CN113960088A - 一种针对进口散装铁矿卸货前固体废物属性快速筛查方法 - Google Patents

一种针对进口散装铁矿卸货前固体废物属性快速筛查方法 Download PDF

Info

Publication number
CN113960088A
CN113960088A CN202111098591.7A CN202111098591A CN113960088A CN 113960088 A CN113960088 A CN 113960088A CN 202111098591 A CN202111098591 A CN 202111098591A CN 113960088 A CN113960088 A CN 113960088A
Authority
CN
China
Prior art keywords
iron ore
content
less
sample
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111098591.7A
Other languages
English (en)
Other versions
CN113960088B (zh
Inventor
武素茹
谷松海
王斌
冯文燕
李涛
郑云龙
魏红兵
朱锦波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Customs Metal Material Testing Center
Original Assignee
Tianjin Customs Metal Material Testing Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Customs Metal Material Testing Center filed Critical Tianjin Customs Metal Material Testing Center
Priority to CN202111098591.7A priority Critical patent/CN113960088B/zh
Publication of CN113960088A publication Critical patent/CN113960088A/zh
Application granted granted Critical
Publication of CN113960088B publication Critical patent/CN113960088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种针对进口散装铁矿卸货前固体废物属性快速筛查方法,该方法将抽取的铁矿样品缩分、破碎至全部通过筛网;采用压片法‑X射线荧光光谱仪对铁矿样品的元素含量进行无标样定量检测;采用X射线衍射光谱仪检测铁矿样品的物相组成,然后与天然矿物特征比对,根据天然矿物特征判断铁矿样品的固体废物属性。该方法解决了对铁矿的检验方法、鉴别流程、判定依据和特征指标不统一的问题;大大提高了进口散装含铁物料固体废物属性鉴别检测效率,大幅压缩了货物通关时长。

Description

一种针对进口散装铁矿卸货前固体废物属性快速筛查方法
技术领域
本发明涉及适用于海关系统针对进口海运散装“铁矿”的固体废物属性快速鉴别技术,尤其涉及一种针对进口散装铁矿卸货前固体废物属性快速筛查方法。
背景技术
矿产品作为大宗战略资源性商品,在工业生产中占有举足轻重的作用,铁矿在矿产品中的地位,更是重中之重。因此,如何准确将那些极易混淆的含铁固体废物与天然铁矿区别开来,找到它们的鉴别关键点,是维护我国环境安全的重要课题。
目前鉴别工作存在的问题是,鉴别固体废物属性的特征点不易抓取,样品种类繁杂,缺少判定依据,导致样品的检测流程长,而且容易造成鉴别结论不一致的结果。
目前针对矿产品的固体废物鉴别手段主要包括:外观检验、物理指标检验、化学成分定量/ 定性检验、物相结构分析和微观形貌观测等。即使利用了现有的仪器设备来表征样品的属性,也很难从各个属性中准确掌握特征指标。全国范围内开展固体废物鉴别仅仅不到两年时间,不同鉴别机构对同一种商品的检验方法、鉴别流程、判定依据和特征指标都不统一,缺少相关产品的属性鉴别标准,甚至同一鉴别机构内的不同专家都持有不同的观点,需要反复研判讨论再查找各种文献论证后才能得到可靠的结论,所以统一的鉴别特异性指标的提取尤为重要。
在守好国门的同时,海关还肩负着加快通关流程,改善营商环境的职责,即要做到不放一批固体废物进境又要尽量缩短鉴别流程。同时,货物在等待鉴别结果期间,是需要先行卸货,在港口码头堆积,如果货物最终被鉴别为固体废物,则需要退运出境,期间造成了严重的经济损失和环境危害,如何在卸货前即可快速得到货物的固体废物属性,减少不必要的损失和危害,给海关查验、固体废物鉴别实验室提出了新的课题。
发明内容
鉴于上述在进口主要含铁物料中存在的鉴别技术问题,本发明提供一种针对进口散装铁矿卸货前固体废物属性快速筛查方法。本发明历经几年时间,通过对铁矿、主要含铁的固体废物有关固体废物属性鉴别大量数据进行收集,并将收集的资料进行归类,经对比分析研究后,最终从繁杂的含铁物料中准确的找到了天然铁矿和主要含铁物料的固体废物属性关键鉴别指标,并依此建立了固体废物属性筛查实验室快速响应机制。
本发明采取的技术方案是:一种针对进口散装铁矿卸货前固体废物属性快速筛查方法,其特征在于:所述方法采取的步骤如下:
一、抽取铁矿样品数量不少于100g,将抽取的铁矿样品缩分、破碎至全部通过200目筛网;采用压片法-X射线荧光光谱仪对铁矿样品的元素含量进行无标样定量检测;采用X射线衍射光谱仪检测铁矿样品的物相组成,然后再进行下一步骤的判断和分析。
二、将检测铁矿样品的元素含量和物相组成与天然矿物特征比对,特征包括天然铁矿的元素含量范围及全球铁矿主要生产国的典型物相组成,根据天然矿物特征判断铁矿样品的固体废物属性;若铁矿样品中各元素含量在正常元素含量范围内,正常元素含量范围:TFe含量为22.62~68.63%、SiO2含量<22.33%、Al2O3含量<12.97%、CaO含量<9.33%、MgO含量<6.07%、S含量<3.11%、Mn含量<17.65%、K2O含量<7.63%、Na2O含量<1.35%、P含量<0.96%、TiO2含量<7.68%、As含量<0.027%、Cd含量<0.068%、Cu含量<0.77%、Zn含量<0.29%、Pb含量<1.22%、Hg含量<1.32μg/g、F含量<0.099%)、Cl含量<0.40%;且铁矿样品的物相组成为磁铁矿、赤铁矿、针铁矿、石英、粘土矿物,属于典型铁矿物相组成,则判为非固体废物;若有部分元素含量超出常见元素含量范围,则再进行下一步骤的分析;三、将铁矿样品检测结果与含铁类固体废物的特征进行比对,若铁矿样品元素含量异常,即元素含量出现超出正常天然铁矿含量范围的钙、锌、铅、砷、硫、钠、铜以及检测出部分稀有金属元素;并且物相组成异常,即物相组成中出现以下物相之一的则判为固体废物:氧化亚铁、金属铁、铁酸锌、石膏、黄钾铁矾、硅酸锌、钠硅渣、铅钒、铁的各种合金、硅酸铁,或者无明显衍射峰的玻璃质;若无此特征,则再进行下一步骤的分析;
四、从铁矿样品异常的元素含量、物相组成特征入手,查找相应的生产工艺流程,补充试验,继续验证铁矿样品的固体废物属性,补充试验包括对铁矿样品的激光粒度检测、矿相显微镜和扫描电镜观察,以此验证铁矿样品是否经过高温冶炼及湿法工艺,若出现以下特征之一:样品粒度极细,在几微米以下;样品浸取液pH值呈酸性或碱性;微观有球状结团形貌;明显蜂窝状的异常特征,则判定为固体废物。
本发明前期科研工作主要包括以下几个方面:
1、研究天然铁矿与各种主要含铁的废物之间的特征差异
通过滴定法、X射线荧光光谱法、电感耦合等离子体原子发射光谱法、测汞仪、测硫仪的检测手段,检测了天津口岸近两年进口的2000余批天然铁矿的元素含量水平,得到全球铁矿的常见元素含量范围(见表1),并分析了15个国家的铁矿的物相结构(见表2)。同时,全面收集、整理国内外各种含铁物料,了解铁矿生产加工工艺,明确何种生产工艺将会产生何种相应的废物,从而找出目前常见的主要含铁废料的来源工艺和种类(见表3)。
表1全球天然铁矿元素含量范围分布表(%,Hg的单位μg/g)
Figure RE-GDA0003406484620000031
表2全球主要铁矿的物相种类
Figure RE-GDA0003406484620000032
表3目前主要含铁物料的固体废物种类和来源
Figure RE-GDA0003406484620000041
2、研究天然铁矿与各种主要含铁的废物的鉴别方法
分别研究了两种主要的鉴别技术,X射线衍射光谱法和X射线荧光光谱法应用于铁矿及主要含铁物料的鉴别研究,以及一些辅助技术的应用,包括扫描电镜、矿相显微镜、激光粒度和浸取液pH值测定。通过研究,找出了主要含铁废物固体废物属性鉴别的特征指标(见表4)。
表4主要含铁类物料的固体废物属性鉴别特征指标汇总表
Figure RE-GDA0003406484620000042
Figure RE-GDA0003406484620000051
3、研究实验室快速响应机制
基于以上特征指标,建立了主要含铁物料的实验室固体废物属性鉴别三阶段流程式快速响应机制。
本发明前期科研工作获得的研究成果如下:
1、明确了目前常见的主要含铁固体废物的种类和产生来源
通过对口岸实际报检样品、工厂取样以及文献整理等多种途径,总结了目前常见的主要含铁固体废物的种类和来源。
2、找到了铁矿与主要含铁固体废物的本质性差异
通过实验,研究了天然铁矿和主要含铁固体废物的元素和物相特征,找到了它们之间的本质差异,成为鉴别的关键指标。
3、建立实验室快速响应机制
基于天然铁矿和主要含铁废物的鉴别关键指标,建立了主要含铁物料的实验室固体废物属性鉴别三阶段流程式快速响应机制。
同时,采取本方法可服务于海关检验系统、科研单位、大专院校、检测中心及相应生产厂家之间部门等对进口类似矿物的废旧物料的归类进行判别,通过技术手段阻止洋垃圾入境,保障了我国环境安全。
本发明所产生的有益效果是:
1、从繁杂的含铁物料中准确的找到了主要含铁物料的固体废物属性关键鉴别指标,并依此建立了固体废物属性筛查实验室快速响应机制,大大提高了进口散装“含铁物料”固体废物属性鉴别检测效率,大幅压缩了货物通关时长。对保护国家生态环境、改善口岸营商环境具有重要意义。
2、主要含铁物料的固体废物属性关键鉴别指标的提取,解决了一系列鉴别技术问题:不同鉴别机构对同一种商品的检验方法、鉴别流程、判定依据和特征指标都不统一的问题,缺少相关产品的固体废物属性鉴别标准的问题,甚至同一鉴别机构内的不同专家都持有不同的观点。一定程度减少了针对固体废物属性结论的争论引起的法律纠纷的风险,提高了海关实验室执法的公信力。
3、本发明的实施,将货物通关效率大大提高。以前没有统一的固体废物属性鉴别关键指标,为保证不放入一批固体废物,也不错判一批货物,实验室接到样品会把能做的实验全部开展一次,以获取样品的全方位结果信息,整个鉴别流程长达10天甚至一个月,对于非固体废物而言,极大的影响了口岸营商环境,阻碍了经济的发展,对于固体废物而言,在港口码头堆存了成山的固体废物,给我国生态环境造成严重影响。因此,在鉴别过程中,检测方法的选择方面,既不能为了节省时间而缺少必要检测手段,又不能为佐证结论而做很多不同角度重复论证的实验。
4、本发明准确的找到了主要含铁物料的固体废物属性关键鉴别指标,并依此建立了固体废物属性筛查实验室三段式快速响应机制,将鉴别流程缩短至几个小时至2天,与海关各部门和港口作业各部门联动机制,可以完成锚地筛查和泊位筛查,真正实现固体废物不卸货、不在港口码头堆存的目标,将含铁类“洋垃圾”真正拒于国门之外。
附图说明
图1为本发明实施例2中样品呈细小颗粒结团的×4000扫描电镜图;
图2为本发明实施例2中样品呈球状颗粒的×4000扫描电镜图;
图3为本发明实施例2中样品呈球状颗粒的×8000扫描电镜图。
具体实施方式
以下结合附图和实施例对本发明作进一步说明。
实验室接到委托的固体废物属性鉴别样品后,完成固体废物属性快速筛查的鉴别实验,快速响应机制如下:
实验室接到样品后,分三个阶段完成整个快速筛查流程。同时,根据具体情况,分阶段报告上级管控部门,对货物采取相应的管制措施。
(1)第一阶段
抽取样品数量不少于100g,将抽取的样品缩分、破碎至全部通过200目筛网;采用压片法-X荧光光谱仪对样品中各元素含量进行检测;X射线衍射光谱仪对样品进行物相组成检测。根据检测的元素含量和物相组成与天然矿物特征比对,判断铁矿的固体废物属性。
结果判定:当样品的元素含量和物相组成基本符合表1和表2中特征时,为非固体废物;当样品的元素含量和物相组成不符合表1和表2中特征时,为疑似固体废物,找到疑点,转入第二阶段试验。
(2)第二阶段
在第一阶段的基础上,根据检测的元素含量和物相组成以及其它特征,与相关易混淆的几类固体废物特征比对,视具体情况补做扫描电镜微观形貌观察试验、激光粒度实验、浸取液pH试验和矿相显微镜试验,验证疑点,初步判断样品为疑似固体废物或非固体废物。
结果判定:两种情况,若样品的基本结果符合表4特征,则初步判断为疑似固体废物,同时转入第三阶段试验。若结果既不符合表1、2的特征,也不符合表4的特征,也转入第三阶段实验。
(3)第三阶段
从铁矿样品异常的元素含量、物相组成特征入手,查找相应的生产工艺流程,补充试验,继续验证铁矿样品的固体废物属性,补充试验包括对铁矿样品的激光粒度检测、矿相显微镜和扫描电镜观察,以此验证铁矿样品是否经过高温冶炼及湿法工艺,若出现以下特征特征之一:样品粒度极细,在几微米以下;样品浸取液pH值呈酸性或碱性;微观有球状结团形貌;明显蜂窝状的异常特征,则判定为固体废物。
实施例1:
a、抽取样品数量不少于100g,将抽取的样品缩分、破碎至全部通过200目筛网;采用压片法-X荧光光谱仪对样品中各元素含量进行检测,结果见表5;X射线衍射光谱仪对样品进行物相组成检测,结果见表6。
结果分析:(1)样品的元素半定量检测结果与表1对比发现,氧化铝含量高于常见铁矿中氧化铝含量的最高值(12.97%),并远远高于天然铁矿中氧化铝含量的平均值(2.24%)。即,元素含量中铝元素异常。(2)样品的物相中,主要含铁矿物为赤铁矿和针铁矿,脉石矿物为三水铝石、石英和高岭土。物相结果与表2对比,发现三水铝石的物相为异常点。
结果判定:样品的元素含量和物相组成不符合表1和表2中特征,铝的含量和物相异常,无法判断样品的固体废物属性,转入第二阶段试验。
表5实施例1中样品元素含量(%)
Fe<sub>2</sub>O<sub>3</sub> Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub> CaO TiO<sub>2</sub> MgO MnO P<sub>2</sub>O<sub>5</sub> K<sub>2</sub>O Na<sub>2</sub>O
53.26 21.77 12.53 1.69 0.76 0.40 0.35 0.24 0.23 0.11
Cl Cr<sub>2</sub>O<sub>3</sub> ZnO BaO CuO V<sub>2</sub>O<sub>5</sub> ZrO<sub>2</sub> NiO SO<sub>3</sub>
0.09 0.08 0.02 0.02 0.02 0.02 0.02 0.01 0.47
表6实施例1中样品物相组成
编号 物相 分子式
1 赤铁矿 Fe<sub>1.85</sub>H<sub>0.45</sub>O<sub>3</sub>
2 三水铝石 Al(OH)<sub>3</sub>
3 铝针铁矿 (Fe<sub>0.93</sub>Al<sub>0.07</sub>)O(OH)
4 石英 SiO<sub>2</sub>
5 氢氧化氧铁 FeO(OH)
6 高岭土 Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>·(OH)<sub>4</sub>
b、因样品的铝含量异常,与表4特征对照,发现表4中第6种样品“拜耳法赤泥”的特征即为铝含量高,物相组成也较为一致,此时需要根据拜耳法赤泥的其它特征补做试验。经过pH值和粒度实验,发现样品的浸出液pH为8.2,粒度0.075mm以下仅占全部样品量的5.45%,与表4特征不符。无法判断样品的固体废物属性,转入第三阶段试验。
c、从样品的铝含量异常入手,查找文献发现样品的特征与两种天然矿物—高铁铝土矿或高铝褐铁矿符合性较好。同时样品无高温冶炼和湿法冶炼的痕迹,最终判定样品为天然矿物,不属于固体废物。
实施例2:
a、抽取样品数量不少于100g,将抽取的样品缩分、破碎至全部通过200目筛网;采用压片法-X荧光光谱仪对样品中各元素含量进行检测,结果见表7;X射线衍射光谱仪对样品进行物相组成分析,结果见表8。
结果分析:(1)样品的元素半定量检测结果与表1对比,各个元素含量均在范围内,无异常元素。(2)样品的物相中,主要含铁矿物为赤铁矿和磁铁矿、其次为硫铁矿,脉石矿物为石英,还有少量硫酸铝。物相结果与表2对比,发现硫酸铝的物相为异常点。
结果判定:样品的元素含量符合表1,但物相组成不符合表2中特征,无法判断样品的固体废物属性,转入第二阶段试验。
表7实施例2中样品元素含量(%)
TFe SiO<sub>2</sub> Al<sub>2</sub>O<sub>3</sub> SO<sub>3</sub> CaO K<sub>2</sub>O Na<sub>2</sub>O TiO<sub>2</sub>
58.91 10.90 6.11 2.15 0.60 0.36 0.15 0.11
MgO Cr<sub>2</sub>O<sub>3</sub> NiO MnO V<sub>2</sub>O<sub>5</sub> PbO ZnO CuO
0.10 0.02 0.01 0.01 0.01 0.014 0.026 0.020
表8实施例2中样品物相组成
物相 赤铁矿 磁铁矿 石英 硫铁矿 硫酸铝
分子式 Fe<sub>2</sub>O<sub>3</sub> Fe<sub>3</sub>O<sub>4</sub> SiO<sub>2</sub> FeS<sub>2</sub> Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·17H<sub>2</sub>O
b、因样品的物相异常,与表4特征对照,发现样品的特征与表4中第3种样品“硫铁矿渣”的特征符合程度较高:样品的主要元素为铁、硅、铝、硫,其中硫(三氧化硫含量2.15%)高于一般的赤铁矿(硫含量平均值为0.051%,以三氧化硫计为0.128%),物相含有硫铁矿和硫酸盐物相,此时需要根据硫铁矿渣的其它特征补做试验。
经过补充pH值和扫描电镜实验,发现样品的浸出液pH为4.1,场发射扫描电镜观测到样品颗粒不规则,样品粒度细小,有明显结团现象(见图1),有些呈球状(见图2、3),与表4特征相符。可以判断样品属于固体废物。

Claims (1)

1.一种针对进口散装铁矿卸货前固体废物属性快速筛查方法,其特征在于:所述方法采取的步骤如下:
一、抽取铁矿样品数量不少于100g,将抽取的铁矿样品缩分、破碎至全部通过200目筛网;采用压片法-X射线荧光光谱仪对铁矿样品的元素含量进行无标样定量检测;采用X射线衍射光谱仪检测铁矿样品的物相组成,然后再进行下一步骤的判断和分析;
二、将检测铁矿样品的元素含量和物相组成与天然矿物特征比对,特征包括天然铁矿的元素含量范围及全球铁矿主要生产国的典型物相组成,根据天然矿物特征判断铁矿样品的固体废物属性;若铁矿样品中各元素含量在正常元素含量范围内,正常元素含量范围:TFe含量为22.62~68.63%、SiO2含量<22.33%、Al2O3含量<12.97%、CaO含量<9.33%、MgO含量<6.07%、S含量<3.11%、Mn含量<17.65%、K2O含量<7.63%、Na2O含量<1.35%、P含量<0.96%、TiO2含量<7.68%、As含量<0.027%、Cd含量<0.068%、Cu含量<0.77%、Zn含量<0.29%、Pb含量<1.22%、Hg含量<1.32μg/g、F含量<0.099%)、Cl含量<0.40%;且铁矿样品的物相组成为磁铁矿、赤铁矿、针铁矿、石英、粘土矿物,属于典型铁矿物相组成,则判为非固体废物;若有部分元素含量超出常见元素含量范围,则再进行下一步骤的分析;
三、将铁矿样品检测结果与含铁类固体废物的特征进行比对,若铁矿样品元素含量异常,即元素含量出现超出正常天然铁矿含量范围的钙、锌、铅、砷、硫、钠、铜以及检测出部分稀有金属元素;并且物相组成异常,即物相组成中出现以下物相之一的则判为固体废物:氧化亚铁、金属铁、铁酸锌、石膏、黄钾铁矾、硅酸锌、钠硅渣、铅钒、铁的各种合金、硅酸铁,或者无明显衍射峰的玻璃质;若无此特征,则再进行下一步骤的分析;
四、从铁矿样品异常的元素含量、物相组成特征入手,查找相应的生产工艺流程,补充试验,继续验证铁矿样品的固体废物属性,补充试验包括对铁矿样品的激光粒度检测、矿相显微镜和扫描电镜观察,以此验证铁矿样品是否经过高温冶炼及湿法工艺,若出现以下特征之一:样品粒度极细,在几微米以下;样品浸取液pH值呈酸性或碱性;微观有球状结团形貌;明显蜂窝状的异常特征,则判定为固体废物。
CN202111098591.7A 2021-09-18 2021-09-18 一种针对进口散装铁矿卸货前固体废物属性快速筛查方法 Active CN113960088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111098591.7A CN113960088B (zh) 2021-09-18 2021-09-18 一种针对进口散装铁矿卸货前固体废物属性快速筛查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111098591.7A CN113960088B (zh) 2021-09-18 2021-09-18 一种针对进口散装铁矿卸货前固体废物属性快速筛查方法

Publications (2)

Publication Number Publication Date
CN113960088A true CN113960088A (zh) 2022-01-21
CN113960088B CN113960088B (zh) 2023-10-10

Family

ID=79461781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111098591.7A Active CN113960088B (zh) 2021-09-18 2021-09-18 一种针对进口散装铁矿卸货前固体废物属性快速筛查方法

Country Status (1)

Country Link
CN (1) CN113960088B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494096A (zh) * 2022-10-24 2022-12-20 青岛理工大学 一种基于x射线衍射光谱的冶金固体废物鉴别方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718721A (zh) * 2009-11-10 2010-06-02 天津出入境检验检疫局化矿金属材料检测中心 重金属精矿与重金属矿灰和残渣属性鉴别方法
WO2011073354A1 (de) * 2009-12-18 2011-06-23 Construction Research & Technology Gmbh Verfahren zur qualitativen und quantitativen identifizierung von massengütern
JP2018081092A (ja) * 2016-11-08 2018-05-24 住友金属鉱山株式会社 鉱物粒子の表面分析方法
CN109254023A (zh) * 2017-07-14 2019-01-22 江苏出入境检验检疫局工业产品检测中心 一种固体废物鉴别的方法
CN111606371A (zh) * 2020-06-03 2020-09-01 山西大学 一种用于酸性矿水治理的新型可渗透反应墙装置和填料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101718721A (zh) * 2009-11-10 2010-06-02 天津出入境检验检疫局化矿金属材料检测中心 重金属精矿与重金属矿灰和残渣属性鉴别方法
WO2011073354A1 (de) * 2009-12-18 2011-06-23 Construction Research & Technology Gmbh Verfahren zur qualitativen und quantitativen identifizierung von massengütern
JP2018081092A (ja) * 2016-11-08 2018-05-24 住友金属鉱山株式会社 鉱物粒子の表面分析方法
CN109254023A (zh) * 2017-07-14 2019-01-22 江苏出入境检验检疫局工业产品检测中心 一种固体废物鉴别的方法
CN111606371A (zh) * 2020-06-03 2020-09-01 山西大学 一种用于酸性矿水治理的新型可渗透反应墙装置和填料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115494096A (zh) * 2022-10-24 2022-12-20 青岛理工大学 一种基于x射线衍射光谱的冶金固体废物鉴别方法及系统

Also Published As

Publication number Publication date
CN113960088B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
Ryan et al. Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins
CN101718721B (zh) 重金属精矿与冶炼渣属性鉴别方法
Moustafa et al. Physical and chemical beneficiation of the Egyptian beach monazite
Donskoi et al. Utilization of optical image analysis and automatic texture classification for iron ore particle characterisation
US20160107197A1 (en) Method and device for separating primary ore containing rare earths
CN113960088B (zh) 一种针对进口散装铁矿卸货前固体废物属性快速筛查方法
Andersson et al. Characterization and upgrading of a low zinc-containing and fine blast furnace sludge–A multi-objective analysis
Ettler et al. Cobalt-bearing copper slags from Luanshya (Zambian Copperbelt): Mineralogy, geochemistry, and potential recovery of critical metals
CN103376271A (zh) 锌精矿与含锌烟道灰的鉴别方法
CN110935557A (zh) 一种低品位红土镍矿粗细分级-重磁联合除铬工艺
Gu et al. Sequential extraction of valuable trace elements from Bayer process-derived waste red mud samples
CN112051355A (zh) 一种钢铁冶炼固体废物的检测分析方法
Pereira et al. Constraining the economic potential of by-product recovery by using a geometallurgical approach: The example of rare earth element recovery at Catalão I, Brazil
CN110361412B (zh) 一种确定不同磁性磁黄铁矿相对含量的方法
Santoro et al. Automated scanning electron microscopy (Qemscan®)-based mineral identification and quantification of the Jabali Zn-Pb-ag nonsulfide deposit (Yemen)
GRAMMATIKOPOULOS–SGS et al. Quantitative characterization of the REE minerals by QEMSCAN from the Nechalacho Heavy Rare Earth Deposit, Thor Lake Project, NWT, Canada
Seiler et al. Awaruite, a new large nickel resource. Part 1: Physicochemical properties and their implication for mineral processing
KR101380806B1 (ko) 부산물 처리방법
Abaka-Wood et al. Characterisation of mining tailings for the beneficiation of rare earth elements minerals
CN108398447B (zh) 一种金铜矿尾砂中锌元素的崁布特征分析方法
Shoppert et al. High-Selective Extraction of Scandium (Sc) from Bauxite Residue (Red Mud) By Acid Leaching with MgSO4. Materials 2022, 15, 1343
Moila Process Mineralogy and Extraction of Rare Earth Elements from Beach Placer Deposit
Xu et al. Feasibility Exploration on the Efficient Recovery of Chromium from a Lateritic Nickel Deposit
Lanzerstorfer et al. Steelmaking Dust: Speciation of Zinc by Sequential Leaching
US20240272135A1 (en) Method for determining metallogenic potential of porphyry by using trace elements and b isotope of tourmaline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant