CN113917710B - 一种可调谐纤内集成偏振分束器 - Google Patents

一种可调谐纤内集成偏振分束器 Download PDF

Info

Publication number
CN113917710B
CN113917710B CN202111207946.1A CN202111207946A CN113917710B CN 113917710 B CN113917710 B CN 113917710B CN 202111207946 A CN202111207946 A CN 202111207946A CN 113917710 B CN113917710 B CN 113917710B
Authority
CN
China
Prior art keywords
optical fiber
fiber
waveguide core
annular waveguide
tunable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111207946.1A
Other languages
English (en)
Other versions
CN113917710A (zh
Inventor
田凤军
姚晨宇
刘光宇
韩忠瑞
卢艺鹏
陈有志
曾智斌
李立
张建中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202111207946.1A priority Critical patent/CN113917710B/zh
Publication of CN113917710A publication Critical patent/CN113917710A/zh
Application granted granted Critical
Publication of CN113917710B publication Critical patent/CN113917710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • G02F1/0115Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种可调谐纤内集成偏振分束器,包括输入光纤(1)、环形波导芯多模中空光纤(2)、输出光纤(3)、内置电极(4)和外置电极(5);环形波导芯多模中空光纤(2)由内至外依次为空气孔(2‑1)、环形波导芯(2‑2)和包层(2‑3);空气孔(2‑1)内设置有内置电极(4),包层(2‑3)外设置有外置电极(5),内置电极(4)和外置电极(5)之间形成外加电场;环形波导芯多模中空光纤(2)经过热极化处理。本发明对环形波导芯多模中空光纤进行热极化处理使其具备电光调制效应,并且可以通过调节电场实现对不同偏振态的有效模式折射率大小的控制,从而使偏振分束器工作波段发生偏移,实现对工作波段的在线调节功能。

Description

一种可调谐纤内集成偏振分束器
技术领域
本发明属于纤内集成光器件与光纤通信技术领域,涉及一种可调谐纤内集成偏振分束器。
背景技术
光纤技术的不断发展也促进国内外对光纤集成方面的深入研究,将各种有源、无源器件集成到光纤内部,可以极大减小器件的尺寸和重量,同时避免了各个可动部件之间由于装配、固定和调整带来的变化和不一致,提高纤维集成器件的性能和温度稳定性。
偏振分束器用于将一束任意偏振的光,分解成偏振态相互正交的两束偏振光。通常,分束器输入端口用于输入一束包含各种偏振态的光,两个输出端口分别用于输出偏振态相互正交的两束线偏振光。偏振分束器常被应用于光通信领域,如偏振光的分解复用。
随着偏振分束器的应用日益广泛,许多学者投入到偏振分束器的研究中,专利号为CN107450126A的“一种偏振分束器及其设计方法”,其特征在于包括输入波导,多模干涉区以及输出波导,通过在多模干涉区内设置光栅,有效减小了偏振分束器的整体尺寸,使得该偏振分束器易于集成。但是,上述偏振分束器需要在波导上设置光栅,增加了制备难度,无法做到纤内集成,与光纤器件兼容性较差,且无法实现对功能工作波段的调谐功能。
又如专利CN213210535U的“在线式偏振分束器”,其特征在于包含三根光纤以及两个透镜,且其中一个透镜为双折射材料,利用其双折射特性,将入射光的两个偏振态分离,该结构忽略了准直器之间的双折射晶体,减小了设备体积,降低了成本。但是上述分束器存在耦合效率低下,且准直方式复杂的缺陷。
发明内容
针对上述现有技术,本发明要解决的技术问题是提供一种可调谐纤内集成偏振分束器,具有纤内集成、体积小、易调谐、偏振分束功能优异等优点,与光纤器件兼容性好,易与光纤系统集成。
为解决上述技术问题,本发明的一种可调谐纤内集成偏振分束器,包括输入光纤、环形波导芯多模中空光纤、输出光纤、内置电极和外置电极;环形波导芯多模中空光纤由内至外依次为空气孔、环形波导芯和包层;空气孔内设置有内置电极,包层外设置有外置电极,内置电极和外置电极之间形成外加电场;环形波导芯多模中空光纤经过热极化处理。
进一步的,入射单束光通过输入光纤耦合入环形波导芯多模中空光纤,并且在外加电场作用下被环形波导芯多模中空光纤分解成为两个正交的的偏振态并从出射纤芯输出。
进一步的,环形波导芯多模中空光纤的长度为LF,入射单束光在环形波导芯多模中空光纤内的两个偏振态发生一次自映像效应所需长度分别为L1与L2,且满足:LF=mL1=(m±1)L2(m=1,2,3···)。
进一步的,热极化处理具体为:在5000V高压下对其加热至250℃,持续加电加热6000s,最后冷却至室温,去除电压,此时环形波导芯多模中空光纤的纤芯内将永久产生电光调制效应。
进一步的,在入射单束光在环形波导芯多模中空光纤中干涉长度保持不变条件下,通过调节外加电场大小调谐环形波导芯中不同偏振态的有效模式折射率,实现调谐入射光波段使得不同波段入射光均可实现偏振分离。
进一步的,输入光纤包括纤芯和包层。
进一步的,输出光纤包括两个纤芯和包层。
进一步的,纤芯为对称分布在光纤端面中心两侧,其中一个纤芯处于输入光纤纤芯延长线上。
本发明的有益效果:本发明提出一种在线可调谐纤内集成偏振分束器,发挥了纤内集成的优势,采用环形波导芯多模中空光纤,其中空结构便于电极的插入;对环形波导芯多模中空光纤进行热极化处理使其具备电光调制效应,并且可以通过调节电场实现对不同偏振态的有效模式折射率大小的控制,从而使偏振分束器工作波段发生偏移,实现对工作波段的在线调节功能。
附图说明
图1为本发明可调谐纤内集成偏振分束器的结构示意图;
图2为本发明可调谐纤内集成偏振分束器的输入光纤横截面示意图;
图3为本发明可调谐纤内集成偏振分束器的环形波导芯多模中空光纤横截面示意图;
图4为本发明可调谐纤内集成偏振分束器的输出光纤横截面示意图;
图5为本发明可调谐纤内集成偏振分束器环形波导芯末端观测到的两个分离的偏振态数值仿真图。
具体实施方式
下面结合说明书附图和具体实施例对本发明做进一步说明。
结合图1至图5,本发明包括输入光纤1、环形波导芯多模中空光纤2、输出光纤3、内置电极4和外置电极5。环形波导芯多模中空光纤2由内至外分别是空气孔2-1、环形波导芯2-2以及包层2-3,长度定义为LF;空气孔2-1内插入内置电极4与外置电极5形成外加电场;输入光纤1包括纤芯1-1和包层1-2,输出光纤3包括纤芯3-1和包层3-2,输出光纤3的两个纤芯3-1对称分布在光纤端面中心两侧,其中一个纤芯处于输入光纤1纤芯延长线上。热极化处理后的环形波导芯多模中空光纤2置于外置电场中,通过调节外加电场对环形波导芯多模中空光纤纤芯内不同偏振态光波的有效模式折射率进行调谐;单束自然光通过输入光纤1耦合入环形波导芯多模中空光纤2、两个相互正交的偏振态被分离并经输出光纤3输出。
对环形波导芯多模中空光纤2进行热极化处理过程如下:在5000V高压下对其加热至250℃,持续加电加热6000s,最后冷却至室温,去除电压,此时环形波导芯多模中空光纤2的纤芯内将永久产生电光调制效应。
在环形波导芯多模中空光纤的波导中传输的光,会发生多模干涉,经过一段时间的传输后在输出端口形成入射场的反像,我们称这个过程为一个自映像效应,形成一个反像所需要的距离称作自映像长度,其值为:
其中n是环形芯的折射率,a是环形芯小圆的半径,λ为入射光的波长。这个过程是周期性的,每个周期对应的自映像效应长度只受纤芯折射率以及入射光波段的影响;环形波导芯多模中空光纤2经过热极化处理具备电光效应,在外加电场的作用下,使得光纤内传输光的两个偏振态产生速度差;由于环形波导芯多模中空光纤中自映像效应作用,两个偏振态每发生一次自映像效应所需长度分别为L1与L2。为保证输出,当满足LF=mL1=(m±1)L2(m=1,2,3···),此时两个偏振态将在多模光纤末端分别形成入射光的反像与正像,并且最终从输出光纤的不同端口出射,实现了对偏振态的分离,最终实现偏振输出。当入射光波段发生改变时,两个偏振态自映像长度分别为L1′与L2′,由公式可知,在不改变环形波导芯多模中空光纤2结构的前提下,环形波导芯多模中空光纤2的长度是确定的,则通过调节外加电场调节环形芯的两个偏振态的折射率,可以使得L1′=L1,L2′=L2,此时偏振分束器将在其他工作波段正常工作,实现对工作波段的调谐。
实施例:
首先对环形波导芯多模中空光纤进行热极化处理,使其具备电光效应。在外加电场的作用下,经过一段时间的传输,入射光的两个偏振态之间距离差逐渐增大,直至满足LF=mL1=(m±1)L2(m=1,2,3···),两个相互正交的偏振态将从不同的端口出射,如图5所示,之后两个偏振光分别耦合入多芯输出光纤不同的纤芯内中,实现对某一波长的光束进行偏振分束。此时改变外加电场的值,使得两个偏振态之间的折射率差发生改变,在保证光纤结构不变的前提下,其工作波段将发生改变,实现了对工作波段的调谐功能。
此功能可以在不破坏原有光纤结构下,使得偏振分束器可以在不同的工作波段工作,调谐方便,且节约成本。

Claims (6)

1.一种可调谐纤内集成偏振分束器,其特征在于:包括输入光纤(1)、环形波导芯多模中空光纤(2)、输出光纤(3)、内置电极(4)和外置电极(5);环形波导芯多模中空光纤(2)由内至外依次为空气孔(2-1)、环形波导芯(2-2)和包层(2-3);空气孔(2-1)内设置有内置电极(4),包层(2-3)外设置有外置电极(5),内置电极(4)和外置电极(5)之间形成外加电场;环形波导芯多模中空光纤(2)经过热极化处理;
入射单束光通过输入光纤(1)耦合入环形波导芯多模中空光纤(2),并且在外加电场作用下被环形波导芯多模中空光纤(2)分解成为两个正交的的偏振态并从出射纤芯(3-1)输出;
在入射单束光在环形波导芯多模中空光纤(2)中干涉长度保持不变条件下,通过调节外加电场大小调谐环形波导芯(2-2)中不同偏振态的有效模式折射率,实现调谐入射光波段使得不同波段入射光均可实现偏振分离。
2.根据权利要求1所述的一种可调谐纤内集成偏振分束器,其特征在于:环形波导芯多模中空光纤(2)的长度为LF,入射单束光在环形波导芯多模中空光纤(2)内的两个偏振态发生一次自映像效应所需长度分别为L1与L2,且满足:LF=mL1=(m±1)L2;m=1,2,3···。
3.根据权利要求1所述的一种可调谐纤内集成偏振分束器,其特征在于:所述热极化处理具体为:在5000V高压下对其加热至250℃,持续加电加热6000s,最后冷却至室温,去除电压,此时环形波导芯多模中空光纤(2)的纤芯内将永久产生电光调制效应。
4.根据权利要求1所述的一种可调谐纤内集成偏振分束器,其特征在于:输入光纤(1)包括纤芯(1-1)和包层(1-2)。
5.根据权利要求1所述的一种可调谐纤内集成偏振分束器,其特征在于:输出光纤(3)包括两个纤芯(3-1)和包层(3-2)。
6.根据权利要求5所述的一种可调谐纤内集成偏振分束器,其特征在于:所述纤芯(3-1)为对称分布在光纤端面中心两侧,其中一个纤芯处于输入光纤(1)纤芯延长线上。
CN202111207946.1A 2021-10-18 2021-10-18 一种可调谐纤内集成偏振分束器 Active CN113917710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111207946.1A CN113917710B (zh) 2021-10-18 2021-10-18 一种可调谐纤内集成偏振分束器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111207946.1A CN113917710B (zh) 2021-10-18 2021-10-18 一种可调谐纤内集成偏振分束器

Publications (2)

Publication Number Publication Date
CN113917710A CN113917710A (zh) 2022-01-11
CN113917710B true CN113917710B (zh) 2024-03-26

Family

ID=79241097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111207946.1A Active CN113917710B (zh) 2021-10-18 2021-10-18 一种可调谐纤内集成偏振分束器

Country Status (1)

Country Link
CN (1) CN113917710B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788595A (zh) * 2012-07-27 2012-11-21 北京航空航天大学 基于Faraday效应的光纤陀螺频率特性评估方法与装置
CN104280217A (zh) * 2014-10-11 2015-01-14 哈尔滨工程大学 一种y波导双通道光学性能测量装置
CN107450126A (zh) * 2017-09-07 2017-12-08 北京大学 一种偏振分束器及其设计方法
CN109143458A (zh) * 2018-08-23 2019-01-04 哈尔滨工程大学 一种在线可调谐双芯光纤偏振器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788595A (zh) * 2012-07-27 2012-11-21 北京航空航天大学 基于Faraday效应的光纤陀螺频率特性评估方法与装置
CN104280217A (zh) * 2014-10-11 2015-01-14 哈尔滨工程大学 一种y波导双通道光学性能测量装置
CN107450126A (zh) * 2017-09-07 2017-12-08 北京大学 一种偏振分束器及其设计方法
CN109143458A (zh) * 2018-08-23 2019-01-04 哈尔滨工程大学 一种在线可调谐双芯光纤偏振器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Coupling Characteristics of Dual Liquid Crystal Core Soft Glass Photonic Crystal Fiber;Mohamed Farhat O;IEEE JOURNAL OF QUANTUM ELECTRONICS;第47卷(第10期);第2部分和第3部分以及附图1-11 *
基于碲酸盐玻璃的新型双芯光子晶体光纤偏振分束器;曹晔;中国激光;第40卷(第6期);全文 *
空气孔硅光子晶体偏振无关3 dB分光器;陈曦曜;林媛媛;林贵敏;傅平;光学精密工程;20161231;第24卷(第002期);全文 *

Also Published As

Publication number Publication date
CN113917710A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN103941430B (zh) 基于硅基fp谐振腔的可调光频率梳滤波器
CN104297854B (zh) 硅基多波长光源及其实现的方法
Ismaeel et al. Removing the directional degeneracy of $ LP_ {11} $ mode in a fused-type mode selective coupler
CN104597559B (zh) 一种用于产生柱矢量光场的光子晶体光纤
Huang et al. Narrowband all-fiber acousto-optic tunable add-drop filter based on dispersion-compensating fiber
CN113917710B (zh) 一种可调谐纤内集成偏振分束器
CA2357991C (en) Optical phase shifting, splitting and combining device
CN104345380A (zh) 一种双模光纤
US4607912A (en) In-line optical fiber polarizer
US11733452B2 (en) Terahertz polarization beam splitter based on two-core negative curvature optical fiber
JP2007232944A (ja) 光信号処理器
CN108897099B (zh) 一种全保偏光纤干涉型梳状滤波器
Chen et al. Numerical analysis of a compact all-fiber polarization beam splitter based on dual-core photonic crystal fiber with As2S3 thin layer
Hwang et al. All-fiber tunable comb filter with nonreciprocal transmission
Panajotov Polarization properties of a fiber-to-asymmetric planar waveguide coupler
CN113917711B (zh) 一种可调谐纤内集成光功率分束器
CN108761648B (zh) 一种混合集成的三端口光环形器
Goure et al. Linear and nonlinear optical fibre devices
CN112596150A (zh) 一种新型超宽带双芯光子晶体光纤
Goel et al. Exploiting resonant band of antiresonant hollow core fiber for highly birefringent inline fiber polarizer
Jiang et al. Quantitative dispersion model for self-dispersion compensation and parameter optimization of interleavers
Wang et al. Design of flat-top comb filter based on photonic crystal fiber Sagnac loop
CN103091771A (zh) 一种光子晶体光纤定向耦合器
CN202533606U (zh) 双通马赫-曾德干涉仪型偏振无关平顶梳状光纤滤波器
KR100430995B1 (ko) 포토닉 크리스탈 구조를 이용한 편광모드분산 보상장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant