CN113964220B - 一种突触器件及实现其红外光调制突触行为的方法 - Google Patents

一种突触器件及实现其红外光调制突触行为的方法 Download PDF

Info

Publication number
CN113964220B
CN113964220B CN202111186205.XA CN202111186205A CN113964220B CN 113964220 B CN113964220 B CN 113964220B CN 202111186205 A CN202111186205 A CN 202111186205A CN 113964220 B CN113964220 B CN 113964220B
Authority
CN
China
Prior art keywords
transparent
layer
copper zinc
transparent conductive
zinc tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111186205.XA
Other languages
English (en)
Other versions
CN113964220A (zh
Inventor
赖云锋
宁玥
何业法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mindu Innovation Laboratory
Original Assignee
Mindu Innovation Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mindu Innovation Laboratory filed Critical Mindu Innovation Laboratory
Priority to CN202111186205.XA priority Critical patent/CN113964220B/zh
Publication of CN113964220A publication Critical patent/CN113964220A/zh
Application granted granted Critical
Publication of CN113964220B publication Critical patent/CN113964220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一种突触器件及实现其红外光调制突触行为的方法。所述器件包括透明衬底、透明导电层、透明绝缘层、铜锌锡硫硒介质层、源电极和漏电极;所述透明衬底,作为器件硬支撑和光输入窗口;所述透明导电层形成于透明衬底上方,作为器件施加电信号的端子;所述透明绝缘层形成于透明导电层上方;所述铜锌锡硫硒介质层形成于透明绝缘层上方并与之接触良好,作为沟道材料使用;所述源电极和漏电极设置于铜锌锡硫硒上方并与之接触良好。本发明通过透明衬底引入激励光,实现红外光对源漏电导的调制,不仅有利于光电协同控制源漏电导,还进一步拓展突触器件响应的光谱范围。

Description

一种突触器件及实现其红外光调制突触行为的方法
技术领域
本发明涉及微电子器件技术领域,特别是涉及一种突触器件及实现其红外光调制突触行为的方法,从而模拟生物突触在光刺激下的条件反射行为。
背景技术
为了突破传统冯·诺依曼构架计算体系的局限性,消除存储墙等多种效应对计算性能产生的不良影响,人们试图在单个电子器件上模拟突触行为,以便获得更利于模拟计算的类脑计算芯片。人体大脑对光、力、热等多种刺激的响应是通过对应感受机构传递信号而获得,研发对刺激信号进行直接响应的器件有利于对多种刺激信号的直接响应和处理。此外,人眼对于可见光可以做出判断,但是对于非可见光(如:红外、紫外等)很难做出响应。因此,开发能够对非可见光响应的光电突触非常有必要。
发明内容
有鉴于此,本发明的目的在于提供一种突触器件及实现其红外光调制突触行为的方法,用于模拟生物突触在光刺激下的条件反射行为,突破人眼的光谱响应范围。
为了实现上述目的,本发明采用如下技术方案:
一种突触器件,包含透明衬底、透明导电层、透明绝缘层、铜锌锡硫硒介质层、源电极和漏电极。
所述透明衬底,作为器件支撑层。
所述透明导电层形成于透明衬底上,作为器件施加电信号的端子。
所述透明绝缘层形成于透明导电层上。
所述铜锌锡硫硒介质层形成于透明绝缘层上并与所述透明绝缘层接触,作为沟道材料使用。
所述源电极形成于铜锌锡硫硒介质层上并与所述铜锌锡硫硒介质层接触;
所述漏电极形成于铜锌锡硫硒介质层上并与所述铜锌锡硫硒介质层接触。
进一步的,所述透明衬底作为光输入窗口。
进一步的,所述透明衬底,作为器件硬支撑层。
进一步的,所述的透明衬底的材料为玻璃、金刚石、石英、氧化铝、氧化镁、萤石或明矾。
进一步的,所述的透明导电层的材料为氧化铟锡、氧化铟镓锌或氧化铝锌。
进一步的,透明绝缘层的材料为氧化铪、氧化镁、氧化钆、氧化硅、氧化镧或氧化锆。
进一步的,所述源电极和漏电极的材料各自独立地选自透明导电材料、金属、金属合金、导电金属化合物或其任意组合。优选地所述源电极和漏电极的材料各自独立地选自透明导电材料、金属、金属合金或导电金属化合物中的一种。透明导电材料为ITO、IGZO或AZO。金属为Al、Ti、Ta、Cu、Pt、Au、W、Ni或Ag。所述金属合金为Pt/Ti、Ti/Ta、Cu/Ti、Cu/Au、Cu/Al、Ti/W或Al/Zr。所述导电金属化合物为TiN、TiW、TaN、WSi、AZO、ITO或FTO。
进一步的,所述铜锌锡硫硒介质的化学分子式为Cu2-xZn1+x Sn(SySe1-y)4,其中0<x<0.3,0<y<1。优选地,所述铜锌锡硫硒介质的化学分子式为Cu1.92Zn1.08Sn(S0.8Se0.2)4
进一步的,所述铜锌锡硫硒介质层的厚度为2nm-1.5μm。
进一步的,透明导电层的厚度为2nm-300nm。透明绝缘层的厚度为2nm-300nm。所述源电极的厚度为2nm-300nm。漏电极的厚度为2nm-300nm。
如上任一项所述突触器件的制作方法,包括以下步骤:
步骤S1:在透明衬底上通过溅射、等离子增强化学气相沉积(PECVD)、金属有机物化学气相沉积(MOCVD)、原子层沉积(ALD)或蒸发的方式制作透明导电层;
步骤S2:在透明导电层上通过溅射、PECVD、MOCVD、ALD或蒸发的方式制作透明绝缘层;
步骤S3:在透明绝缘层上,采用先旋涂后硒化退火的方式制备铜锌锡硫硒介质层;
步骤S4:在铜锌锡硫硒上制作源电极和漏电极。
本发明还提供一种采用如上所述的突触器件或者如上所述的方法制作的突触器件实现红外光调制突触行为的方法,采用红外光脉冲和电脉冲共同作用模拟生物突触在光刺激下的条件反射行为。
进一步的,采用红外光脉冲作用于透明导电层,源漏间电导发生连续变化。
进一步的,所述采用红外光脉冲和电脉冲共同作用模拟生物突触在光刺激下的条件反射行为包括以下步骤:首先,采用系列红外光脉冲照射透明导电层,光脉冲撤除后源漏间趋稳电流为I1;随后,采用系列电脉冲刺激透明导电层,电脉冲撤除后源漏间趋稳电流为I2;接着,采用上述系列红外光脉冲和系列电脉冲共同刺激透明导电层,两刺激撤除后源漏间趋稳电流为I3;最后,再次用上述系列红外光脉冲照射透明导电层,光脉冲撤除后源漏间趋稳电流为I4,此时,I4>I1
进一步的,所述红外光的波长为900nm-1100nm。
进一步的,所述的电脉冲的参数为:0.1V-3V、0.1Hz-500MHz电压脉冲。
本发明还提供一种采用上述突触器件实现红外光刺激下条件反射行为的方法。首先,采用固定波长的系列红外光脉冲照射透明导电层,光脉冲撤除后源漏间趋稳电流为I1;随后,采用系列电脉冲刺激透明导电层,电脉冲撤除后源漏间趋稳电流为I2;接着,采用该固定波长的系列红外光脉冲和系列电脉冲共同刺激透明导电层,两刺激撤除后源漏间趋稳电流为I3;最后,再次用该固定波长的系列红外光脉冲照射透明导电层,光脉冲撤除后源漏间趋稳电流为I4。此时,I4>I1
进一步的,所述红外光的波长为900nm-1100nm。
进一步的,所述的电脉冲的参数为:0.1V-3V、0.1Hz-500MHz电压脉冲。
本发明中,所述系列红外光脉冲照射透明导电层,所述的透明衬底作为光输入窗口,光从透明衬底入射,照射透明导电层。
本发明与现有技术相比具有以下有益效果:
本发明采用铜锌锡硫硒作为光电信号转化的介质层,光信号可以调节源漏间电导,不仅可以模拟突触行为,还可以模拟红外光刺激下条件反射行为,突破人眼的光谱响应范围。
附图说明
图1是本发明的结构示意图;
图2是本发明一实施例中光刺激对源漏间电流的影响;
图3是本发明一实施例中器件对970nm红外光刺激条件反射行为的模拟。
图中,01-源电极;02-铜锌锡硫硒介质层;03-漏电极;04-透明绝缘层;05-透明导电层;06-透明衬底。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图1,本发明提供一种电子突触器件,包含透明衬底06、透明导电层05、透明绝缘层04、铜锌锡硫硒介质层02、源电极01和漏电极03。
所述透明衬底06,作为器件硬支撑层和光输入窗口。
所述透明导电层05形成于透明衬底06上,作为器件施加电信号的端子。
所述透明绝缘层04形成于透明导电层05上。
所述铜锌锡硫硒介质层02形成于透明绝缘层04上并与所述透明绝缘层04接触良好,作为沟道材料使用。
所述源电极01形成于铜锌锡硫硒介质层02上并与所述铜锌锡硫硒介质层02接触良好。
所述漏电极03形成于铜锌锡硫硒介质层02上并与所述铜锌锡硫硒介质层02接触良好。
在本发明的一实施例中,所述的透明衬底06的材料为玻璃、金刚石、石英、氧化铝、氧化镁、萤石或明矾。
在本发明的一实施例中,所述的透明导电层05为2nm-300nm的氧化铟锡、氧化铟镓锌或氧化铝锌。
在本发明的一实施例中,所述的透明绝缘层04为2nm-300nm的氧化铪、氧化镁、氧化钆、氧化硅、氧化镧或氧化锆。
在本发明的一实施例中,所述的铜锌锡硫硒介质层02厚度为2nm-1.5μm。
在本发明的一实施例中,所述的源电极01厚度为2nm-300nm。所述的漏电极03厚度为2nm-300nm。
在本发明一实施例中,所述源电极01和漏电极03的材料各自独立地选自透明导电材料、金属、金属合金或导电金属化合物中的一种。透明导电材料为ITO、IGZO或AZO;金属为Al、Ti、Ta、Cu、Pt、Au、W、Ni或Ag;所述金属合金为Pt/Ti、Ti/Ta、Cu/Ti、Cu/Au、Cu/Al、Ti/W或Al/Zr;所述导电金属化合物为TiN、TiW、TaN、WSi、AZO、ITO或FTO。
在本发明一实施例中,进一步的,所述铜锌锡硫硒介质的化学分子式为Cu2-xZn1+ xSn(SySe1-y)4,其中0<x<0.3,0<y<1。
在本发明一实施例中,所述电子突触器件的制作方法,包括以下步骤:
步骤S1:在透明衬底06上通过溅射、PECVD、MOCVD、ALD或蒸发的方式制作透明导电层05;
步骤S2:在透明导电层05上通过溅射、PECVD、MOCVD、ALD或蒸发的方式制作透明绝缘层04;
步骤S3:在透明绝缘层04上,采用先旋涂后硒化退火的方式制备铜锌锡硫硒介质层02;
步骤S4:在铜锌锡硫硒介质层上制作源电极01和漏电极03。
本发明还提供一种采用上述突触实现970nm光刺激下条件反射行为的方法。首先,采用970nm波长的系列红外光脉冲照射透明导电层05,光脉冲撤除后源漏间趋稳电流为I1;随后,采用系列电脉冲刺激透明导电层05,电脉冲撤除后源漏间趋稳电流为I2;接着,采用970nm波长系列红外光脉冲和系列电脉冲共同刺激透明导电层05,两刺激撤除后源漏间趋稳电流为I3;最后,再次用970nm波长的系列红外光脉冲照射透明导电层05,光脉冲撤除后源漏间趋稳电流为I4。此时,I4>I1
实施例1:
一种电子突触器件,其结构如图1所示,由透明衬底06、厚度为300纳米的透明导电ITO层、厚度为30nm的氧化铪层、厚度为750nm的Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层、厚度为100nm的Ti金属层作为源电极01和厚度为100nm的Ti金属层作为漏电极03构成。其中,厚度为300纳米的透明导电ITO层为透明导电层05。厚度为30nm的氧化铪为透明绝缘层04。厚度为750nm的Cu1.92Zn1.08Sn(S0.8Se0.2)4介质为铜锌锡硫硒介质层02。
如上所述的电子突触器件制备方法包括如下步骤:
1、选取透明衬底,所述透明衬底06为1mm厚的玻璃。所述透明衬底06作为器件硬支撑层和光输入窗口。
2、在透明衬底06上,通过磁控溅射制备厚度为300nm的所述透明导电ITO层,所述透明导电ITO层作为器件施加电信号的端子。
3、随后,在所述透明导电ITO层上,采用原子层沉积法制备厚度为30nm的氧化铪层。
4、接着,将Cu、Zn、Sn、S和Se粉(Cu、Zn、Sn、S和Se粉加入量分别是1.10mmol、0.76mmol、0.72mmol、2.7mmol、0.3mmol,mmol是“毫摩尔”)一起溶于乙二胺(5ml)和乙二硫醇(0.5ml)中,并使其在70摄氏度搅拌90分钟。在此溶液中,加入1ml由乙醇胺、巯基乙酸和乙二醇甲醚(三者摩尔比率为1:1:2)的混合液接着搅拌30分钟获得含铜、锌、锡、硫、硒的溶液。再将溶液(20滴溶液)滴在氧化铪层表面(2cm*2cm的片子),并将其550摄氏度硒化15分钟获得厚度为750nm的所述Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层。所述Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层与所述氧化铪层接触良好,作为沟道材料使用。
5、采用钢制硬掩模,在Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层上通过溅射法溅射厚度为100nm的Ti金属层制备所述源电极01,所述源电极01与所述Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层接触良好。采用钢制硬掩模,在Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层上通过溅射法溅射厚度为100nm的Ti金属层制备所述漏电极03,所述漏电极03与所述Cu1.92Zn1.08Sn(S0.8Se0.2)4介质层接触良好。
对本实施例中的晶体管进行电学测试(采用半导体参数测试仪Keithley4200scs进行转移特性曲线测试,即在透明导电层上施加电脉冲测试源漏之间的响应电流),图2是管子经不同波长光照射产生的源漏电流。测试时候,光从透明衬底入射,电压施加于透明导电层(即,透明导电层或底电极),漏电极施加读取电压而源电极接地。实验发现,不同波长光都可以通过透明衬底入射而调节源漏间电导,体现出光栅调控源漏电导的效应。图3是器件对970nm红外光刺激条件反射行为的模拟。测试中,我们首先施加10个970nm波长的光脉冲,光激发产生了源漏间电流,撤除光脉冲后源漏电流趋近于0(图3(a));随后,采用10个0.1V电脉冲施加于透明电极(图上的透明导电层即是透明电极),电脉冲同样产生了源漏电流的响应,在撤除电脉冲后源漏电流趋稳于4.76nA(图3(b));接着,在下方(下方就是衬底下面)同时施加上述光脉冲和电脉冲,激励产生了更高的源漏电流响应,在撤除两个脉冲激励后源漏电流趋于5.66nA(图3(c));最后,再次使用10个970nm波长的光脉冲从下往上照射,撤除光照后的源漏电流趋稳于0.36nA(图3(d))。这说明,器件由原先对光信号不响应(I1=0)变成具有良好响应(I4=0.36nA)。该过程很好模拟了生物体对光的条件反射行为。
本发明未详细阐述部分属于本领域技术人员的公知技术。以上所述仅为本发明较佳实施例,在不脱离本发明设计精神的前提下,凡依本发明申请专利范围所做的均等变化与修饰,皆属于本发明涵盖的范围。

Claims (9)

1.一种突触器件,其特征在于:包含透明衬底、透明导电层、透明绝缘层、铜锌锡硫硒介质层、源电极和漏电极;
所述透明衬底,作为器件支撑层;
所述透明导电层形成于透明衬底上,作为器件施加电信号的端子;
所述透明绝缘层形成于透明导电层上;
所述铜锌锡硫硒介质层形成于透明绝缘层上并与所述透明绝缘层接触,作为沟道材料使用;
所述源电极形成于铜锌锡硫硒介质层上并与所述铜锌锡硫硒介质层接触;
所述漏电极形成于铜锌锡硫硒介质层上并与所述铜锌锡硫硒介质层接触;
所述铜锌锡硫硒介质的化学分子式为Cu2-xZn1+x Sn(SySe1-y)4,其中0<x<0.3,0<y<1。
2.根据权利要求1所述的一种突触器件,其特征在于:所述源电极和漏电极的材料各自独立地选自金属、金属合金、导电金属化合物或其任意组合。
3.根据权利要求2所述的一种突触器件,其特征在于:所述金属为Al、Ti、Ta、Cu、Pt、Au、W、Ni或Ag;所述金属合金为Pt/Ti、Ti/Ta、Cu/Ti、Cu/Au、Cu/Al、Ti/W或Al/Zr;所述导电金属化合物为TiN、TiW、TaN、WSi、AZO、ITO或FTO。
4.根据权利要求1所述的一种突触器件,其特征在于:所述铜锌锡硫硒介质层的厚度为2nm-1.5μm。
5.根据权利要求1所述的一种突触器件,其特征在于:透明导电层的厚度为2nm-300nm;透明绝缘层的厚度为2nm-300nm。
6.如权利要求1-5任一项所述的一种突触器件的制作方法,其特征在于:包括以下步骤:
步骤S1:在透明衬底上通过溅射、PECVD、MOCVD、ALD或蒸发的方式制作透明导电层;
步骤S2:在透明导电层上通过溅射、PECVD、MOCVD、ALD或蒸发的方式制作透明绝缘层;
步骤S3:在透明绝缘层上,采用先旋涂后硒化退火的方式制备铜锌锡硫硒介质层;
步骤S4:在铜锌锡硫硒介质层上制作源电极和漏电极;
所述铜锌锡硫硒介质的化学分子式为Cu2-xZn1+x Sn(SySe1-y)4,其中0<x<0.3,0<y<1。
7.一种采用如权利要求1-5任一项所述的突触器件或者如权利要求6所述的方法制作的突触器件实现红外光调制突触行为的方法,其特征在于,采用红外光脉冲和电脉冲共同作用模拟生物突触在光刺激下的条件反射行为。
8.根据权利要求7所述的方法,其特征在于,所述采用红外光脉冲和电脉冲共同作用模拟生物突触在光刺激下的条件反射行为包括以下步骤:首先,采用系列红外光脉冲照射透明导电层,光脉冲撤除后源漏间趋稳电流为I1;随后,采用系列电脉冲刺激透明导电层,电脉冲撤除后源漏间趋稳电流为I2;接着,采用上述系列红外光脉冲和系列电脉冲共同刺激透明导电层,两刺激撤除后源漏间趋稳电流为I3;最后,再次用上述系列红外光脉冲照射透明导电层,光脉冲撤除后源漏间趋稳电流为I4,此时,I4>I1
9.根据权利要求7所述的方法,其特征在于,采用红外光脉冲作用于透明导电层,源漏间电导发生连续变化。
CN202111186205.XA 2021-10-12 2021-10-12 一种突触器件及实现其红外光调制突触行为的方法 Active CN113964220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111186205.XA CN113964220B (zh) 2021-10-12 2021-10-12 一种突触器件及实现其红外光调制突触行为的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111186205.XA CN113964220B (zh) 2021-10-12 2021-10-12 一种突触器件及实现其红外光调制突触行为的方法

Publications (2)

Publication Number Publication Date
CN113964220A CN113964220A (zh) 2022-01-21
CN113964220B true CN113964220B (zh) 2023-09-01

Family

ID=79463972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111186205.XA Active CN113964220B (zh) 2021-10-12 2021-10-12 一种突触器件及实现其红外光调制突触行为的方法

Country Status (1)

Country Link
CN (1) CN113964220B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993013A (zh) * 2015-05-25 2015-10-21 北京四方继保自动化股份有限公司 一种大面积铜铟镓硒薄膜太阳能电池组件的全激光刻划方法
CN107258020A (zh) * 2014-12-22 2017-10-17 道达尔股份有限公司 具有纹理化表面的光电设备及其制造方法
JP2018207273A (ja) * 2017-06-02 2018-12-27 株式会社半導体エネルギー研究所 撮像装置および電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962558B2 (en) * 2005-08-05 2018-05-08 Gholam A. Peyman Methods to regulate polarization and enhance function of cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107258020A (zh) * 2014-12-22 2017-10-17 道达尔股份有限公司 具有纹理化表面的光电设备及其制造方法
CN104993013A (zh) * 2015-05-25 2015-10-21 北京四方继保自动化股份有限公司 一种大面积铜铟镓硒薄膜太阳能电池组件的全激光刻划方法
JP2018207273A (ja) * 2017-06-02 2018-12-27 株式会社半導体エネルギー研究所 撮像装置および電子機器

Also Published As

Publication number Publication date
CN113964220A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
Yang et al. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks
Zhu et al. Optogenetics-inspired tunable synaptic functions in memristors
Gkoupidenis et al. Neuromorphic device architectures with global connectivity through electrolyte gating
Wu et al. Artificial synaptic devices based on natural chicken albumen coupled electric-double-layer transistors
Lee et al. Realization of an artificial visual nervous system using an integrated optoelectronic device array
US20060148254A1 (en) Activated iridium oxide electrodes and methods for their fabrication
Gou et al. Artificial synapses based on biopolymer electrolyte-coupled SnO 2 nanowire transistors
Ryu et al. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering
Alquraishi et al. Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors
CN109037388B (zh) 一种光控神经突触仿生电子器件及其制备方法
CN110739393A (zh) 一种仿生突触器件及其制作方法及其应用
Dang et al. One‐Phototransistor–One‐Memristor Array with High‐Linearity Light‐Tunable Weight for Optic Neuromorphic Computing
Zhang et al. Implementation of simple but powerful trilayer oxide-based artificial synapses with a tailored bio-synapse-like structure
Yong et al. Fully solution-processed transparent artificial neural network using drop-on-demand electrohydrodynamic printing
Duan et al. Gate modulation of excitatory and inhibitory synaptic plasticity in a low-temperature polysilicon thin film synaptic transistor
Fu et al. Proton conducting C3N4/Chitosan composite electrolytes based InZnO thin film transistor for artificial synapse
CN113964220B (zh) 一种突触器件及实现其红外光调制突触行为的方法
Tamogami et al. A tin oxide transparent electrode provides the means for rapid time‐resolved pH measurements: application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin
Ye et al. Overview of memristor-based neural network design and applications
Zawal et al. Light‐Induced Synaptic Effects Controlled by Incorporation of Charge‐Trapping Layer into Hybrid Perovskite Memristor
Guo et al. Broadband Optoelectronic Synapse Enables Compact Monolithic Neuromorphic Machine Vision for Information Processing
Papakonstantinopoulos et al. Highly flexible artificial synapses from SiO2-based conductive bridge memristors and Pt nanoparticles through a crack suppression technique
Chen et al. Flexible dual-gate MoS₂ neuromorphic transistors on freestanding proton-conducting chitosan membranes
Nobre et al. A synaptic device based on the optoelectronic properties of ZnO thin film transistors
Dayal et al. Linear weight update and large synaptic responses in neuromorphic devices comprising pulsed-laser-deposited BiFeO3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant