.3%, Si 0.1~0.2%, B 0.006~0.01%, 余量为Fe。
2.一种制备权利要求1所述的含铝奥氏体不锈钢的方法,是将熔炼获得的由Fe、Ni、Cr、Al、Mn、Nb、C、Si和B元素组成的奥氏体不锈钢经铸造或锻造或热轧或冷轧或冷拉的板材,在温度高于1100℃下固溶处理至少0.5小时后,再在800~1050 ℃下进行时效处理至少5小时,其特征在于室温下奥氏体基体内有体积分数为5~20%的NiAl第二相,各元素的质量百分比为:Ni 12~35%, Cr 10~25%, Al 2.5~5.5%, Mn 0~2%, Nb 0.6~3.0%, C 0.06~0.3%, Si0.1~0.2%, B 0.006~0.01%, 余量为Fe。
3.根据权利要求2所述方法制备的含铝奥氏体不锈钢,其特征在于固溶处理后的时效温度为850~950℃,时效时间为5~20小时。
CN202111101224.8A 2021-09-18 2021-09-18 表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法 Active CN113981328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111101224.8A CN113981328B (zh) 2021-09-18 2021-09-18 表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111101224.8A CN113981328B (zh) 2021-09-18 2021-09-18 表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法

Publications (2)

Publication Number Publication Date
CN113981328A CN113981328A (zh) 2022-01-28
CN113981328B true CN113981328B (zh) 2022-05-24

Family

ID=79736115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111101224.8A Active CN113981328B (zh) 2021-09-18 2021-09-18 表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法

Country Status (1)

Country Link
CN (1) CN113981328B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369331B (zh) * 2022-07-12 2023-06-30 中广核研究院有限公司 不锈钢材料、不锈钢包壳管及其制备方法
CN115595511B (zh) * 2022-10-26 2023-07-14 四川大学 一种耐液态铅铋腐蚀的含铝奥氏体不锈钢及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906595A (zh) * 2010-07-16 2010-12-08 北京科技大学 一种自发形成Al2O3保护层的奥氏体耐热不锈钢
CN107587080A (zh) * 2017-10-17 2018-01-16 中国华能集团公司 一种沉淀强化耐热钢及其制备工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744575B2 (ja) * 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 複相組織ステンレス鋼鋼板および鋼帯、製造方法
FR3013738B1 (fr) * 2013-11-25 2016-10-14 Aubert & Duval Sa Acier inoxydable martensitique, piece realisee en cet acier et son procede de fabrication
CN111542639A (zh) * 2017-12-28 2020-08-14 日本制铁株式会社 奥氏体系耐热合金

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906595A (zh) * 2010-07-16 2010-12-08 北京科技大学 一种自发形成Al2O3保护层的奥氏体耐热不锈钢
CN107587080A (zh) * 2017-10-17 2018-01-16 中国华能集团公司 一种沉淀强化耐热钢及其制备工艺

Also Published As

Publication number Publication date
CN113981328A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
Wood Fundamental Factors Determining the Mode of Scaling of Heat‐Resistant Alloys
CN113981328B (zh) 表面自发连续生成三氧化二铝膜的含铝奥氏体不锈钢及其制备方法
Wolff et al. Oxidation and corrosion behaviour of Fe–Cr and Fe–Cr–Al alloys with minor alloying additions
Taniguchi Oxidation of intermetallics–Japanese activity
US8197748B2 (en) Corrosion resistant structural alloy for electrolytic reduction equipment for spent nuclear fuel
CN112981210B (zh) 一种核用中熵合金体系及其制备方法与应用
WO2003029505A1 (en) Ferritic stainless steel for use in high temperature applications and method for producing a foil of the steel
Chen et al. The effect of reactive element species and concentrations on the isothermal oxidation of β-NiAl coating fabricated by spark plasma sintering
Smialek Invited review paper in commemoration of over 50 years of oxidation of metals: alumina scale adhesion mechanisms: a retrospective assessment
Ren et al. Spontaneous reaction formation of Cr23C6 diffusion barrier layer between nanocrystalline MCrAlY coating and Ni-base superalloy at high temperature
CN109536883B (zh) 一种提高Ti-45Al-8.5Nb合金高温抗氧化性的方法
Li et al. Microstructure evolution and high-temperature oxidation behavior of FeCrAlNbNi alloyed zone prepared by laser surface alloying on 304 stainless steel
Fu et al. Oxidation behavior of NiCrAlYSi coatings with Re-based diffusion barriers on two superalloys
CN116694978B (zh) 低成本耐热不锈中熵合金及其制备方法
CN109112355B (zh) 一种近α相高强耐腐蚀钛合金及其制备方法
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法
CN111826590B (zh) 一种Fe23Zr6和Fe2M-Laves相共强化的FeCrAl不锈钢及其制备方法
Tang et al. The interfacial stability of the coated-SiC/Fe couple
Li et al. A novel NiCoCrAlPt high-entropy alloy with superb oxidation resistance at 1200° C
Ju et al. Understanding the oxidation behaviors of a Ni-Co-based superalloy at elevated temperatures through multiscale characterization
CN109554529B (zh) 一种基于还原预处理工艺的热轧带钢氧化铁皮还原方法
CN111705195A (zh) 一种含Nb奥氏体耐热钢沉淀强化热处理工艺
Locq et al. Quaternary chromium-based alloys strengthened by Heusler phase precipitation
Yongtao et al. Effect of rare earth (CeCl3) on oxidation resistance of Ni2Al3/Ni composite coatings on heat-resistant steel
CN117026109B (zh) 一种高强抗蠕变低比重的高/中熵耐热钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant