CN113943488B - A composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method - Google Patents
A composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method Download PDFInfo
- Publication number
- CN113943488B CN113943488B CN202111014781.6A CN202111014781A CN113943488B CN 113943488 B CN113943488 B CN 113943488B CN 202111014781 A CN202111014781 A CN 202111014781A CN 113943488 B CN113943488 B CN 113943488B
- Authority
- CN
- China
- Prior art keywords
- composite material
- polytetrafluoroethylene
- zif
- mofs
- ptfe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001343 polytetrafluoroethylene Polymers 0.000 title claims abstract description 92
- 239000004810 polytetrafluoroethylene Substances 0.000 title claims abstract description 92
- 239000002131 composite material Substances 0.000 title claims abstract description 70
- 239000000463 material Substances 0.000 title claims abstract description 38
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 38
- -1 polytetrafluoroethylene Polymers 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 claims abstract description 72
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 claims abstract description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000839 emulsion Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000000725 suspension Substances 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims abstract description 8
- 238000010257 thawing Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 239000002736 nonionic surfactant Substances 0.000 claims abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000006555 catalytic reaction Methods 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract description 2
- 239000002861 polymer material Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract 2
- 230000008014 freezing Effects 0.000 abstract 1
- 238000007710 freezing Methods 0.000 abstract 1
- 238000011084 recovery Methods 0.000 description 10
- 238000001000 micrograph Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000013112 stability test Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- JGPSMWXKRPZZRG-UHFFFAOYSA-N zinc;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O JGPSMWXKRPZZRG-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L87/00—Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及高分子聚合物保护金属有机框架技术领域,具体涉及一种基于聚四氟乙烯包裹MOFs材料的复合材料及其制备方法。The invention relates to the technical field of polymer-protected metal-organic frameworks, in particular to a composite material based on polytetrafluoroethylene-wrapped MOFs materials and a preparation method thereof.
背景技术Background technique
由于金属有机框架(MOFs)材料具有大比表面积,高孔隙率等结构特点,使得其广泛应用于气体的储存与分离、生物传感器、催化以及生物医药释放等领域。沸石咪唑酯骨架材料ZIF-8表现出特殊孔道结构和高的水热稳定性和化学稳定性,因此ZIF-8成为多个领域的研究热点。人们已经将ZIF-8的应用延伸到水溶液(除去水中重金属离子,光催化降解染料)。Metal-organic frameworks (MOFs) are widely used in gas storage and separation, biosensors, catalysis, and biomedical release due to their large specific surface area and high porosity. The zeolite imidazolate framework material ZIF-8 exhibits a special pore structure and high hydrothermal and chemical stability, so ZIF-8 has become a research hotspot in many fields. People have extended the application of ZIF-8 to aqueous solution (removal of heavy metal ions in water, photocatalytic degradation of dyes).
尽管如此,目前已经有文献报道ZIF-8微晶在水中不稳定并且还生成了新的物质。因此,保护ZIF-8使得其在水溶液应用中或者其他反应下不被分解,是本领域要解决的难题。Nevertheless, it has been reported in the literature that ZIF-8 microcrystals are unstable in water and new substances are also generated. Therefore, protecting ZIF-8 from being decomposed in aqueous solution application or other reactions is a difficult problem to be solved in this field.
高分子聚合物聚四氟乙烯(PTFE)具有优良的机械韧性、化学稳定性、耐腐蚀性、耐高温、高润滑不粘性、电绝缘性和良好的抗老化耐力同时也是超疏水材料。The polymer polytetrafluoroethylene (PTFE) has excellent mechanical toughness, chemical stability, corrosion resistance, high temperature resistance, high lubrication and non-stickiness, electrical insulation and good aging resistance, and it is also a super-hydrophobic material.
不同于传统的金属有机框架材料,金属有机框架材料与高分子聚合物结合,可以使其不仅保留本身的特性同时也具有高分子材料的特性。聚四氟乙烯与ZIF-8结合的复合材料,可以提高ZIF-8的水稳定性,耐高压,疏水等特性,使其在更多领域有广泛的应用前景。Different from traditional metal-organic framework materials, the combination of metal-organic framework materials and polymers can not only retain their own characteristics but also have the characteristics of polymer materials. The composite material of polytetrafluoroethylene and ZIF-8 can improve the water stability, high pressure resistance, hydrophobicity and other characteristics of ZIF-8, so that it has a wide application prospect in more fields.
发明内容Contents of the invention
本发明的目的是针对现有技术存在的问题,提供一种基于聚四氟乙烯包裹MOFs材料的复合材料及其制备方法,该复合材料能够使ZIF-8在水溶液应用中或者其他反应下不被分解。The purpose of the present invention is to address the problems in the prior art, to provide a composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method, the composite material can make ZIF-8 not be destroyed in aqueous solution application or other reactions break down.
本发明为了实现以上目的,采用以下技术方案。In order to achieve the above object, the present invention adopts the following technical solutions.
一种基于聚四氟乙烯包裹MOFs材料的复合材料,所述复合材料由聚四氟乙烯包裹MOFs材料而成。A composite material based on polytetrafluoroethylene wrapping MOFs material, the composite material is made of polytetrafluoroethylene wrapping MOFs material.
优选的,所述聚四氟乙烯占复合材料的20wt%-70wt%,所述MOFs材料占复合材料的30wt%-80wt%。Preferably, the polytetrafluoroethylene accounts for 20wt%-70wt% of the composite material, and the MOFs material accounts for 30wt%-80wt% of the composite material.
优选的,所述聚四氟乙烯占复合材料的20wt%-50wt%,所述MOFs材料占复合材料的50wt%-80wt%。Preferably, the polytetrafluoroethylene accounts for 20wt%-50wt% of the composite material, and the MOFs material accounts for 50wt%-80wt% of the composite material.
优选的,所述MOFs材料为ZIF-8。Preferably, the MOFs material is ZIF-8.
以上所述的一种基于聚四氟乙烯包裹MOFs材料的复合材料的制备方法,包括以下步骤:A kind of preparation method based on the composite material of polytetrafluoroethylene wrapping MOFs material described above, comprises the following steps:
将聚四氟乙烯乳液滴入在超声状态下的MOFs材料悬浮液中,持续超声,再置于液氮中冷冻,解冻后去除水分,再干燥,得到基于聚四氟乙烯包裹MOFs材料的复合材料。Drop the polytetrafluoroethylene emulsion into the MOFs material suspension in the ultrasonic state, continue to sonicate, then freeze in liquid nitrogen, remove the water after thawing, and then dry to obtain a composite material based on polytetrafluoroethylene-wrapped MOFs material .
优选的,将所述基于聚四氟乙烯包裹MOFs材料的复合材料置于惰性气氛下进行退火处理以除去复合材料中的水分和非离子型表面活性剂。Preferably, the composite material based on polytetrafluoroethylene-wrapped MOFs material is placed in an inert atmosphere for annealing treatment to remove moisture and non-ionic surfactants in the composite material.
优选的,所述退火处理是将基于聚四氟乙烯包裹MOFs材料的复合材料置于氩气流的管式炉中,加热到120℃保持20min,然后升温到370℃保持30min。Preferably, the annealing treatment is to place the composite material based on polytetrafluoroethylene-wrapped MOFs material in a tube furnace with argon flow, heat to 120° C. for 20 minutes, and then raise the temperature to 370° C. for 30 minutes.
优选的,所述聚四氟乙烯乳液包括60wt%聚四氟乙烯、30wt%非离子型表面活性剂和10wt%水。所述非离子型表面活性剂为。Preferably, the polytetrafluoroethylene emulsion includes 60wt% polytetrafluoroethylene, 30wt% non-ionic surfactant and 10wt% water. The nonionic surfactant is.
优选的,所述MOFs材料悬浮液的浓度为11mg/ml。Preferably, the concentration of the MOFs material suspension is 11 mg/ml.
优选的,所述超声的时间为2min。Preferably, the ultrasonic time is 2 minutes.
优选的,所述干燥的温度为100℃。Preferably, the drying temperature is 100°C.
因聚四氟乙烯具有优良的机械韧性、化学稳定性、耐腐蚀性、疏水等性能,可以有效解决在ZIF-8在水溶液中被分解的问题,同时保留了ZIF-8原有的特性。Because PTFE has excellent mechanical toughness, chemical stability, corrosion resistance, hydrophobicity and other properties, it can effectively solve the problem of ZIF-8 being decomposed in aqueous solution, while retaining the original characteristics of ZIF-8.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明的复合材料具有耐高压、水稳定性良好、催化反应下损耗较少等优异性能,这为不稳定的金属有机框架提供了新的砌块,为金属有机框架材料的设计提供新思路。(1) The composite material of the present invention has excellent properties such as high pressure resistance, good water stability, and less loss under catalytic reaction, which provides a new building block for unstable metal organic frameworks and provides a basis for the design of metal organic framework materials new ideas.
(2)本发明的复合材料表现出比ZIF-8具有更高的疏水性,且经过退火处理后,复合材料的疏水性能进一步提高。(2) The composite material of the present invention exhibits higher hydrophobicity than ZIF-8, and after annealing treatment, the hydrophobicity of the composite material is further improved.
附图说明Description of drawings
图1a是本发明实施例2的80%PTFE/ZIF-8扫描电镜图(左)和透射电镜图(右)。Fig. 1a is a scanning electron microscope image (left) and a transmission electron microscope image (right) of 80% PTFE/ZIF-8 of Example 2 of the present invention.
图1b是本发明实施例3的80%PTFE/ZIF-8-370扫描电镜图(左)和透射电镜图(右)。Fig. 1b is a scanning electron microscope image (left) and a transmission electron microscope image (right) of 80% PTFE/ZIF-8-370 of Example 3 of the present invention.
图1c是本发明实施例2的50%PTFE/ZIF-8扫描电镜图(左)和透射电镜图(右)。Fig. 1c is a scanning electron microscope image (left) and a transmission electron microscope image (right) of 50% PTFE/ZIF-8 of Example 2 of the present invention.
图1d是本发明实施例3的50%PTFE/ZIF-8-370扫描电镜图(左)和透射电镜图(右)。Fig. 1d is a scanning electron microscope image (left) and a transmission electron microscope image (right) of 50% PTFE/ZIF-8-370 of Example 3 of the present invention.
图2是本发明实施例1的ZIF-8和实施例3PTFE/ZIF-8-370复合材料的水稳定性测试结果图。Fig. 2 is a graph showing the water stability test results of the ZIF-8 of Example 1 of the present invention and the PTFE/ZIF-8-370 composite material of Example 3.
图3是本发明实施例1的ZIF-8及实施例2PTFE/ZIF-8复合材料和实施例3 PTFE/ZIF-8-370复合材料高压下稳定性测试结果图。Fig. 3 is a graph showing the stability test results of the ZIF-8 of Example 1, the PTFE/ZIF-8 composite material of Example 2 and the PTFE/ZIF-8-370 composite material of Example 3 of the present invention under high pressure.
图4是本发明实施例1的ZIF-8及实施例2PTFE/ZIF-8复合材料和实施例3 PTFE/ZIF-8-370复合材料作为催化剂的回收率结果图。Fig. 4 is a graph showing the recovery rate results of the ZIF-8 in Example 1 of the present invention, the PTFE/ZIF-8 composite material in Example 2, and the PTFE/ZIF-8-370 composite material in Example 3 as catalysts.
图5是本发明实施例1的ZIF-8及实施例2PTFE/ZIF-8复合材料和实施例3 PTFE/ZIF-8-370复合材料的水接触角图。Fig. 5 is a water contact angle diagram of the ZIF-8 of Example 1 of the present invention, the PTFE/ZIF-8 composite material of Example 2, and the PTFE/ZIF-8-370 composite material of Example 3.
具体实施方式Detailed ways
下面结合实施例对本发明的具体实施作进一步说明,但本发明的实施方式不限于此。The specific implementation of the present invention will be further described below in conjunction with the examples, but the embodiments of the present invention are not limited thereto.
下述实施例中的实验方法,如无特别说明,均为常规方法;所用化学试剂和原料,如无特殊说明,均为本领域常规原料,均可商购获得。The experimental methods in the following examples, unless otherwise specified, are conventional methods; the chemical reagents and raw materials used, unless otherwise specified, are conventional raw materials in the art and are commercially available.
主要试剂来源:Main source of reagents:
六水硝酸锌:CAS登录号10196-18-6;Zinc nitrate hexahydrate: CAS registration number 10196-18-6;
2-甲基咪唑:CAS登录号693-98-1;2-methylimidazole: CAS accession number 693-98-1;
聚四氟乙烯乳液:CAS登录号9002-84-0;PTFE emulsion: CAS registration number 9002-84-0;
四氢呋喃(CAS登录号:109-99-9)、苯甲醛(CAS登录号:100-52-7)、丙二腈(CAS登录号:109-77-3)、乙腈(CAS登录号75-05-8)、乙醇(CAS登录号64-17-5);Tetrahydrofuran (CAS accession number: 109-99-9), benzaldehyde (CAS accession number: 100-52-7), malononitrile (CAS accession number: 109-77-3), acetonitrile (CAS accession number 75-05 -8), ethanol (CAS accession number 64-17-5);
实施例1、ZIF-8的制备The preparation of embodiment 1, ZIF-8
(1)称取1.17g六水硝酸锌于20ml的小玻璃瓶中,加入8ml去离子水,20.27g2-甲基咪唑于250mL锥形瓶中,加入80ml去离子水;(1) Weigh 1.17g of zinc nitrate hexahydrate in a 20ml small glass bottle, add 8ml of deionized water, put 20.27g of 2-methylimidazole in a 250mL Erlenmeyer flask, add 80ml of deionized water;
(2)将步骤(1)的玻璃瓶和锥形瓶超声直至固体溶解;(2) Ultrasonic the glass bottle and Erlenmeyer flask of step (1) until the solid dissolves;
(3)取步骤(2)的玻璃瓶的溶液,缓慢滴入2-甲基咪唑的溶液中,然后搅拌5min;(3) Take the solution in the glass bottle of step (2), slowly drop it into the solution of 2-methylimidazole, and then stir for 5min;
(4)将步骤(3)所得浑浊液离心,得到白色固体产物,用乙醇洗涤三次,置于100℃真空干燥箱干燥12h后得到ZIF-8粉末。(4) The turbid liquid obtained in step (3) was centrifuged to obtain a white solid product, which was washed three times with ethanol, and dried in a vacuum oven at 100°C for 12 hours to obtain ZIF-8 powder.
实施例2、PTFE/ZIF-8复合材料的制备The preparation of
一、80%PTFE/ZIF-8复合材料的制备1. Preparation of 80% PTFE/ZIF-8 composite material
(1)将实施例1制备得到的ZIF-8分散在去离子水中,超声得到5ml浓度为11mg/ml的悬浮液,按PTFE与ZIF-8的质量比为2:8,即取聚四氟乙烯乳液中PTFE所占PTFE/ZIF-8复合材料20%,将所取得的聚四氟乙烯乳液缓慢滴入在超声状态下的ZIF-8悬浮液中,持续超声(功率为100%)2min,得到聚四氟乙烯和ZIF-8的混合物。(1) The ZIF-8 prepared in Example 1 is dispersed in deionized water, and ultrasonically obtained 5ml concentration is a suspension of 11mg/ml, and the mass ratio of PTFE and ZIF-8 is 2:8, that is, polytetrafluoroethylene PTFE in the ethylene emulsion accounts for 20% of the PTFE/ZIF-8 composite material, and the obtained polytetrafluoroethylene emulsion is slowly dropped into the ZIF-8 suspension in the ultrasonic state, and the ultrasonic (power is 100%) is continued for 2 minutes. A mixture of polytetrafluoroethylene and ZIF-8 was obtained.
(2)将步骤(1)所得混合物于液氮中完全冷冻,取出置于常温下等待解冻,解冻后去除水分。(2) Completely freeze the mixture obtained in step (1) in liquid nitrogen, take it out and place it at room temperature for thawing, and remove the water after thawing.
(3)将步骤(2)去除水分的混合物置于100℃的真空干燥箱干燥6h,所得白色,棉花糖触感,蓬松的产物即为80%PTFE/ZIF-8复合材料。(3) Put the moisture-removed mixture in step (2) in a vacuum drying oven at 100° C. for 6 hours, and the resulting white, cotton candy-like, fluffy product is the 80% PTFE/ZIF-8 composite material.
二、50%PTFE/ZIF-8复合材料的制备2. Preparation of 50% PTFE/ZIF-8 composite material
(1)将实施例1制备得到的ZIF-8分散在去离子水中,超声得到5ml浓度为11mg/ml的悬浮液,按PTFE与ZIF-8的质量比为5:5,即取聚四氟乙烯乳液中PTFE所占PTFE/ZIF-8复合材料50%,将所取得的聚四氟乙烯乳液缓慢滴入在超声状态下的ZIF-8悬浮液中,持续超声(功率为100%)2min,得到聚四氟乙烯和ZIF-8的混合物。(1) The ZIF-8 prepared in Example 1 is dispersed in deionized water, and ultrasonically obtained 5ml concentration is a suspension of 11mg/ml, and the mass ratio of PTFE and ZIF-8 is 5:5, that is, polytetrafluoroethylene PTFE in the ethylene emulsion accounts for 50% of the PTFE/ZIF-8 composite material, and the obtained polytetrafluoroethylene emulsion is slowly dropped into the ZIF-8 suspension under the ultrasonic state, and the ultrasonic (power is 100%) is continued for 2 minutes. A mixture of polytetrafluoroethylene and ZIF-8 was obtained.
(2)将步骤(1)所得混合物于液氮中完全冷冻,取出置于常温下等待解冻,解冻后去除水分。(2) Completely freeze the mixture obtained in step (1) in liquid nitrogen, take it out and place it at room temperature for thawing, and remove the water after thawing.
(3)将步骤(2)去除水分的混合物置于100℃的真空干燥箱干燥6h,所得白色,棉花糖触感,蓬松的产物即为50%PTFE/ZIF-8复合材料。(3) Put the moisture-removed mixture in step (2) in a vacuum drying oven at 100° C. for 6 hours, and the resulting white, cotton candy-like, fluffy product is a 50% PTFE/ZIF-8 composite material.
实施例3、PTFE/ZIF-8-370复合材料的制备The preparation of embodiment 3, PTFE/ZIF-8-370 composite material
将上述所得PTFE/ZIF-8复合材料置于管式炉中以氩气流进行退火。The PTFE/ZIF-8 composite material obtained above was placed in a tube furnace for annealing with an argon flow.
(1)将样品放入管式炉中加热到120℃,保持20min。(1) Put the sample into a tube furnace and heat it to 120°C for 20 minutes.
(2)步骤(1)结束后,将温度升到370℃,保持30min。(2) After step (1), raise the temperature to 370° C. and keep it for 30 minutes.
(3)最后得到棕色的固体即为PTFE/ZIF-8-370复合材料。(3) The brown solid obtained at last is the PTFE/ZIF-8-370 composite material.
表1Table 1
由图1a的SEM图(左)可以看出当PTFE:ZIF-8质量分数比为2:8,合成的80%PTFE/ZIF-8不进行退火处理时,PTFE包裹ZIF-8不均匀,无法包裹成球形。From the SEM image (left) of Figure 1a, it can be seen that when the mass fraction ratio of PTFE:ZIF-8 is 2:8, and the synthesized 80% PTFE/ZIF-8 is not annealed, the PTFE wrapping ZIF-8 is not uniform and cannot Wrap into a ball.
由图1c的SEM图(左)可以看出当PTFE:ZIF-8质量分数比为5:5,合成的50%PTFE/ZIF-8不进行退火处理时,PTFE则能够均匀包裹ZIF-8形成球形。From the SEM image (left) of Figure 1c, it can be seen that when the mass fraction ratio of PTFE:ZIF-8 is 5:5, and the synthesized 50% PTFE/ZIF-8 is not annealed, PTFE can evenly wrap ZIF-8 to form spherical.
实施例4、PTFE/ZIF-8及PTFE/ZIF-8-370复合材料性能测试Embodiment 4, PTFE/ZIF-8 and PTFE/ZIF-8-370 composite performance test
将实施例2和实施例3中制备得到的PTFE/ZIF-8及PTFE/ZIF-8-370复合材料进行稳定性测试,测试条件如下:The PTFE/ZIF-8 and PTFE/ZIF-8-370 composite material prepared in
1.水稳定性测试:去离子水为3ml,搅拌转数为750rpm。1. Water stability test: 3ml of deionized water, stirring speed of 750rpm.
图2是实施例1和实施例3中ZIF-8及PTFE/ZIF-8-370复合材料在水中的稳定性测试图。由图2可知,24h搅拌后,ZIF-8框架已经出现坍塌了,但PTFE/ZIF-8-370基本保留原有的衍射峰,框架保持稳定。说明在同等条件下,相较于ZIF-8微晶,PTFE/ZIF-8-70复合材料在水中搅拌24h,稳定性更好。可以证明聚四氟乙烯的包裹是能够保护ZIF-8的。Fig. 2 is the stability test diagram of ZIF-8 and PTFE/ZIF-8-370 composite material in water in embodiment 1 and embodiment 3. It can be seen from Figure 2 that after 24 hours of stirring, the ZIF-8 frame has collapsed, but the PTFE/ZIF-8-370 basically retains the original diffraction peaks, and the frame remains stable. It shows that under the same conditions, compared with ZIF-8 microcrystals, PTFE/ZIF-8-70 composites are more stable when stirred in water for 24 hours. It can be proved that the polytetrafluoroethylene coating is able to protect ZIF-8.
2.高压下稳定性测试:10mg样品,10Mpa下,保持2min2. Stability test under high pressure: 10mg sample, under 10Mpa, keep for 2min
图3是实施例1、2、3中ZIF-8及其复合材料在10Mpa压力下保持2min的稳定性测试图。由图3可知,在10Mpa压力下,ZIF-8的框架已经完全坍塌了,但PTFE/ZIF-8和PTFE/ZIF-8-370复合材料仍然保持原有的衍射峰,框架保持稳定。说明本发明制备的PTFE/ZIF-8和PTFE/ZIF-8-370复合材料具有耐高压性能。Fig. 3 is the stability test diagram of ZIF-8 and its composite material kept under 10Mpa pressure for 2min in
3.催化剂回收率测试:以20mg ZIF-8及其复合材料PTFE/ZIF-8和PTFE/ZIF-8-370作催化剂,将苯甲醛与丙二腈在常温下进行催化测试。3. Catalyst recovery rate test: 20 mg of ZIF-8 and its composite materials PTFE/ZIF-8 and PTFE/ZIF-8-370 were used as catalysts to conduct catalytic tests on benzaldehyde and malononitrile at room temperature.
图4是实施例2中ZIF-8及其复合材料催化后回收率图。从图4中可以发现,ZIF-8及其复合材料PTFE/ZIF-8和PTFE/ZIF-8-370作为催化剂,在催化反应后,用乙醇清洗催化剂并60℃干燥,ZIF-8回收率不到50%,80%PTFE/ZIF-8回收率65%左右,50%PTFE/ZIF-8回收率为75%,而80%PTFE/ZIF-8-370回收率为92.75%,50%PTFE/ZIF-8-370的回收率更是达到了96.5%。说明催化搅拌过程中ZIF-8回收率是最低,退火后的复合材料PTFE/ZIF-8-370回收率更高。Fig. 4 is the figure of recovery after catalysis of ZIF-8 and its composite material in
实施例5、ZIF-8及其复合材料疏水性测试Embodiment 5, ZIF-8 and its composite material hydrophobicity test
ZIF-8及其复合材料疏水性测试:将ZIF-8及其复合材料置于玻璃片上压平,在接触角测定仪进行测试。Hydrophobic test of ZIF-8 and its composite materials: ZIF-8 and its composite materials were placed on a glass plate and flattened, and tested on a contact angle meter.
表2Table 2
图5是实施例1、2、3中ZIF-8及其复合材料水接触角图。可以看出ZIF-8并没有表现出疏水性。而PTFE/ZIF-8的水接触角在140-150°,PTFE/ZIF-8-370水接触角在150-160°,表现出了超高的疏水性。Figure 5 is a water contact angle diagram of ZIF-8 and its composite material in Examples 1, 2, and 3. It can be seen that ZIF-8 does not exhibit hydrophobicity. The water contact angle of PTFE/ZIF-8 is 140-150°, and the water contact angle of PTFE/ZIF-8-370 is 150-160°, showing super high hydrophobicity.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111014781.6A CN113943488B (en) | 2021-08-31 | 2021-08-31 | A composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111014781.6A CN113943488B (en) | 2021-08-31 | 2021-08-31 | A composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113943488A CN113943488A (en) | 2022-01-18 |
CN113943488B true CN113943488B (en) | 2022-11-29 |
Family
ID=79327716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111014781.6A Active CN113943488B (en) | 2021-08-31 | 2021-08-31 | A composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113943488B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114621545B (en) * | 2022-04-18 | 2022-12-16 | 中国科学院兰州化学物理研究所 | A kind of high wear-resistant composite material and its preparation method and application |
CN119343409A (en) * | 2022-06-30 | 2025-01-21 | 松下知识产权经营株式会社 | Composite material, application product thereof and manufacturing method of composite material |
WO2024004664A1 (en) * | 2022-06-30 | 2024-01-04 | パナソニックIpマネジメント株式会社 | Composite material, articles made using same, and method for producing composite material |
CN115181380B (en) * | 2022-08-15 | 2023-10-31 | 兰州中科聚润新材料有限公司 | A high-temperature resistant polytetrafluoroethylene-based composite material, its preparation method and its application as a high-temperature sealing material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103230777A (en) * | 2013-05-06 | 2013-08-07 | 北京化工大学 | Large-scale adsorbing material ZIF-8 preparation method and forming method |
CN107469648A (en) * | 2016-06-07 | 2017-12-15 | 中国科学院大连化学物理研究所 | A kind of preparation method of polytetrafluoroethylhollow hollow fiber composite membrane |
CN108421541A (en) * | 2018-03-16 | 2018-08-21 | 南京大学 | A kind of preparation method and application of carbonization Zn bases MOFs extraction coatings |
CN109433032A (en) * | 2018-11-06 | 2019-03-08 | 黄山学院 | A kind of preparation method of ZIF-8 film |
CN111167419A (en) * | 2018-11-09 | 2020-05-19 | 天津工业大学 | A metal-organic framework loaded modified polytetrafluoroethylene fiber for removing hexavalent chromium in water and preparation method thereof |
-
2021
- 2021-08-31 CN CN202111014781.6A patent/CN113943488B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103230777A (en) * | 2013-05-06 | 2013-08-07 | 北京化工大学 | Large-scale adsorbing material ZIF-8 preparation method and forming method |
CN107469648A (en) * | 2016-06-07 | 2017-12-15 | 中国科学院大连化学物理研究所 | A kind of preparation method of polytetrafluoroethylhollow hollow fiber composite membrane |
CN108421541A (en) * | 2018-03-16 | 2018-08-21 | 南京大学 | A kind of preparation method and application of carbonization Zn bases MOFs extraction coatings |
CN109433032A (en) * | 2018-11-06 | 2019-03-08 | 黄山学院 | A kind of preparation method of ZIF-8 film |
CN111167419A (en) * | 2018-11-09 | 2020-05-19 | 天津工业大学 | A metal-organic framework loaded modified polytetrafluoroethylene fiber for removing hexavalent chromium in water and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113943488A (en) | 2022-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113943488B (en) | A composite material based on polytetrafluoroethylene wrapped MOFs material and its preparation method | |
CN105645403B (en) | A kind of preparation method of high-performance N doping three-dimensional grapheme | |
WO2022041852A1 (en) | Ni-mof thin-film photocatalyst grown in-situ on foamed nickel surface, preparation method therefor, and use thereof | |
CN108452771B (en) | COFs composite material and preparation method and application of the carbon-based photonic crystal-derived from MOF containing porphyrin | |
WO2020252847A1 (en) | Application of metal-doped carbon quantum dots | |
CN112038648A (en) | A hollow structure transition metal cobalt and nitrogen co-doped carbon oxygen reduction catalyst and its preparation method and application | |
CN110639515A (en) | Hollow mesoporous carbon nanosphere composites loaded with gold nanoparticles and their application in continuous CO treatment | |
CN104555987A (en) | Preparation method of nitrogen/sulfur-codoped carbon material | |
PL239357B1 (en) | Method for obtaining mobile magnetic composite adsorbents | |
CN110575848A (en) | A preparation method of a catalyst for catalyzing ozone oxidation of volatile organic compounds | |
CN109433190B (en) | Mesoporous zirconia nanotube composite material loaded with platinum nanoparticles, preparation method thereof and application thereof in continuous treatment of organic waste gas | |
CN108837714A (en) | A kind of poly-dopamine/manganese dioxide composite membrane and preparation method thereof | |
CN105536551A (en) | Preparation method of polymer-based nano composite ultrafiltration membrane | |
CN111285345A (en) | A method for preparing carbon aerogel from hydrogel precursor material by hydrothermal process | |
CN108840318A (en) | A kind of honeycomb multi-stage porous nitrogen sulfur doping three-dimensional carbon material and preparation method thereof | |
CN110280238A (en) | A kind of carbon quantum dot@MIL-125-NH2The preparation method and applications of/Pt photochemical catalyst | |
CN113736432A (en) | Metal oxide heat storage material, metal oxide heat storage unit and preparation method | |
CN103395773B (en) | Nano carbon hollow sphere and preparation method thereof | |
CN111171213B (en) | Preparation method of PAA hydrogel loaded with double-bonded dopamine | |
CN109950559A (en) | A kind of nanosheet structure non-precious metal electrocatalyst and its preparation and application | |
CN118420850A (en) | Photothermal evaporation materials derived from iron-based metal organic frameworks and preparation methods and applications thereof | |
CN114904557B (en) | Sodium cholate derived porous Fe-N-C catalyst and preparation method and application thereof | |
CN115430399B (en) | A sulfur-doped carbon material and its preparation method and application | |
CN110803700A (en) | Porous carbon material and method for preparing porous carbon material by utilizing microwave hot-zone effect | |
CN107603364B (en) | A kind of preparation method of multi-functional super hydrophobic composite coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |