CN113981065A - Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof - Google Patents

Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof Download PDF

Info

Publication number
CN113981065A
CN113981065A CN202111285657.3A CN202111285657A CN113981065A CN 113981065 A CN113981065 A CN 113981065A CN 202111285657 A CN202111285657 A CN 202111285657A CN 113981065 A CN113981065 A CN 113981065A
Authority
CN
China
Prior art keywords
val
mybpc3
glu
ala
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111285657.3A
Other languages
Chinese (zh)
Inventor
刘哲
梁庆渊
赵娜娜
赖开生
刘昕超
高璇
李方玉
侯青
惠汝太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bestnovo Beijing Medical Technology Co Ltd
Original Assignee
Bestnovo Beijing Medical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bestnovo Beijing Medical Technology Co Ltd filed Critical Bestnovo Beijing Medical Technology Co Ltd
Priority to CN202111285657.3A priority Critical patent/CN113981065A/en
Publication of CN113981065A publication Critical patent/CN113981065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to the technical field of human genetics and cardiovascular in internal medicine, in particular to a hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis, wherein compared with a reference sequence of a wild MYBPC3 gene coding DNA, the nucleotide sequence of the mutated hypertrophic cardiomyopathy pathogenic gene MYBPC3 coding DNA is SEQ ID NO. 7; at genomic position chr11:47372859, base G is repeated; the reference genomic version is GRCh 37. The invention also relates to application of the mutated hypertrophic cardiomyopathy pathogenic gene MYBPC3 in preparation of a hypertrophic cardiomyopathy detection kit. The mutant pathogenic gene MYBPC3 provided by the invention can be used as a biomarker for clinical auxiliary diagnosis; the carrier for detecting the variation provides a bearing guide and genetic counseling for the prenatal and postnatal care of a subject, reduces the birth of a child patient, and has important significance for early diagnosis of hypertrophic cardiomyopathy or auxiliary clinical diagnosis.

Description

Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof
Technical Field
The invention relates to the technical field of human genetics and internal medicine cardiovascular, in particular to a hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis and application thereof.
Background
In 1958, Teare first described in detail "Hypertrophic Cardiomyopathy (HCM)" and then the concept was evolving, and it was determined that hypertrophic cardiomyopathy is primarily characterized by high incidence of myocardial hypertrophy and sudden death. At present, HCM is considered as a myocardial disease characterized by myocardial hypertrophy, which is mainly manifested by left ventricular wall thickening, usually refers to ventricular septal or left ventricular wall thickness of more than or equal to 15mm measured by two-dimensional echocardiography, or thickness of more than or equal to 13mm measured by definite family history, usually without enlargement of left ventricular cavity, and needs to eliminate the left ventricular wall thickening caused by increased load such as hypertension, aortic stenosis and congenital aortic subcaloric diaphragm.
According to the Chinese guidelines for diagnosing and treating adult hypertrophic cardiomyopathy (2017), most HCMs are inherited in autosomal dominant form and have obvious familial characteristics, which are called as Familial Hypertrophic Cardiomyopathy (FHCM), and about 60% of adult HCM patients can detect definite pathogenic gene mutation. Molecular genetics research proves that about 40-60% of the mutations are mutations of the gene encoding the sarcomere structural protein, and the mutations of the gene encoding the sarcomere structural protein are MYBPC3 (cardiac myosin binding protein C encoding gene), MYH7, TNNT2, TNNI3, TPM1 and MYL3 in descending order.
At present, a large number of unknown MYBPC3 gene mutation sites still exist, and further, the new MYBPC3 gene mutation sites are found to have important significance for researching pathogenesis of hypertrophic cardiomyopathy, early diagnosis of hypertrophic cardiomyopathy or auxiliary clinical diagnosis.
Disclosure of Invention
The invention aims to provide a hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof.
The technical scheme provided by the invention is as follows:
compared with a reference sequence of a wild-type MYBPC3 gene coding DNA, the nucleotide sequence of the mutant MYBPC3 coding DNA is SEQ ID NO. 7; at genomic position chr11:47372859, base G is repeated; the reference genomic version is GRCh 37.
The invention also provides application of the mutated hypertrophic cardiomyopathy pathogenic gene MYBPC3 in preparation of a hypertrophic cardiomyopathy detection kit.
Preferably, the hypertrophic cardiomyopathy detection kit comprises primers for amplifying a pathogenic gene MYBPC3, and the sequences of the primers are SEQ ID NO. 5 and SEQ ID NO. 6.
Preferably, the hypertrophic cardiomyopathy detection kit further comprises Taq DNA polymerase and PCR buffer solution.
Thirdly, the principle and the beneficial effects of the invention are as follows:
the mutant pathogenic gene MYBPC3 disclosed by the invention can be used as a biomarker for clinical auxiliary diagnosis of hypertrophic cardiomyopathy, and has important significance for early diagnosis of hypertrophic cardiomyopathy or auxiliary clinical diagnosis; the detection kit developed based on the mutant pathogenic gene MYBPC3 can detect the patient with the c.223dupG mutant pathogenic gene MYBPC3, provide the bearing guidance and genetic counseling for the test person, and reduce the birth of the child.
Drawings
FIG. 1 is a family diagram of example 3;
FIG. 2 is a Sanger sequencing graph of proband, proband mother, etc. carrying a mutated disease-causing gene MYBPC3 in the family;
FIG. 3 is a Sanger sequencing graph of the father of the proband in the family.
Detailed Description
The following is further detailed by way of specific embodiments:
example 1 hypertrophic cardiomyopathy-causing Gene MYBPC3 with c.223dupG heterozygosity
The hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis, and the specific mutations are shown in Table 1:
TABLE 1 specific mutation of the mutant virulence gene MYBPC3
Gene Genomic position Transcript number Base change Amino acid changes Reference genome version Exon number
MYBPC3 chr11:47372859 NM_000256 c.223dupG p.Asp75GlyfsTer38 GRCh37/hg19 Exon2
(1) At genomic position chr11:47372810-chr11:47372859, the sequence of the wild-type MYBPC3 gene is SEQ ID NO: 1:
Figure BDA0003332864650000021
Figure BDA0003332864650000022
is the base before mutation at the genomic position chr11: 47372859;
at genomic position chr10:47372810-chr11:47372860, the sequence of the mutant pathogenic gene MYBPC3 is SEQ ID NO: 2:
Figure BDA0003332864650000023
Figure BDA0003332864650000024
base G, which is a repeat (dup) at genomic position chr11: 47372859;
(2) the reference sequence of the wild-type MYBPC3 gene encoding DNA is SEQ ID NO: 3:
Figure BDA0003332864650000025
Figure BDA0003332864650000031
Figure BDA0003332864650000041
Figure BDA0003332864650000042
Figure BDA0003332864650000043
base before mutation at position 223 of a reference sequence of DNA coding for a wild-type MYBPC3 gene.
c.223dupg: compared with the reference sequence of the coding DNA of the wild MYBPC3 gene, the nucleotide sequence of the coding DNA is SEQ ID NO. 7, and the base G of the hypertrophic cardiomyopathy pathogenic gene MYBPC3 at the 223 th site has c.223dupG heterozygosis.
(3) The wild MYBPC3 gene coding protein is SEQ ID NO:
Figure BDA0003332864650000044
Figure BDA0003332864650000051
Figure BDA0003332864650000052
Figure BDA0003332864650000053
aspartic acid (Asp, D) at position 75 of the protein encoded by the wild-type MYBPC3 gene.
p.asp75glyfster38 denotes: the mutation of aspartic acid (Asp, D) at position 75 to glycine (Gly, G) followed by a stop codon at position 37 may result in truncated expression of the protein.
Example 2 application of mutated hypertrophic cardiomyopathy-causing gene MYBPC3 in preparation of hypertrophic cardiomyopathy detection kit
This example provides a kit for detecting human MYBPC3 gene c.223dupG heterozygosis variation, including Taq DNA polymerase, PCR buffer, and MYBPC3 primer for amplifying pathogenic gene.
The specific primer information is as follows:
upstream primer (MYBPC3-E2F, SEQ ID NO: 5): 5'CTCTCCCGACTGCTAGCTG 3';
downstream primer (MYBPC3-E2R, SEQ ID NO: 6): 5'GAAAGCACCTCCTGTTCCCT 3';
length: 591 bp.
The specific steps of screening the patients with c.223dupG MYBPC3 gene mutation by using the kit are as follows: extracting DNA of a person to be detected, amplifying MYBPC3 gene by using designed primer combination (SEQ ID NO:5 and SEQ ID NO:6) to obtain PCR product, detecting the PCR product by using 1.5% agarose gel electrophoresis, detecting and verifying the amplification product to be the expected size by using 1000bp Marker as reference, and finally sequencing the PCR product. And obtaining a reference sequence from an NCBI (https:// www.ncbi.nlm.nih.gov /) database, comparing the reference sequence with a sequencing result, judging whether the MYBPC3 gene of the testee carries c.223dupG heterozygosis variation, and assisting the clinical confirmation of whether the testee has the patient with the c.223dupG MYBPC3 gene mutation.
Example 3 family verification experiment
In this example, the pathogenicity of the mutated pathogenic gene MYBPC3 was verified by family linkage analysis.
Specifically, three generations of members of a hypertrophic cardiomyopathy family are selected, wherein a proband (male, 37 years old) in the family is treated in a hospital outside the hospital of the Chinese medical academy of sciences, and the hypertrophic cardiomyopathy type 4 is clinically diagnosed.
On the premise that the proband the family voluntarily sign an informed consent, the proband and the family send 5-10mL of whole blood samples, establish a medical record database and record the data of the disease condition, the family condition and the like of the proband the family in detail. The study was approved by the ethical committee of the unit.
Description of the prior patient history:
TABLE 2 history of probands
Figure BDA0003332864650000061
Figure BDA0003332864650000071
The in vitro detection kit provided in example 2 is used for carrying out gene detection on the MYBPC3 genes of proband and the family members thereof, the detection result is shown in figures 1-3, and figure 1 is a family diagram of example 3; FIG. 2 is a Sanger sequencing graph of proband, proband mother, etc. carrying a mutated disease-causing gene MYBPC3 in the family; FIG. 3 is a Sanger sequencing graph of the father of the proband in the family.
As shown in fig. 1-3, the proband and the proband both of the clinically diagnosed hypertrophic cardiomyopathy in the family carry mutated MYBPC3 pathogenic genes; and the proband brother and proband grandfather grandmother who do not have hypertrophic cardiomyopathy do not carry the mutated MYBPC3 pathogenic gene.
This pedigree validation demonstrates the pathogenicity of the mutant MYBPC3 virulence gene for hypertrophic cardiomyopathy.
Example 4 verification experiment against out-of-family Normal persons
The mutant in-vitro detection kit for the mutant hypertrophic cardiomyopathy pathogenic gene MYBPC3 in example 2 is adopted to detect the mutation site of MYBPC3 gene c.223dupG of 1000 extrafamily normal persons, and the mutation cannot be detected as a result, so that clinical diagnosis is supported.
Example 5 verification experiment for patients with familial extrahypertrophic cardiomyopathy
In china, MYBPC3 gene was detected in patients with monogenic autosomal dominant genetic diseases such as hypertrophic cardiomyopathy, dilated cardiomyopathy, and long QT pulmonary hypertension, and the number of patients varied for each disease in a total of 2100 patients, and the results showed that a mutant MYBPC3 gene having a heterozygous missense variation of c.223dupg was detected only in 5 patients clinically diagnosed with hypertrophic cardiomyopathy, in addition to the family provided in example 3.
The experiment is verified again to show that the pathogenic gene MYBPC3 with c.223dupG heterozygosis variation can cause hypertrophic cardiomyopathy and support clinical diagnosis.
The foregoing detailed description of the preferred embodiments of the invention has been presented. It should be understood that numerous modifications and variations could be devised by those skilled in the art in light of the present teachings without departing from the inventive concepts. Therefore, the technical solutions available to those skilled in the art through logic analysis, reasoning and limited experiments based on the prior art according to the concept of the present invention should be within the scope of protection defined by the claims.
Sequence listing
<110> Baishinuo (Beijing) medical science and technology Co., Ltd
<120> hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 50
<212> DNA
<213> homo sapiens
<400> 1
gaccagggat cttacgcagt cattgctggc tcctccaagg tcaagttcga 50
<210> 2
<211> 51
<212> DNA
<213> homo sapiens
<400> 2
ggaccaggga tcttacgcag tcattgctgg ctcctccaag gtcaagttcg a 51
<210> 3
<211> 3825
<212> DNA
<213> homo sapiens
<400> 3
atgcctgagc cggggaagaa gccagtctca gcttttagca agaagccacg gtcagtggaa 60
gtggccgcag gcagccctgc cgtgttcgag gccgagacag agcgggcagg agtgaaggtg 120
cgctggcagc gcggaggcag tgacatcagc gccagcaaca agtacggcct ggccacagag 180
ggcacacggc atacgctgac agtgcgggaa gtgggccctg ccgaccaggg atcttacgca 240
gtcattgctg gctcctccaa ggtcaagttc gacctcaagg tcatagaggc agagaaggca 300
gagcccatgc tggcccctgc ccctgcccct gctgaggcca ctggagcccc tggagaagcc 360
ccggccccag ccgctgagct gggagaaagt gccccaagtc ccaaagggtc aagctcagca 420
gctctcaatg gtcctacccc tggagccccc gatgacccca ttggcctctt cgtgatgcgg 480
ccacaggatg gcgaggtgac cgtgggtggc agcatcacct tctcagcccg cgtggccggc 540
gccagcctcc tgaagccgcc tgtggtcaag tggttcaagg gcaaatgggt ggacctgagc 600
agcaaggtgg gccagcacct gcagctgcac gacagctacg accgcgccag caaggtctat 660
ctgttcgagc tgcacatcac cgatgcccag cctgccttca ctggcagcta ccgctgtgag 720
gtgtccacca aggacaaatt tgactgctcc aacttcaatc tcactgtcca cgaggccatg 780
ggcaccggag acctggacct cctatcagcc ttccgccgca cgagcctggc tggaggtggt 840
cggcggatca gtgatagcca tgaggacact gggattctgg acttcagctc actgctgaaa 900
aagagagaca gtttccggac cccgagggac tcgaagctgg aggcaccagc agaggaggac 960
gtgtgggaga tcctacggca ggcaccccca tctgagtacg agcgcatcgc cttccagtac 1020
ggcgtcactg acctgcgcgg catgctaaag aggctcaagg gcatgaggcg cgatgagaag 1080
aagagcacag cctttcagaa gaagctggag ccggcctacc aggtgagcaa aggccacaag 1140
atccggctga ccgtggaact ggctgaccat gacgctgagg tcaaatggct caagaatggc 1200
caggagatcc agatgagcgg cagcaagtac atctttgagt ccatcggtgc caagcgtacc 1260
ctgaccatca gccagtgctc attggcggac gacgcagcct accagtgcgt ggtgggtggc 1320
gagaagtgta gcacggagct ctttgtgaaa gagccccctg tgctcatcac gcgccccttg 1380
gaggaccagc tggtgatggt ggggcagcgg gtggagtttg agtgtgaagt atcggaggag 1440
ggggcgcaag tcaaatggct gaaggacggg gtggagctga cccgggagga gaccttcaaa 1500
taccggttca agaaggacgg gcagagacac cacctgatca tcaacgaggc catgctggag 1560
gacgcggggc actatgcact gtgcactagc gggggccagg cgctggctga gctcattgtg 1620
caggaaaaga agctggaggt gtaccagagc atcgcagacc tgatggtggg cgcaaaggac 1680
caggcggtgt tcaaatgtga ggtctcagat gagaatgttc ggggtgtgtg gctgaagaat 1740
gggaaggagc tggtgcccga cagccgcata aaggtgtccc acatcgggcg ggtccacaaa 1800
ctgaccattg acgacgtcac acctgccgac gaggctgact acagctttgt gcccgagggc 1860
ttcgcctgca acctgtcagc caagctccac ttcatggagg tcaagattga cttcgtaccc 1920
aggcaggaac ctcccaagat ccacctggac tgcccaggcc gcataccaga caccattgtg 1980
gttgtagctg gaaataagct acgtctggac gtccctatct ctggggaccc tgctcccact 2040
gtgatctggc agaaggctat cacgcagggg aataaggccc cagccaggcc agccccagat 2100
gccccagagg acacaggtga cagcgatgag tgggtgtttg acaagaagct gctgtgtgag 2160
accgagggcc gggtccgcgt ggagaccacc aaggaccgca gcatcttcac ggtcgagggg 2220
gcagagaagg aagatgaggg cgtctacacg gtcacagtga agaaccctgt gggcgaggac 2280
caggtcaacc tcacagtcaa ggtcatcgac gtgccagacg cacctgcggc ccccaagatc 2340
agcaacgtgg gagaggactc ctgcacagta cagtgggagc cgcctgccta cgatggcggg 2400
cagcccatcc tgggctacat cctggagcgc aagaagaaga agagctaccg gtggatgcgg 2460
ctgaacttcg acctgattca ggagctgagt catgaagcgc ggcgcatgat cgagggcgtg 2520
gtgtacgaga tgcgcgtcta cgcggtcaac gccatcggca tgtccaggcc cagccctgcc 2580
tcccagccct tcatgcctat cggtcccccc agcgaaccca cccacctggc agtagaggac 2640
gtctctgaca ccacggtctc cctcaagtgg cggcccccag agcgcgtggg agcaggaggc 2700
ctggatggct acagcgtgga gtactgccca gagggctgct cagagtgggt ggctgccctg 2760
caggggctga cagagcacac atcgatactg gtgaaggacc tgcccacggg ggcccggctg 2820
cttttccgag tgcgggcaca caatatggca gggcctggag cccctgttac caccacggag 2880
ccggtgacag tgcaggagat cctgcaacgg ccacggcttc agctgcccag gcacctgcgc 2940
cagaccattc agaagaaggt cggggagcct gtgaaccttc tcatcccttt ccagggcaag 3000
ccccggcctc aggtgacctg gaccaaagag gggcagcccc tggcaggcga ggaggtgagc 3060
atccgcaaca gccccacaga caccatcctg ttcatccggg ccgctcgccg cgtgcattca 3120
ggcacttacc aggtgacggt gcgcattgag aacatggagg acaaggccac gctggtgctg 3180
caggttgttg acaagccaag tcctccccag gatctccggg tgactgacgc ctggggtctt 3240
aatgtggctc tggagtggaa gccaccccag gatgtcggca acacggagct ctgggggtac 3300
acagtgcaga aagccgacaa gaagaccatg gagtggttca ccgtcttgga gcattaccgc 3360
cgcacccact gcgtggtgcc agagctcatc attggcaatg gctactactt ccgcgtcttc 3420
agccagaata tggttggctt tagtgacaga gcggccacca ccaaggagcc cgtctttatc 3480
cccagaccag gcatcaccta tgagccaccc aactataagg ccctggactt ctccgaggcc 3540
ccaagcttca cccagcccct ggtgaaccgc tcggtcatcg cgggctacac tgctatgctc 3600
tgctgtgctg tccggggtag ccccaagccc aagatttcct ggttcaagaa tggcctggac 3660
ctgggagaag acgcccgctt ccgcatgttc agcaagcagg gagtgttgac tctggagatt 3720
agaaagccct gcccctttga cgggggcatc tatgtctgca gggccaccaa cttacagggc 3780
gaggcacggt gtgagtgccg cctggaggtg cgagtgcctc agtga 3825
<210> 4
<211> 1274
<212> PRT
<213> homo sapiens
<400> 4
Met Pro Glu Pro Gly Lys Lys Pro Val Ser Ala Phe Ser Lys Lys Pro
1 5 10 15
Arg Ser Val Glu Val Ala Ala Gly Ser Pro Ala Val Phe Glu Ala Glu
20 25 30
Thr Glu Arg Ala Gly Val Lys Val Arg Trp Gln Arg Gly Gly Ser Asp
35 40 45
Ile Ser Ala Ser Asn Lys Tyr Gly Leu Ala Thr Glu Gly Thr Arg His
50 55 60
Thr Leu Thr Val Arg Glu Val Gly Pro Ala Asp Gln Gly Ser Tyr Ala
65 70 75 80
Val Ile Ala Gly Ser Ser Lys Val Lys Phe Asp Leu Lys Val Ile Glu
85 90 95
Ala Glu Lys Ala Glu Pro Met Leu Ala Pro Ala Pro Ala Pro Ala Glu
100 105 110
Ala Thr Gly Ala Pro Gly Glu Ala Pro Ala Pro Ala Ala Glu Leu Gly
115 120 125
Glu Ser Ala Pro Ser Pro Lys Gly Ser Ser Ser Ala Ala Leu Asn Gly
130 135 140
Pro Thr Pro Gly Ala Pro Asp Asp Pro Ile Gly Leu Phe Val Met Arg
145 150 155 160
Pro Gln Asp Gly Glu Val Thr Val Gly Gly Ser Ile Thr Phe Ser Ala
165 170 175
Arg Val Ala Gly Ala Ser Leu Leu Lys Pro Pro Val Val Lys Trp Phe
180 185 190
Lys Gly Lys Trp Val Asp Leu Ser Ser Lys Val Gly Gln His Leu Gln
195 200 205
Leu His Asp Ser Tyr Asp Arg Ala Ser Lys Val Tyr Leu Phe Glu Leu
210 215 220
His Ile Thr Asp Ala Gln Pro Ala Phe Thr Gly Ser Tyr Arg Cys Glu
225 230 235 240
Val Ser Thr Lys Asp Lys Phe Asp Cys Ser Asn Phe Asn Leu Thr Val
245 250 255
His Glu Ala Met Gly Thr Gly Asp Leu Asp Leu Leu Ser Ala Phe Arg
260 265 270
Arg Thr Ser Leu Ala Gly Gly Gly Arg Arg Ile Ser Asp Ser His Glu
275 280 285
Asp Thr Gly Ile Leu Asp Phe Ser Ser Leu Leu Lys Lys Arg Asp Ser
290 295 300
Phe Arg Thr Pro Arg Asp Ser Lys Leu Glu Ala Pro Ala Glu Glu Asp
305 310 315 320
Val Trp Glu Ile Leu Arg Gln Ala Pro Pro Ser Glu Tyr Glu Arg Ile
325 330 335
Ala Phe Gln Tyr Gly Val Thr Asp Leu Arg Gly Met Leu Lys Arg Leu
340 345 350
Lys Gly Met Arg Arg Asp Glu Lys Lys Ser Thr Ala Phe Gln Lys Lys
355 360 365
Leu Glu Pro Ala Tyr Gln Val Ser Lys Gly His Lys Ile Arg Leu Thr
370 375 380
Val Glu Leu Ala Asp His Asp Ala Glu Val Lys Trp Leu Lys Asn Gly
385 390 395 400
Gln Glu Ile Gln Met Ser Gly Ser Lys Tyr Ile Phe Glu Ser Ile Gly
405 410 415
Ala Lys Arg Thr Leu Thr Ile Ser Gln Cys Ser Leu Ala Asp Asp Ala
420 425 430
Ala Tyr Gln Cys Val Val Gly Gly Glu Lys Cys Ser Thr Glu Leu Phe
435 440 445
Val Lys Glu Pro Pro Val Leu Ile Thr Arg Pro Leu Glu Asp Gln Leu
450 455 460
Val Met Val Gly Gln Arg Val Glu Phe Glu Cys Glu Val Ser Glu Glu
465 470 475 480
Gly Ala Gln Val Lys Trp Leu Lys Asp Gly Val Glu Leu Thr Arg Glu
485 490 495
Glu Thr Phe Lys Tyr Arg Phe Lys Lys Asp Gly Gln Arg His His Leu
500 505 510
Ile Ile Asn Glu Ala Met Leu Glu Asp Ala Gly His Tyr Ala Leu Cys
515 520 525
Thr Ser Gly Gly Gln Ala Leu Ala Glu Leu Ile Val Gln Glu Lys Lys
530 535 540
Leu Glu Val Tyr Gln Ser Ile Ala Asp Leu Met Val Gly Ala Lys Asp
545 550 555 560
Gln Ala Val Phe Lys Cys Glu Val Ser Asp Glu Asn Val Arg Gly Val
565 570 575
Trp Leu Lys Asn Gly Lys Glu Leu Val Pro Asp Ser Arg Ile Lys Val
580 585 590
Ser His Ile Gly Arg Val His Lys Leu Thr Ile Asp Asp Val Thr Pro
595 600 605
Ala Asp Glu Ala Asp Tyr Ser Phe Val Pro Glu Gly Phe Ala Cys Asn
610 615 620
Leu Ser Ala Lys Leu His Phe Met Glu Val Lys Ile Asp Phe Val Pro
625 630 635 640
Arg Gln Glu Pro Pro Lys Ile His Leu Asp Cys Pro Gly Arg Ile Pro
645 650 655
Asp Thr Ile Val Val Val Ala Gly Asn Lys Leu Arg Leu Asp Val Pro
660 665 670
Ile Ser Gly Asp Pro Ala Pro Thr Val Ile Trp Gln Lys Ala Ile Thr
675 680 685
Gln Gly Asn Lys Ala Pro Ala Arg Pro Ala Pro Asp Ala Pro Glu Asp
690 695 700
Thr Gly Asp Ser Asp Glu Trp Val Phe Asp Lys Lys Leu Leu Cys Glu
705 710 715 720
Thr Glu Gly Arg Val Arg Val Glu Thr Thr Lys Asp Arg Ser Ile Phe
725 730 735
Thr Val Glu Gly Ala Glu Lys Glu Asp Glu Gly Val Tyr Thr Val Thr
740 745 750
Val Lys Asn Pro Val Gly Glu Asp Gln Val Asn Leu Thr Val Lys Val
755 760 765
Ile Asp Val Pro Asp Ala Pro Ala Ala Pro Lys Ile Ser Asn Val Gly
770 775 780
Glu Asp Ser Cys Thr Val Gln Trp Glu Pro Pro Ala Tyr Asp Gly Gly
785 790 795 800
Gln Pro Ile Leu Gly Tyr Ile Leu Glu Arg Lys Lys Lys Lys Ser Tyr
805 810 815
Arg Trp Met Arg Leu Asn Phe Asp Leu Ile Gln Glu Leu Ser His Glu
820 825 830
Ala Arg Arg Met Ile Glu Gly Val Val Tyr Glu Met Arg Val Tyr Ala
835 840 845
Val Asn Ala Ile Gly Met Ser Arg Pro Ser Pro Ala Ser Gln Pro Phe
850 855 860
Met Pro Ile Gly Pro Pro Ser Glu Pro Thr His Leu Ala Val Glu Asp
865 870 875 880
Val Ser Asp Thr Thr Val Ser Leu Lys Trp Arg Pro Pro Glu Arg Val
885 890 895
Gly Ala Gly Gly Leu Asp Gly Tyr Ser Val Glu Tyr Cys Pro Glu Gly
900 905 910
Cys Ser Glu Trp Val Ala Ala Leu Gln Gly Leu Thr Glu His Thr Ser
915 920 925
Ile Leu Val Lys Asp Leu Pro Thr Gly Ala Arg Leu Leu Phe Arg Val
930 935 940
Arg Ala His Asn Met Ala Gly Pro Gly Ala Pro Val Thr Thr Thr Glu
945 950 955 960
Pro Val Thr Val Gln Glu Ile Leu Gln Arg Pro Arg Leu Gln Leu Pro
965 970 975
Arg His Leu Arg Gln Thr Ile Gln Lys Lys Val Gly Glu Pro Val Asn
980 985 990
Leu Leu Ile Pro Phe Gln Gly Lys Pro Arg Pro Gln Val Thr Trp Thr
995 1000 1005
Lys Glu Gly Gln Pro Leu Ala Gly Glu Glu Val Ser Ile Arg Asn Ser
1010 1015 1020
Pro Thr Asp Thr Ile Leu Phe Ile Arg Ala Ala Arg Arg Val His Ser
1025 1030 1035 1040
Gly Thr Tyr Gln Val Thr Val Arg Ile Glu Asn Met Glu Asp Lys Ala
1045 1050 1055
Thr Leu Val Leu Gln Val Val Asp Lys Pro Ser Pro Pro Gln Asp Leu
1060 1065 1070
Arg Val Thr Asp Ala Trp Gly Leu Asn Val Ala Leu Glu Trp Lys Pro
1075 1080 1085
Pro Gln Asp Val Gly Asn Thr Glu Leu Trp Gly Tyr Thr Val Gln Lys
1090 1095 1100
Ala Asp Lys Lys Thr Met Glu Trp Phe Thr Val Leu Glu His Tyr Arg
1105 1110 1115 1120
Arg Thr His Cys Val Val Pro Glu Leu Ile Ile Gly Asn Gly Tyr Tyr
1125 1130 1135
Phe Arg Val Phe Ser Gln Asn Met Val Gly Phe Ser Asp Arg Ala Ala
1140 1145 1150
Thr Thr Lys Glu Pro Val Phe Ile Pro Arg Pro Gly Ile Thr Tyr Glu
1155 1160 1165
Pro Pro Asn Tyr Lys Ala Leu Asp Phe Ser Glu Ala Pro Ser Phe Thr
1170 1175 1180
Gln Pro Leu Val Asn Arg Ser Val Ile Ala Gly Tyr Thr Ala Met Leu
1185 1190 1195 1200
Cys Cys Ala Val Arg Gly Ser Pro Lys Pro Lys Ile Ser Trp Phe Lys
1205 1210 1215
Asn Gly Leu Asp Leu Gly Glu Asp Ala Arg Phe Arg Met Phe Ser Lys
1220 1225 1230
Gln Gly Val Leu Thr Leu Glu Ile Arg Lys Pro Cys Pro Phe Asp Gly
1235 1240 1245
Gly Ile Tyr Val Cys Arg Ala Thr Asn Leu Gln Gly Glu Ala Arg Cys
1250 1255 1260
Glu Cys Arg Leu Glu Val Arg Val Pro Gln
1265 1270
<210> 5
<211> 19
<212> DNA
<213> homo sapiens
<400> 5
ctctcccgac tgctagctg 19
<210> 6
<211> 20
<212> DNA
<213> homo sapiens
<400> 6
gaaagcacct cctgttccct 20
<210> 7
<211> 336
<212> DNA
<213> homo sapiens
<400> 7
atgcctgagc cggggaagaa gccagtctca gcttttagca agaagccacg gtcagtggaa 60
gtggccgcag gcagccctgc cgtgttcgag gccgagacag agcgggcagg agtgaaggtg 120
cgctggcagc gcggaggcag tgacatcagc gccagcaaca agtacggcct ggccacagag 180
ggcacacggc atacgctgac agtgcgggaa gtgggccctg ccggaccagg gatcttacgc 240
agtcattgct ggctcctcca aggtcaagtt cgacctcaag gtcatagagg cagagaaggc 300
agagcccatg ctggcccctg cccctgcccc tgctga 336

Claims (4)

1. The hypertrophic cardiomyopathy causing gene MYBPC3 with c.223dupG heterozygosis, characterized in that, compared with the reference sequence of the wild-type MYBPC3 gene coding DNA, the nucleotide sequence of the mutant hypertrophic cardiomyopathy causing gene MYBPC3 coding DNA is SEQ ID NO 7; at genomic position chr11:47372859, base G is repeated; the reference genomic version is GRCh 37.
2. Use of the mutant hypertrophic cardiomyopathy-causing gene MYBPC3 of claim 1 in preparation of a hypertrophic cardiomyopathy detection kit.
3. The use of claim 2, wherein the hypertrophic cardiomyopathy detection kit comprises primers for amplifying a disease-causing gene MYBPC3, wherein the sequences of the primers are SEQ ID NO. 5 and SEQ ID NO. 6.
4. The use of claim 3, wherein the hypertrophic cardiomyopathy detection kit further comprises Taq DNA polymerase and PCR buffer.
CN202111285657.3A 2021-11-02 2021-11-02 Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof Pending CN113981065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111285657.3A CN113981065A (en) 2021-11-02 2021-11-02 Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111285657.3A CN113981065A (en) 2021-11-02 2021-11-02 Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof

Publications (1)

Publication Number Publication Date
CN113981065A true CN113981065A (en) 2022-01-28

Family

ID=79745573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111285657.3A Pending CN113981065A (en) 2021-11-02 2021-11-02 Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof

Country Status (1)

Country Link
CN (1) CN113981065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044590A (en) * 2022-06-30 2022-09-13 昆明理工大学 Application of p53 gene mutant and protein expressed by same in preparation of medicine for diagnosing and treating hypertrophic cardiomyopathy
CN115725715A (en) * 2022-08-30 2023-03-03 百世诺(北京)医疗科技有限公司 Application of reagent for detecting MYBPC3 mutant gene in preparation of hypertrophic cardiomyopathy kit
CN116064774A (en) * 2022-10-17 2023-05-05 百世诺(北京)医疗科技有限公司 Reagent for detecting new site of dilated cardiomyopathy pathogenic gene MYBPC3 and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430206A (en) * 2021-08-16 2021-09-24 百世诺(北京)医疗科技有限公司 MYBPC3 mutant gene and hypertrophic cardiomyopathy detection kit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430206A (en) * 2021-08-16 2021-09-24 百世诺(北京)医疗科技有限公司 MYBPC3 mutant gene and hypertrophic cardiomyopathy detection kit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
殷昆仑: "肥厚梗阻型心肌病的基因型-表型-病理改变的关联分析及转录组学研究" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044590A (en) * 2022-06-30 2022-09-13 昆明理工大学 Application of p53 gene mutant and protein expressed by same in preparation of medicine for diagnosing and treating hypertrophic cardiomyopathy
CN115044590B (en) * 2022-06-30 2023-08-15 昆明理工大学 Application of p53 gene mutant and protein expressed by same in preparation of medicines for diagnosing and treating hypertrophic cardiomyopathy
CN115725715A (en) * 2022-08-30 2023-03-03 百世诺(北京)医疗科技有限公司 Application of reagent for detecting MYBPC3 mutant gene in preparation of hypertrophic cardiomyopathy kit
CN116064774A (en) * 2022-10-17 2023-05-05 百世诺(北京)医疗科技有限公司 Reagent for detecting new site of dilated cardiomyopathy pathogenic gene MYBPC3 and application thereof

Similar Documents

Publication Publication Date Title
CN113981065A (en) Hypertrophic cardiomyopathy pathogenic gene MYBPC3 with c.223dupG heterozygosis missense and application thereof
Grove et al. The RsaI polymorphism of CYP2E1 and susceptibility to alcoholic liver disease in Caucasians: effect on age of presentation and dependence on alcohol dehydrogenase genotype
CN113981066B (en) Mutant dilated cardiomyopathy pathogenic gene TTN and application thereof
CN114107312B (en) Mutant hypertrophic cardiomyopathy pathogenic gene MYBPC3 and application thereof
IL125312A (en) Method of diagnosing predisposition for ulcerative colitis in jewish population by detection of interleukin-1 receptor antagonist polymorphism
CN110846393A (en) MYBPC 3G 1831T mutation affecting diagnosis and treatment of human hypertrophic cardiomyopathy and application thereof
CN113957075B (en) Mutated genetic arrhythmia gene and application thereof
CN113832159A (en) Mutant familial hereditary pulmonary hypertension pathogenic gene BMPR2 and application thereof
CN113980971B (en) Mutant Marfan syndrome pathogenic gene FBN1 and application thereof
CN113913437B (en) Familial thoracic aortic aneurysm mutant gene and application thereof
CN113969313A (en) Rare genetic disease mutant gene and application thereof
CN113637674B (en) LAMP2 mutant gene, mutant and Danon disease detection kit
CN113699226A (en) TTN mutant gene and dilated cardiomyopathy detection kit
US20050074786A1 (en) Method for determining susceptibility to heart disease by screening polymorphisms in the vitamin D receptor gene
KR20220027690A (en) Method for providing information for metabolic syndrome disease and kits using the same
CN114085900B (en) Mutant gene related to hereditary glomerular disease and application thereof
CN114032302B (en) Mutant gene related to pulmonary hypertension and application thereof
CN114214398B (en) Mutant FBN1 gene and marfan syndrome detection kit
CN113684216A (en) MyBPC3 gene hypertrophic cardiomyopathy detection kit based on mutation
JP5263919B2 (en) Test method for metabolic syndrome
CN113881767A (en) Mutant gene capable of causing myocardial hypertrophy and application thereof
CN115806997A (en) Dilated cardiomyopathy variant gene LAMA4 and application thereof
WO2015037681A1 (en) Test method for evaluating the risk of anti-thyroid drug-induced agranulocytosis, and evaluation kit
CN116479111A (en) Congenital pupil-free small eyeball-cataract syndrome screening method and screening kit
CN113717979A (en) Mutated MYBPC3 gene and application thereof in preparation of hypertrophic cardiomyopathy detection kit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220128