CN113969779B - 一种注气井井筒压力分布的确定方法 - Google Patents

一种注气井井筒压力分布的确定方法 Download PDF

Info

Publication number
CN113969779B
CN113969779B CN202010709606.8A CN202010709606A CN113969779B CN 113969779 B CN113969779 B CN 113969779B CN 202010709606 A CN202010709606 A CN 202010709606A CN 113969779 B CN113969779 B CN 113969779B
Authority
CN
China
Prior art keywords
pressure
temperature
micro
gas injection
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010709606.8A
Other languages
English (en)
Other versions
CN113969779A (zh
Inventor
贺梦琦
王玲
陈小凯
秦辉
梁策
张绍辉
孙振宇
宋阳
刘鹍澎
贾纯真
栾睿智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202010709606.8A priority Critical patent/CN113969779B/zh
Publication of CN113969779A publication Critical patent/CN113969779A/zh
Application granted granted Critical
Publication of CN113969779B publication Critical patent/CN113969779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种注气井井筒压力分布的确定方法。该确定方法包括以下步骤:获取注气井井筒的测试参数;取注气井井筒的井口为坐标原点,竖直向下为正,按照预定计算步长将所述注气井井筒划分为多个微元段;根据所述测试参数,以注气井井筒井口处为初始计算点,依次计算各微元段出口处的压力值和温度值;根据所述各微元段出口处的压力值确定所述注气井井筒压力分布。该方法根据气体稳定流动的运动方程,在平均参数法基础上,考虑了动能变化时计算井筒压力分布的数学模型。该方法具有较好的稳定性和收敛性,适合计算机编程。

Description

一种注气井井筒压力分布的确定方法
技术领域
本发明涉及天然气注采领域,具体涉及一种注气井井筒压力分布的确定方法。
背景技术
注气井井筒压力分布是储气库建井、油管设计、井口选择的重要参数,是注气井生产完井管柱动态分析核心参数,因此研究计算注气井井筒内的压力分布十分必要。
计算气井单相流体井筒压力的常规算法均采用能量方程,考虑气体稳态流动时的传热稳定,在能量守恒的前提下导出气体流动方程的积分表达式,目前常用的是采用Moody、AGA与Cullender和Smith方法等迭代法求解。
以上许多研究者在井筒压力计算的各个方面已经做出了大量的研究,并且给出了计算气井井筒压力分布的方程式。但是在计算过程中,需要多次迭代,计算结果针对较高注气量的储气库注气井来说误差仍然是无法接受的;因此本发明结合大量现场实际测试资料,采用统计试验中的因子设计分析方法,回归了一种可以匹配注气量在80×104m3/d以内的注气井的稳定的井筒内压力数据的代数公式,该公式可准确预测注气井井筒内流动压力。
发明内容
本发明的目的在于提供一种注气井井筒压力分布的确定方法,该确定方法针对注气井在注入气体、且较高注气量(20-80万方/d)情况下的井筒压力分布的精确计算,是一种计算高压(21-35MPa)注气井井筒压力分布的快速、简便的方法,能够精确、快速计算任意流动状况下气体沿井筒内壁的压力分布。
为了实现以上目的,本发明采用以下技术方案:
本发明提供一种注气井井筒压力分布的确定方法,该确定方法包括以下步骤:
S100、获取注气井井筒的测试参数,
S200、取注气井井筒的井口为坐标原点,竖直向下为正,按照预定计算步长将所述注气井井筒划分为多个微元段;
S300、根据所述测试参数,以注气井井筒井口处为初始计算点,依次计算各微元段出口处的压力值和温度值;
S400、根据所述各微元段出口处的压力值确定所述注气井井筒压力分布。
根据本发明的确定方法,优选的,所述测试参数包括油管内径D、井口油压P0、气井深度H、井口温度T0、井底温度Te、地温梯度gT、注气量Qsc、天然气与空气的相对密度γ。
根据本发明的确定方法,优选的,S300的过程包括:
S301、以注气井井筒井口处为初始计算点,任意设定步长dl,l=0,i=1,
S302、令P′1=P0;T′1=T0;其中P0为井口油压,T0为井口温度,Pi’为第i个微元段的入口压力,Pi+1’为第i个微元段的出口压力,即第i+1个微元段的入口压力,Ti’为第i个微元段的入口温度,Ti+1’为第i个微元段的出口温度,即第i+1个微元段的入口温度;
S303、根据能量守恒和地层温度变化特性得到该微元段的出口压力P2’和出口温度T2’;
S304、计算该微元段的平均压力和平均温度:
S305、根据该微元段的入口压力和入口温度得到关于压缩因子、温度和压力的简化变量I1;根据该微元段的出口压力和出口温度得到关于压缩因子、温度和压力的简化变量I2
S306、将I1和I2代入井筒压力计算模型式中计算得到dl段出口处的井筒压力P2
S307、计算压力差dP=P2-P1;计算天然气在P1和P2压力条件下的真实流速v1和v2dv=dv2-dv1
S308、当|T2-T2′|≤0.001,|P2-P2′|≤0.001时,结束循环;否则,令T2′=T2、P′2=P2返回S304再次计算;
S309、i++,令P′1=P2,T′1=T2,l=l+dl,返回S303继续迭代计算下一微元段的温度、压力;当l≤H时则迭代结束。
根据本发明的确定方法,优选的,S303中,所述该微元段的出口压力和出口温度为:
其中P0为井口油压,T0为井口温度,Pi’为第i个微元段的入口压力,Pi+1’为第i个微元段的出口压力,即第i+1个微元段的入口压力,Ti’为第i个微元段的入口温度,Ti+1’为第i个微元段的出口温度,即第i+1个微元段的入口温度;gT为地温梯度。
根据本发明的确定方法,优选的,S305中所述关于压缩因子、温度和压力的简化变量I1和I2分别通过公式(5)计算得到:
其中,P为压力,T为温度,Z为压缩因子。
根据本发明的确定方法,优选的,S306中所述井筒压力计算模型为式4):
P1为dl段入口处的井筒压力,MPa;P2为dl段出口处的井筒压力,MPa;θ为dl井段与水平方向的夹角;A1至A4为压力模型的回归系数;Qsc为注气量,m3/d;D为油管内径,m;g为重力加速度,9.81m/s2;γ为天然气与空气的相对密度;f为天然气的摩擦阻力系数。
本发明推导出储气库高压注气井在单相流条件下,在井口流压和温度已知的条件下,沿井深分布的压力计算方程,通过该方程可快速计算注天然气井的井筒压力分布。而且本发明所涉及的确定方法具有良好的计算精度,计算速度较快。
根据本发明的确定方法,优选的,提高压力精度的回归系数A1至A4分别取值为:2.295、0.869、9.17×10-3和1.853。
根据本发明的确定方法,优选的,S307中所述计算天然气在P1和P2压力条件下的真实流速v1和v2,通过下式(2)计算得到:
天然气在一定压力条件下的真实流速:
式中,Qsc为天然气在地面标准状态下的真实流速(即为注气量,在井口可以直接读取),m3/d;Z为天然气的压缩因子;P为所对应的一定压力,MPa;T为温度,K。
根据本发明的确定方法,优选的,该确定方法适用的注气量为20-80万方/d。
根据本发明的确定方法,优选的,该确定方法包括以下假设条件:
流体流动状态为稳定单向流动,流体为天然气单相流;
井筒内传热为稳定传热;
井筒内天然气流体符合能量守恒规律;
地层温度按线性变化。
本发明中的井筒压力计算模型式4)通过以下推导过程得到:
取井口为坐标原点,竖直向下为正,在井筒上任意取一段长为dl的微元段,根据能量守恒推导出天然气的稳定流动的运动方程为:
式中,dP为dl井段井筒压力变化值,MPa;v为气体真实流速,m/s;ρ为气体的真实密度,kg/m3;g为常数,重力加速度,9.81m/s2;f为天然气的摩擦阻力系数;D为流动油管、套管的内径,m。
天然气在一定压力条件下的真实流速:
式中,Qsc为天然气在地面标准状态下的真实流速(井口可以直接读取注气量,根据气体状态方程可以进行换算),m3/d;Z为天然气的压缩因子;P为dl井段筒天然气的压力平均值,MPa;T为dl井段天然气的温度平均值,K。
天然气在一定压力条件下的密度:
式中,γ为天然气气体与空气的相对密度。
将(2)(3)代入(1)得到dl段井筒压力计算模型为:
式中,P1为dl段入口处的井筒压力,MPa;P2为dl段出口处的井筒压力,MPa;θ为dl井段与水平方向的夹角。
其中:A1至A4为压力模型的回归系数,本发明经过大量现场实际测试资料拟合得到A1至A4的取值,如表1所示:
表1提高压力精度的回归系数
系数 A1 A2 A3 A4
系数值 2.295 0.869 9.17×10-3 1.853
本发明通过合理的假设和必要的简化,提出了一个修正改进的方法,可为储气库井,特别是定向井、高注气量井的工程设计和动态分析提供可靠的理论依据和科学的确定方法。该方法根据气体稳定流动的运动方程,在平均参数法基础上,考虑了动能变化时计算井筒压力分布的数学模型。该方法具有较好的稳定性和收敛性,适合计算机编程。
附图说明
图1为实施例中注气井井筒压力分布的确定方法的流程图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
如图1所示,本发明实施例提供一种注气井井筒压力分布的确定方法,该确定方法包括以下步骤:
S100、获取注气井井筒的测试参数;
S200、取注气井井筒的井口为坐标原点,竖直向下为正,按照预定计算步长将所述注气井井筒划分为多个微元段;
S300、根据所述测试参数,以注气井井筒井口处为初始计算点,依次计算各微元段出口处的压力值和温度值;
S400、根据所述各微元段出口处的压力值确定所述注气井井筒压力分布。
具体的,所述测试参数包括油管内径D、井口油压P0、气井深度H、井口温度T0、井底温度Te、地温梯度gT、注气量Qsc、天然气与空气的相对密度γ。
该确定方法基于以下假设条件:
(1)流体流动状态为稳定单向流动,流体为天然气单相流;
(2)井筒内传热为稳定传热;
(3)井筒内天然气流体符合能量守恒规律;
(4)地层温度按线性变化,已知地温梯度;
(5)已知井口温度、压力等测试参数。
具体的,S300的过程包括:
S301、以注气井井筒井口处为初始计算点,任意设定步长dl,l=0,i=1。
S302、令P′1=P0;T′1=T0
S303、令
S304、计算该微元段的平均压力和平均温度:
S305、根据该微元段的入口压力和入口温度得到关于压缩因子、温度和压力的简化变量I1;根据该微元段的出口压力和出口温度得到关于压缩因子、温度和压力的简化变量I2
具体的,通过公式(5)计算得到:
其中,P为压力,T为温度,Z为压缩因子。
S306、将I1和I2代入井筒压力计算模型式中计算得到dl段出口处的井筒压力P2
具体的,所述井筒压力计算模型为式4):
P1为dl段入口处的井筒压力,MPa;P2为dl段出口处的井筒压力,MPa;θ为dl井段与水平方向的夹角;A1至A4为压力模型的回归系数;Qsc为注气量,m3/d;D为油管内径,m;g为重力加速度,9.81m/s2;γ为天然气与空气的相对密度;f为天然气的摩擦阻力系数。
其中:A1至A4为压力模型的回归系数,本发明经过大量现场实际测试资料拟合得到A1至A4的取值,如表1所示:
表1提高压力精度的回归系数
系数 A1 A2 A3 A4
系数值 2.295 0.869 9.17×10-3 1.853
S307、计算压力差dP=P2-P1;计算天然气在P1和P2压力条件下的真实流速v1和v2dv=dv2-dv1
S308、当|T2一T2′|≤0.001,|P2-P2′|≤0.001时,结束循环;否则,令T2′=T2、P′2=P2返回S304再次计算。
S309、i++,令P′1=P2,T′1=T2,l=l+dl,返回S303继续迭代计算下一微元段的温度、压力;当l≤H时则迭代结束。
本发明实施例通过合理的假设和必要的简化,提出了一个修正改进的算法,可为储气库井,特别是定向井、高注气量井的工程设计和动态分析提供可靠的理论依据和科学的确定方法。该方法根据气体稳定流动的运动方程,在平均参数法基础上,考虑了动能变化时计算井筒压力分布的数学模型。该方法具有较好的稳定性和收敛性,适合计算机编程。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

1.一种注气井井筒压力分布的确定方法,其特征在于,该确定方法包括以下步骤:
S100、获取注气井井筒的测试参数;所述测试参数包括油管内径、井口油压、气井深度、井口温度、井底温度、地温梯度、注气量、天然气与空气的相对密度;
S200、取注气井井筒的井口为坐标原点,竖直向下为正,按照预定计算步长将所述注气井井筒划分为多个微元段;
S300、根据所述测试参数,以注气井井筒井口处为初始计算点,依次计算各微元段出口处的压力值和温度值;
S400、根据所述各微元段出口处的压力值确定所述注气井井筒压力分布;
其中,S300的过程包括:
S301、以注气井井筒井口处为初始计算点,任意设定步长dl,l=0,i=1;
S302、令P1′=P0;T1′=T0;其中P0为井口油压,T0为井口温度,Pi’为第i个微元段的入口压力,Pi+1’为第i个微元段的出口压力,即第i+1个微元段的入口压力,Ti’为第i个微元段的入口温度,Ti+1’为第i个微元段的出口温度,即第i+1个微元段的入口温度;
S303、根据能量守恒和地层温度变化特性得到该微元段的出口压力P2’和出口温度T2’;
所述该微元段的出口压力和出口温度为:
其中P0为井口油压,T0为井口温度,Pi’为第i个微元段的入口压力,Pi+1’为第i个微元段的出口压力,即第i+1个微元段的入口压力,Ti’为第i个微元段的入口温度,Ti+1’为第i个微元段的出口温度,即第i+1个微元段的入口温度;gT为地温梯度;
S304、计算该微元段的平均压力和平均温度:
S305、根据该微元段的入口压力和入口温度得到关于压缩因子、温度和压力的简化变量I1;根据该微元段的出口压力和出口温度得到关于压缩因子、温度和压力的简化变量I2
所述关于压缩因子、温度和压力的简化变量I1和I2分别通过公式(5)计算得到:
其中,P为压力,T为温度,Z为压缩因子;
S306、将I1和I2代入井筒压力计算模型式中计算得到dl段出口处的井筒压力P2
S306中所述井筒压力计算模型为式(4):
P1为dl段入口处的井筒压力,MPa;P2为dl段出口处的井筒压力,MPa;θ为dl井段与水平方向的夹角;A1至A4为压力模型的回归系数;Qsc为注气量,m3/d;D为油管内径,m;g为重力加速度,9.81m/s2;γ为天然气与空气的相对密度;f为天然气的摩擦阻力系数;
S307、计算压力差dP=P2-P1;计算天然气在P1和P2压力条件下的真实流速v1和v2dv=dv2-dv1
S308、当|T2-T2′|≤0.001,|P2-P2′|≤0.001时,结束循环;否则,令T2′=T2、P2′=P2返回S304再次计算;
S309、i++,令P1′=P2,T1′=T2,l=l+dl,返回S303继续迭代计算下一微元段的温度、压力;当l≤H时则迭代结束,H为气井深度。
2.根据权利要求1所述注气井井筒压力分布的确定方法,其特征在于,所述回归系数A1至A4分别取值为:2.295、0.869、9.17×10-3和1.853。
3.根据权利要求2所述注气井井筒压力分布的确定方法,其特征在于,S307中所述计算天然气在P1和P2压力条件下的真实流速v1和v2,通过下式(2)计算得到:
天然气在一定压力条件下的真实流速:
式中,Qsc为天然气在地面标准状态下的真实流速,m3/d;Z为天然气的压缩因子;P为所对应的一定压力,MPa;T为温度,K。
4.根据权利要求1-3任一项所述注气井井筒压力分布的确定方法,其特征在于,该确定方法适用的注气量为20-80万方/d。
5.根据权利要求4所述注气井井筒压力分布的确定方法,其特征在于,该确定方法包括以下假设条件:
流体流动状态为稳定单向流动,流体为天然气单相流;
井筒内传热为稳定传热;
井筒内天然气流体符合能量守恒规律;
地层温度按线性变化。
CN202010709606.8A 2020-07-22 2020-07-22 一种注气井井筒压力分布的确定方法 Active CN113969779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010709606.8A CN113969779B (zh) 2020-07-22 2020-07-22 一种注气井井筒压力分布的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010709606.8A CN113969779B (zh) 2020-07-22 2020-07-22 一种注气井井筒压力分布的确定方法

Publications (2)

Publication Number Publication Date
CN113969779A CN113969779A (zh) 2022-01-25
CN113969779B true CN113969779B (zh) 2023-10-27

Family

ID=79584764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010709606.8A Active CN113969779B (zh) 2020-07-22 2020-07-22 一种注气井井筒压力分布的确定方法

Country Status (1)

Country Link
CN (1) CN113969779B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134179A (zh) * 2015-08-21 2015-12-09 中国石油天然气股份有限公司 一种天然气井井筒压力和温度的分布数据的计算方法
CN107575214A (zh) * 2016-07-04 2018-01-12 中国石油天然气股份有限公司 用于注采过程的井筒内温度与压力的预测方法
CN110847894A (zh) * 2019-10-30 2020-02-28 中国石油天然气股份有限公司 一种井下节流气井流压的确定方法
CN111206919A (zh) * 2019-12-20 2020-05-29 陕西延长石油(集团)有限责任公司研究院 长井段高产气井储层段井筒压力计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY149416A (en) * 2009-11-17 2013-08-30 Petroliam Nasional Berhad Petronas Enhanced dynamic well model for reservoir pressure determination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134179A (zh) * 2015-08-21 2015-12-09 中国石油天然气股份有限公司 一种天然气井井筒压力和温度的分布数据的计算方法
CN107575214A (zh) * 2016-07-04 2018-01-12 中国石油天然气股份有限公司 用于注采过程的井筒内温度与压力的预测方法
CN110847894A (zh) * 2019-10-30 2020-02-28 中国石油天然气股份有限公司 一种井下节流气井流压的确定方法
CN111206919A (zh) * 2019-12-20 2020-05-29 陕西延长石油(集团)有限责任公司研究院 长井段高产气井储层段井筒压力计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
海洋凝析气井关井井筒温度与压力的计算;闫正和;刘永杰;唐圣来;张东平;陈林;孙雷;;天然气工业(09);第43-45+128-129页 *

Also Published As

Publication number Publication date
CN113969779A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN109948182B (zh) 一种针对中深层地热井井间距的计算方法
CN104895560B (zh) 一种深水测试井筒压力、温度场模拟及水合物预测方法
CN103590824A (zh) 经过多段压裂改造后的致密气藏水平井的产能计算方法
CN107145696A (zh) 一种煤层气地上地下耦合求解的模拟方法
WO2012051196A2 (en) Lift-gas optimization with choke control
CN105677994A (zh) 流体-固体耦合传热的松耦合建模方法
CN104847314B (zh) 高温高压油气直井单相流射孔完井参数优化方法
CN110847894B (zh) 一种井下节流气井流压的确定方法
CN103726815B (zh) 一种co2驱采出井井筒流态确定及参数优化方法
CN110344818A (zh) 柱塞气举井柱塞上行阶段液体段塞界面跟踪方法
CN111502652A (zh) 一种三孔介质气藏水平井产量递减及生产动态预测方法
CN115796070B (zh) 一种致密油气藏储层流态变化特征识别方法及装置
CN113969779B (zh) 一种注气井井筒压力分布的确定方法
CN109858146B (zh) 一种针对中深层地埋套管换热器性能的无网格计算方法
CN108104800A (zh) 一种井下节流气井的节流器入口压力计算方法和装置
CN108090321B (zh) 一种水平气井倾斜管液膜携带临界气流量计算方法
CN113468826A (zh) 基于真实液膜分布的页岩气水平井临界携液流量预测方法
CN109492290B (zh) 一种一体化油藏数值模拟方法
CN116167302B (zh) 一种天然气水合物增产模拟中人工复杂裂缝的描述方法
CN115012925B (zh) 一种高压条件下垂直气井井筒流型的实验确定方法
CN107066767A (zh) 一种包含气波引射器的集输管网计算方法及装置
CN111520133A (zh) 一种确定地层中洞体积的方法
CN106640004A (zh) 注汽锅炉出口的蒸汽热力参数的计算方法及其装置
CN105114060B (zh) 一种计算注气井的井筒温度分布的方法及装置
CN114282387A (zh) 一种基于dts的稠油油藏注蒸汽水平井综合评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant