CN113917474A - Laser ranging method, laser ranging system and laser radar system thereof - Google Patents
Laser ranging method, laser ranging system and laser radar system thereof Download PDFInfo
- Publication number
- CN113917474A CN113917474A CN202111331242.5A CN202111331242A CN113917474A CN 113917474 A CN113917474 A CN 113917474A CN 202111331242 A CN202111331242 A CN 202111331242A CN 113917474 A CN113917474 A CN 113917474A
- Authority
- CN
- China
- Prior art keywords
- laser
- local oscillator
- echo
- incident
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000003287 optical effect Effects 0.000 claims abstract description 69
- 238000001514 detection method Methods 0.000 claims abstract description 47
- 239000000523 sample Substances 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000004458 analytical method Methods 0.000 claims description 21
- 239000000835 fiber Substances 0.000 claims description 18
- 230000010355 oscillation Effects 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 12
- 230000001427 coherent effect Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S17/26—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于激光雷达技术领域,具体涉及一种激光测距方法、激光测距系统及其激光雷达系统。The invention belongs to the technical field of laser radar, and specifically relates to a laser ranging method, a laser ranging system and a laser radar system.
背景技术Background technique
激光雷达技术是一种将激光与传统雷达技术相结合的具有独特优势的新产物。利用激光发射角小、能量集中、高相干性的优点,激光雷达技术可以实现传统雷达技术不具备的特殊优势。相比于传统雷达系统,激光雷达采集数据密度更大,能获得多种图像;并且由于激光的发射角小,能量集中,激光雷达的探测距离更远、分辨率更高、抗干扰能力更强;结合不同的探测方法可以同时得到距离和速度的信息;相比于传统雷达的尺寸,激光雷达体积小,质量轻,方便结合各种应用。Lidar technology is a new product with unique advantages that combines laser and traditional radar technology. Taking advantage of the advantages of small laser emission angle, concentrated energy, and high coherence, lidar technology can achieve special advantages that traditional radar technology does not have. Compared with traditional radar systems, lidars have higher data density and can obtain a variety of images; and due to the small emission angle of lasers and concentrated energy, lidars have longer detection distances, higher resolutions, and stronger anti-interference capabilities. ; Combined with different detection methods, the information of distance and speed can be obtained at the same time; compared with the size of traditional radar, lidar is small in size and light in weight, which is convenient to combine with various applications.
常见的,激光雷达采用的测距方法为脉冲测距法、调频连续波、相位差测距法等。其中,脉冲测距法相对成熟,原理简单,但是在探测较远距离时为提高信噪比就必须提高激光功率,这就带来了一些不可忽视的问题。例如人眼安全问题、与一些雷达系统不适配的问题等。而调频连续波方式作为测距方法,通过本振信号与回波信号之间混频,通过中频信号间接测得光飞行时间。可以回波功率较低的情况下,仍能获得足够高的信噪比,降低对发射功率的要求。但该方法要求激光器的线宽窄、频率调制带宽高、线性度高、技术难度较大、元件成本较高,导致无法应用于民用市场,市面上常见的符合要求的激光光源价格达到几万元,相关技术相对属于不成熟的阶段。相位差测距法则无法实现远距离测量,并且测距精度与回波信号相位质量有很大关系,往往需要合作目标来实现更好的测距效果,往往只应用与手持短距离测距仪中。Commonly, the ranging methods used by lidar are pulse ranging method, frequency modulated continuous wave, phase difference ranging method, etc. Among them, the pulse ranging method is relatively mature and the principle is simple, but in order to improve the signal-to-noise ratio when detecting a long distance, the laser power must be increased, which brings some problems that cannot be ignored. For example, eye safety issues, incompatibility with some radar systems, etc. The FM continuous wave method is used as a ranging method, and the time of flight of light is indirectly measured by the intermediate frequency signal through the mixing between the local oscillator signal and the echo signal. In the case of low echo power, a sufficiently high signal-to-noise ratio can still be obtained, reducing the requirement for transmit power. However, this method requires the laser to have narrow linewidth, high frequency modulation bandwidth, high linearity, high technical difficulty, and high component cost, which makes it impossible to apply to the civilian market. The related technologies are relatively immature. The phase difference ranging method cannot achieve long-distance measurement, and the ranging accuracy has a great relationship with the phase quality of the echo signal. It often requires cooperative targets to achieve better ranging effects, and is often only used in hand-held short-distance rangefinders. .
发明内容SUMMARY OF THE INVENTION
本发明克服现有技术的不足,本发明提供一种激光测距方法、激光测距系统及其激光雷达系统。The present invention overcomes the deficiencies of the prior art, and provides a laser ranging method, a laser ranging system and a laser radar system thereof.
本发明提供一种激光测距方法,包括以下步骤:The present invention provides a laser ranging method, comprising the following steps:
S1、将激光光束经相位调制后成为具有预设相位的激光光束,并将调制后的激光光束进行分束,一部分作为本振光束,另一部分作为探测光束,探测光束入射至待测距目标后被反射成为回波光束;S1. The laser beam is phase-modulated into a laser beam with a preset phase, and the modulated laser beam is divided into beams, a part of which is used as a local oscillator beam, and the other part is used as a detection beam. After the detection beam is incident on the target to be ranged is reflected as an echo beam;
S2、将本振光束和回波光束进行混频,获取混频光信号;S2. Mix the local oscillator beam and the echo beam to obtain a mixed optical signal;
S3、将混频光信号进行光电转换,获取模拟电信号;S3. Perform photoelectric conversion on the mixed-frequency optical signal to obtain an analog electrical signal;
S4、对模拟电信号进行分析,获得待测距目标的距离。S4, analyze the analog electrical signal to obtain the distance of the target to be measured.
进一步地,步骤S1中,预设相位表示为公式(1)和公式(2):Further, in step S1, the preset phase is expressed as formula (1) and formula (2):
其中,表示预设相位,a,b分别表示不相等的常数,t表示时间,x表示整数,T表示周期。in, Represents the preset phase, a and b represent unequal constants respectively, t represents time, x represents an integer, and T represents period.
进一步地,步骤S4具体为:Further, step S4 is specifically:
S401、根据公式(3)-(6)对模拟电信号进行分析,获取飞行时间,公式(3)-(6)如下所示:S401, analyze the analog electrical signal according to formulas (3)-(6) to obtain the flight time, formulas (3)-(6) are as follows:
I=IT+IR+ATARcos[ωPhτ+a-b],(0+xT≤t<τ+xT) (3)I=I T +I R +A T A R cos[ω Ph τ+ab], (0+xT≤t<τ+xT) (3)
其中,I表示混频光信号光强,IT表示本振光束的光强,IR表示回波光束的光强,AT表示本振光束的振幅,AR表示回波光束的振幅,ωPh表示本振光束的光频,τ表示飞行时间,为探测光束和回波光束的时间间隔;Among them, I is the light intensity of the mixed optical signal, I T is the light intensity of the local oscillator beam, IR is the light intensity of the echo beam, A T is the amplitude of the local oscillator beam, AR is the amplitude of the echo beam, ω Ph represents the optical frequency of the local oscillator beam, and τ represents the flight time, which is the time interval between the probe beam and the echo beam;
S402、将飞行时间τ代入公式(7),获取待测距目标的距离,公式(7)如下所示:S402. Substitute the flight time τ into formula (7) to obtain the distance of the target to be measured. Formula (7) is as follows:
其中,s表示待测距目标的距离。Among them, s represents the distance of the target to be measured.
本发明还提供一种激光测距系统,包括:激光器、相位调制器、信号发生器、分束单元、耦合器、光电探测器、数据采集分析单元;其中,The present invention also provides a laser ranging system, comprising: a laser, a phase modulator, a signal generator, a beam splitting unit, a coupler, a photodetector, and a data acquisition and analysis unit; wherein,
激光器用于发出激光光束;相位调制器用于对激光光束进行相位调制;信号发生器用于控制相位调制器产生相位调制信号和输出预设相位;分束单元用于对激光光束分成本振光束和探测光束,本振光束入射至耦合器,探测光束入射至待测距目标后被反射成为回波光束,回波光束入射至耦合器;耦合器用于将本振光束和回波光束进行混频,光电探测器用于将光信号转换为模拟电信号,数据采集分析单元用于对模拟电信号进行采集与分析;获得激光测距系统与待测距目标之间的距离。The laser is used to emit the laser beam; the phase modulator is used to phase modulate the laser beam; the signal generator is used to control the phase modulator to generate a phase modulation signal and output a preset phase; the beam splitting unit is used to divide the laser beam into a local vibrating beam and detection The beam, the local oscillator beam is incident on the coupler, the detection beam is incident on the target to be ranged and then reflected as an echo beam, and the echo beam is incident on the coupler; the coupler is used to mix the local oscillator beam and the echo beam, and the optoelectronic The detector is used to convert the optical signal into an analog electrical signal, and the data acquisition and analysis unit is used to collect and analyze the analog electrical signal, and obtain the distance between the laser ranging system and the target to be ranging.
进一步地,还包括用于将激光器发出的激光光束功率进行放大的光纤放大器。Further, it also includes a fiber amplifier for amplifying the power of the laser beam emitted by the laser.
进一步地,还包括用于将探测光束和回波光束进行准直的准直器。Further, a collimator for collimating the probe beam and the echo beam is also included.
进一步地,分束单元包括分束器和环形器;Further, the beam splitting unit includes a beam splitter and a circulator;
相位调制器输出的激光光束入射至分束器被分为本振光束和探测光束,本振光束入射至耦合器,探测光束入射至环形器,环形器出射的探测光束经准直器准直后入射至待测距目标,经待测距目标反射后形成回波光束入射至准直器准直后入射至耦合器与本振光束进行混频。The laser beam output by the phase modulator is incident on the beam splitter and is divided into a local oscillator beam and a probe beam. The local oscillator beam is incident on the coupler, and the probe beam is incident on the circulator. The probe beam emitted from the circulator is collimated by the collimator. It is incident on the target to be ranged, and is reflected by the target to be measured to form an echo beam, which is incident to the collimator for collimation, and then incident to the coupler for mixing with the local oscillator beam.
进一步地,激光测距系统还包括用于扫描的振镜,进而实现激光雷达系统的建立。分束单元分出的探测光束入射至振镜,经振镜出射的探测光束入射至待测距目标,经待测距目标反射后形成回波光束入射至振镜后入射至耦合器。Further, the laser ranging system also includes a galvanometer for scanning, thereby realizing the establishment of a laser radar system. The probe beam split by the beam splitting unit is incident on the galvanometer, and the probe beam emitted by the galvanometer is incident on the target to be ranged. After being reflected by the target to be measured, an echo beam is formed, which is incident on the galvanometer and then incident on the coupler.
本发明还提供一种激光雷达系统,包括:激光器、分束单元、光学相控阵芯片、信号发生器、耦合器、光电探测器、数据采集分析单元;其中,The present invention also provides a laser radar system, comprising: a laser, a beam splitting unit, an optical phased array chip, a signal generator, a coupler, a photodetector, and a data acquisition and analysis unit; wherein,
激光器用于发出激光光束;分束单元用于将激光光束分成本振光束和探测光束;本振光束和探测光束入射至光学相控阵芯片,光学相控阵芯片输出用于扫描的激光光束;信号发生器用于向光学相控阵芯片发出相位调制信号,并控制光学相控阵芯片输出预设相位;本振光束入射至耦合器,探测光束入射至待测距目标后被反射成为回波光束,光学相控阵芯片接收回波光束,回波光束被传送至分束单元,经分束单元入射至耦合器,耦合器用于将本振光束和回波光束进行混频成为混频光信号;光电探测器用于将混频光信号转换为模拟电信号,数据采集分析单元用于对模拟电信号进行采集与分析,获得激光测距系统与待测距目标之间距离。The laser is used to emit a laser beam; the beam splitting unit is used to divide the laser beam into a local oscillator beam and a probe beam; the local oscillator beam and the probe beam are incident on the optical phased array chip, and the optical phased array chip outputs the laser beam for scanning; The signal generator is used to send a phase modulation signal to the optical phased array chip, and control the optical phased array chip to output a preset phase; the local oscillator beam is incident on the coupler, and the detection beam is incident on the target to be ranged and then reflected as an echo beam , the optical phased array chip receives the echo beam, the echo beam is transmitted to the beam splitting unit, and is incident on the coupler through the beam splitting unit, and the coupler is used to mix the local oscillator beam and the echo beam into a frequency mixing optical signal; The photodetector is used to convert the mixed optical signal into an analog electrical signal, and the data acquisition and analysis unit is used to collect and analyze the analog electrical signal to obtain the distance between the laser ranging system and the target to be measured.
本发明还提供一种激光雷达系统,包括激光器、分束单元、光学相控阵芯片、信号发生器、相位调制器、耦合器、光电探测器、数据采集分析单元,The present invention also provides a laser radar system, comprising a laser, a beam splitting unit, an optical phased array chip, a signal generator, a phase modulator, a coupler, a photodetector, and a data acquisition and analysis unit,
激光器用于发出激光光束;激光光束经相位调制器进行相位调制;信号发生器用于控制相位调制器产生相位调制信号和输出预设相位;相位调制器输出的激光光束经分束单元分成本振光束和探测光束;本振光束和探测光束入射至光学相控阵芯片,光学相控阵芯片输出用于扫描的激光光束;本振光束入射至耦合器,探测光束入射至待测距目标后被反射成为回波光束,光学相控阵芯片接收回波光束,回波光束被传送至分束单元,经分束单元入射至耦合器,本振光束和回波光束在耦合器中进行混频成为混频光信号;光电探测器用于将混频光信号转换为模拟电信号;数据采集分析单元用于对模拟电信号进行采集与分析,获得激光测距系统与待测距目标之间距离。The laser is used to emit a laser beam; the laser beam is phase-modulated by the phase modulator; the signal generator is used to control the phase modulator to generate a phase modulation signal and output a preset phase; the laser beam output by the phase modulator is divided into a resonant beam by a beam splitting unit and the detection beam; the local oscillator beam and the detection beam are incident on the optical phased array chip, and the optical phased array chip outputs the laser beam for scanning; the local oscillator beam is incident on the coupler, and the detection beam is incident on the target to be measured and then reflected It becomes the echo beam, the optical phased array chip receives the echo beam, the echo beam is transmitted to the beam splitting unit, and then enters the coupler through the beam splitting unit, and the local oscillator beam and the echo beam are mixed in the coupler to become a mixed beam. The photoelectric detector is used to convert the mixed frequency optical signal into an analog electrical signal; the data acquisition and analysis unit is used to collect and analyze the analog electrical signal to obtain the distance between the laser ranging system and the target to be measured.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的激光测距方法、激光测距系统及其激光雷达系统有效解决了传统脉冲测距法由于瞬时功率过高带来的人眼安全问题;以及调频连续波技术难度大,成本高的问题;并且可以实现远距离探测,弥补相位差探测法的缺陷。激光测距方法、激光测距系统及其激光雷达系统提供了一种新的相位调制激光测距系统和测距方法,即利用了相干检测的原理提高了信噪比,在功率较低的情况下测量较远距离、提高分辨率;同时本发明提供的激光测距系统调相简单,调相技术容易实现。The laser ranging method, laser ranging system and laser radar system provided by the present invention effectively solve the problem of human eye safety caused by the traditional pulse ranging method due to excessive instantaneous power; and the frequency modulation continuous wave technology is difficult and costly. problem; and can realize long-distance detection to make up for the defects of the phase difference detection method. The laser ranging method, laser ranging system and its lidar system provide a new phase modulation laser ranging system and ranging method, that is, the principle of coherent detection is used to improve the signal-to-noise ratio, and in the case of low power At the same time, the laser ranging system provided by the invention has simple phase modulation, and the phase modulation technology is easy to realize.
附图说明Description of drawings
图1是本发明实施例1中的激光测距系统的第一结构的示意图;1 is a schematic diagram of a first structure of a laser ranging system in
图2是本发明实施例1中的激光测距系统的第二结构的示意图;2 is a schematic diagram of a second structure of the laser ranging system in
图3是本发明实施例2中的激光雷达系统的结构的示意图;3 is a schematic diagram of the structure of the lidar system in
图4是本发明实施例3中的激光雷达系统的结构的示意图FIG. 4 is a schematic diagram of the structure of a lidar system in
图5是本发明实施例4中的激光测距方法的流程的示意图;5 is a schematic diagram of the flow of the laser ranging method in
图6是本发明实施例4中的相位调制信号的示意图;6 is a schematic diagram of a phase modulation signal in
图7是本发明实施例4中的混频光信号的示意图。FIG. 7 is a schematic diagram of a mixed optical signal in
其中的附图标记如下:The reference numbers are as follows:
激光器1、相位调制器2、信号发生器3、分束器4、环形器5、待测距目标6、耦合器7、光电探测器8、数据采集分析单元9、放大器10、准直器11、振镜12、光学相控阵芯片13、本振光束LO、探测光束TX、回波光束RX。
具体实施方式Detailed ways
下面结合附图和实施例对本发明的实施方式作进一步详细描述。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互结合。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The embodiments of the present invention will be described in further detail below with reference to the accompanying drawings and examples. It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1:Example 1:
图1示出了本发明实施例1中的激光测距系统的结构示意图。FIG. 1 shows a schematic structural diagram of a laser ranging system in
如图1所示,本发明实施例提供一种激光测距系统,包括:激光器1、相位调制器2、信号发生器3、分束器4、环形器5、耦合器7、光电探测器8、数据采集分析单元9。As shown in FIG. 1 , an embodiment of the present invention provides a laser ranging system, including: a
激光器1用于发出激光光束,激光光束经相位调制器2进行相位调制,信号发生器3用于控制相位调制器2产生相位调制信号和输出预设相位。由信号发生器连接相位调制器的电极,输出指定信号,控制激光光束具有预设相位,可采用铌酸锂相位调制器等电光调制器。相位调制器2输出的激光光束入射至分束器4被分为本振光束LO和探测光束TX,本振光束LO入射至耦合器7与回波光束RX进行混频,探测光束TX入射至环形器5,环形器5出射的探测光束TX经准直器11准直后入射至待测距目标6,经待测距目标6反射后形成回波光束RX入射至准直器11准直后入射至耦合器7与本振光束LO进行混频成为混频光信号。探测光束TX遇到待测距目标6后会发生反射产生回波信号,进而形成回波光束RX。混频光信号经光电探测器8转换为模拟电信号,数据采集分析单元9对模拟电信号进行采集与分析,获得激光测距系统与待测距目标6之间距离。本发明实施例中的数据采集分析单元9可以使用TDC时间-数字转换器来直接计时,进而来测量模拟电信号的脉冲宽度,也可以使用ADC模拟-数字转换器进行计数计时,进而采集模拟电信号的脉冲波形后再分析;耦合器7采用2*2光纤耦合器7进行混频。本发明实施例1中相位调制的原理不限,可以是热光调制,例如:加热波导、改变温度、改变波导折射率、改变光相位,也可以是电光调制,例如:波导进行P型和N型掺杂、调节PN结电压、调节波导中载流子数量、调节折射率、调节相位,也可以在外部对光束进行调制,例如:加入铌酸锂相位调制器。可以根据实际情况进行选择,本发明实施例1对此不进行限定。The
由上述内容可知,本发明提供的激光测距系统,采用相位调制器2、信号发生器3能够控制激光光束的相位的特点,进而实现相位调制激光对待测距目标6的探测。本发明实施例提供激光测距系统中对激光器1的线宽、频率调制带宽、线性度没有高的要求,因此相对比调频连续波方式作为测距方法降低了成本。线宽窄、频率调制带宽高、线性度的高激光器1的相关技术并不成熟,本发明实施例提供的激光测距系统有效避免了使用不成熟技术所带来的隐患。本发明提供的激光测距系统利用相干检测的原理,由本振信号(即本振光束LO)与回波信号(即回波光束RX)进行混频,即使回波光束RX较弱,但由于本振光束LO功率足够,所以依然能保障信噪比较高。不需要在远距离探测时提高激光器1发射激光光束的功率,也就不存在人眼安全问题。并且本发明提供的激光测距系统利用本振光束LO和回波光束RX进行混频,即使进行远距离测量也可以实现较高信噪比,保证了远距离测量的可行性,弥补了相位差探测法的缺陷问题。As can be seen from the above content, the laser ranging system provided by the present invention adopts the
本发明实施例1提供一种优选方案,激光测距系统还包括用于将激光器1发出的激光光束功率进行放大的光纤放大器10。若激光测距系统中的激光器1的功率不够高,可以使用光纤放大器10来进行放大,这样本发明提供的实施例中,就不仅可以使用高功率的激光器1,也可以使用光纤放大器10配合功率低的激光器1来完成测距。
本发明实施例1提供一种优选方案,激光测距系统还包括用于将探测光束和回波光束RX进行准直的准直器11。
本发明实施例1提供一种优选方案,分束单元包括分束器4和环形器5;相位调制器2输出的激光光束入射至分束器4被分为本振光束LO和探测光束TX,本振光束LO入射至耦合器7与回波光束RX进行混频,探测光束TX入射至环形器5,环形器5出射的探测光束TX经准直器11准直后入射至待测距目标6,经待测距目标6反射后形成回波光束RX入射至准直器11准直后入射至耦合器7与本振光束LO进行混频。
图2示出了本发明实施例1中的激光测距系统的第二结构示意图。FIG. 2 shows a second schematic structural diagram of the laser ranging system in
本发明实施例1提供一种优选方案,激光测距系统还包括用于扫描的振镜,进而实现激光雷达系统的建立。如图2所示,激光测距系统还包括用于扫描的振镜12,分束单元分出的探测光束TX入射至振镜12,经振镜12出射的探测光束TX入射至待测距目标6,经待测距目标6反射后形成回波光束RX入射至振镜12后入射至耦合器7。结合振镜12的方案进行扫描,本发明实施例1所提供的激光测距系统不仅能测距,也具有扫描的功能。
实施例2:Example 2:
图3示出了本发明实施例2中的激光雷达系统的结构示意图。FIG. 3 shows a schematic structural diagram of a lidar system in
如图3所示,本发明实施例2提供一种激光雷达系统,包括:激光器1、光纤放大器10、分束单元、光学相控阵芯片13、信号发生器3、耦合器7、光电探测器8、数据采集分析单元9。As shown in FIG. 3,
激光器1用于发出激光光束,分束单元用于将光束进行分束,光学相控阵芯片13输出的用于扫描的激光光束,信号发生器3用于向光学相控阵芯片13发出相位调制信号,并控制光学相控阵芯片13输出预设相位,耦合器7用于将不同光束进行混频,光电探测器8用于将光信号转换为模拟电信号,数据采集分析单元9用于对模拟电信号进行采集与分析。本实施例2提供一种的优选技术方案,用于对激光器1发出的激光光束功率进行放大的光纤放大器10。若激光雷达系统中的激光器11的功率不够高,可以使用光纤放大器10来进行放大,这样本发明提供的实施例中,就不仅可以使用高功率的激光器11,也可以使用光纤放大器10配合功率低的激光器11来完成测距。The
激光光束经分束单元入射至光学相控阵芯片13经相位调制后输出,光学相控阵芯片13输出的激光光束包括本振光束和探测光束,本振光束入射至耦合器7,探测光束入射至待测距目标6后被反射成为回波光束,光学相控阵芯片13接收回波光束,回波光束被传送至分束单元,经分束单元入射至耦合器7,本振光束和回波光束在耦合器7中进行混频成为混频光信号,混频光信号经光电探测器8转换为模拟电信号,数据采集分析单元9对模拟电信号进行采集与分析,获得激光雷达系统与待测距目标6之间距离。本发明实施例中的分束单元为环形器5,耦合器7采用2*2光纤耦合器7进行混频。本发明实施例2中相位调制的原理不限,可以是热光调制,例如:加热波导、改变温度、改变波导折射率、改变光相位,也可以是电光调制,例如:波导进行P型和N型掺杂、调节PN结电压、调节波导中载流子数量、调节折射率、调节相位,也可以在外部对光束进行调制,例如:加入铌酸锂相位调制器2。可以根据实际情况进行选择,本发明实施例2对此不进行限定。The laser beam is incident on the optical phased
由上述内容可知,本发明提供的激光雷达系统,采用光学相控阵芯片13、信号发生器3能够控制激光光束的相位的特点,进而实现相位调制激光对待测距目标6的探测。本发明实施例提供激光雷达系统中对激光器1的线宽、频率调制带宽、线性度没有高的要求,因此相对比调频连续波方式作为测距方法降低了成本。线宽窄、频率调制带宽高、线性度的高激光器1的相关技术并不成熟,本发明实施例提供的激光雷达系统有效避免了使用不成熟技术所带来的隐患。本发明提供的激光雷达系统利用相干检测的原理,由本振信号(即本振光束LO)与回波信号(即回波光束RX)进行混频,即使回波光束RX较弱,但由于本振光束LO功率足够,所以依然能保障信噪比较高。不需要在远距离探测时提高激光器1发射激光光束的功率,也就不存在人眼安全问题。并且本发明提供的激光雷达系统利用本振光束LO和回波光束RX进行混频,即使进行远距离测量也可以实现较高信噪比,保证了远距离测量的可行性,弥补了相位差探测法的缺陷问题。It can be seen from the above content that the laser radar system provided by the present invention adopts the optical phased
本实施例2提供一种的优选技术方案,用于对激光器1发出的激光光束功率进行放大的光纤放大器10。若激光雷达系统中的激光器11的功率不够高,可以使用光纤放大器10来进行放大,这样本发明提供的实施例中,就不仅可以使用高功率的激光器1,也可以使用光纤放大器10配合功率低的激光器1来完成测距。This
本实施例3:This Example 3:
图4示出了本发明实施例3中的激光雷达系统的结构示意图。FIG. 4 shows a schematic structural diagram of a lidar system in
本发明实施例2提供一种优选方案,如图4所示,激光雷达系统包括激光器1、相位调制器2、光纤放大器10、分束单元、光学相控阵芯片13、信号发生器3、耦合器7、光电探测器8、数据采集分析单元9。分束单元为环形器5。激光器1发出的激光光束经相位调制器2进行相位调制,信号发生器3用于控制相位调制器2产生相位调制信号和输出预设相位,相位调制器2输出的激光光束经环形器5入射至光学相控阵芯片13再次经相位调制后输出,光学相控阵芯片13输出的激光光束包括本振光束LO和探测光束TX,本振光束LO入射至耦合器7,探测光束TX入射至待测距目标6后被反射成为回波光束RX,光学相控阵芯片13接收回波光束RX,回波光束RX被传送至分束单元,经分束单元入射至耦合器7,本振光束LO和回波光束RX在耦合器7中进行混频成为混频光信号。光电探测器8用于将光信号转换为模拟电信号,数据采集分析单元9用于对模拟电信号进行采集与分析。本实施例3提供一种的优选技术方案,用于对激光器1发出的激光光束功率进行放大的光纤放大器10。若激光雷达系统中的激光器11的功率不够高,可以使用光纤放大器10来进行放大,这样本发明提供的实施例中,就不仅可以使用高功率的激光器11,也可以使用光纤放大器10配合功率低的激光器11来完成测距。
实施例4:Example 4:
图5示出了本发明实施例4中的激光测距方法的流程示意图。FIG. 5 shows a schematic flowchart of the laser ranging method in
如图5所示,本发明实施例4提供一种激光测距方法,具体包括以下步骤:As shown in FIG. 5 ,
S1、将激光光束经相位调制后成为具有预设相位的激光光束,并将调制后的激光光束进行分束,一部分作为本振光束LO,另一部分经相位调制后成为具有预设相位的探测光束TX,探测光束入射至待测距目标后被反射成为回波光束TX。S1. The laser beam is phase-modulated into a laser beam with a preset phase, and the modulated laser beam is split into beams, a part of which is used as a local oscillator beam L O , and the other part is phase-modulated into a detection with a preset phase. For the light beam T X , the detection beam is incident on the target to be ranged and then reflected as the echo beam T X .
由激光器1产生的激光光束,经相位调制后成为具有预设相位的激光光束,再经分光为两部分,被分为本振光束LO和探测光束TX,探测光束TX入射至待测距目标6后被反射成为回波光束RX,其中回波光束RX携带有回波信号。The laser beam generated by the
S2、将本振光束LO和回波光束TX通过耦合器7进行混频,获取混频光信号。S2. Mix the local oscillator light beam LO and the echo light beam TX through the
S3、本发明实施例4通过光电探测器8对混频光信号进行光电转换,获取模拟电信号。S3. In the fourth embodiment of the present invention, the
S4、对模拟电信号进行分析,获得待测距目标的距离。数据采集分析单元9对模拟电信号进行采集与分析,获得待测距目标的距离。S4, analyze the analog electrical signal to obtain the distance of the target to be measured. The data collection and
本发明实施例4提供的激光测距方法利用的是相干检测的原理,由本振光束LO与回波光束RX混频,即使回波光束RX,但由于本振光束LO功率足够,所以依然能保障信噪比。这样就不需要在远距离探测时提高发射光的功率了,也就不存在人眼安全问题。The laser ranging method provided in
图6示出了本发明实施例4中的相位调制信号的示意图。本发明实施例提供一种优选方案,在步骤S1中,如图6所示,信号发生器3控制相位调制器2产生相位调制信号和输出预设相位,预设相位表示为公式(1)和公式(2):FIG. 6 shows a schematic diagram of a phase modulation signal in
其中,a,b分别表示不相等的常数,t表示时间,x表示整数,T表示周期。Among them, a and b represent unequal constants respectively, t represents time, x represents an integer, and T represents period.
本发明实施例4提供一种优选方案,在步骤S4中,根据公式(3)-(6)对混频后转换为模拟电信号进行分析,获取飞行时间,公式(3)-(6)如下所示:
I=IT+IR+ATARcos[ωPhτ+a-b],(0+xT≤t<τ+xT) (3)I=I T +I R +A T A R cos[ω Ph τ+ab], (0+xT≤t<τ+xT) (3)
其中,I表示混频光信号光强,IT表示本振光束LO的光强,IR表示回波光束RX的光强,AT表示本振光束LO的振幅,AR表示回波光束RX的振幅,ωPh表示本振光束LO的光频,τ表示飞行时间,为探测光束TX和回波光束RX的时间间隔其中,τ表示飞行时间,为探测光束TX和回波光束RX的时间间隔。Among them, I represents the light intensity of the mixed optical signal, IT represents the light intensity of the local oscillator beam LO , IR represents the light intensity of the echo beam R X , A T represents the amplitude of the local oscillator beam LO , and A R represents the echo beam . The amplitude of the wave beam R X , ω Ph is the optical frequency of the local oscillator beam L O , τ is the time of flight, is the time interval between the probe beam T X and the echo beam R X where, τ is the flight time, is the probe beam T X and the time interval of the echo beam RX .
下面对本发明实施例4提供的技术方案涉及探测原理进行详细的说明,本振光束LO的光场ETx、回波光束Rx的光场ERx分别如公式(7)、公式(8)所示:The technical solution provided in
其中,AT和AR均为常数,表示本振光束LO的预设相位,ωPh表示本振光束LO的光频,t表示时间,τ为探测光束TX和回波光束RX的总时间。where A T and A R are both constants, represents the preset phase of the local oscillator beam LO , ω Ph represents the optical frequency of the local oscillator beam LO , t represents the time, and τ represents the total time of the probe beam TX and the echo beam RX .
将本振光束LO和回波光束Rx相干叠加后产生的新的光场E总如公式(9)所示:The new light field E generated by coherently superposing the local oscillator beam L O and the echo beam Rx is always shown in formula (9):
由于光强正比于光场的平方,进而将本振光束LO和回波光束Rx相干叠加后光强I如公式(10)所示:Since the light intensity is proportional to the square of the light field, the light intensity I after coherent superposition of the local oscillator beam L O and the echo beam Rx is shown in formula (10):
由于光强正比于光场的平方,本振光束LO的光强IT和回波光束RX的光强IR分别如公式(11)、公式(12)所示:Since the light intensity is proportional to the square of the light field, the light intensity I T of the local oscillator beam LO and the light intensity IR of the echo beam R X are shown in formula (11) and formula (12), respectively:
通过公式(11)、公式(12)将公式(10)进行整理,整理后如公式(13)所示:Formula (10) is sorted by formula (11) and formula (12), and the sorting is shown in formula (13):
利用三角函数关系公式对公式(13)的光强I进行变形,如公式(14)所示:The light intensity I of formula (13) is deformed by using the trigonometric function relation formula, as shown in formula (14):
由于是一个频率极高的项,光电探测器8对此无法响应,故而可以被忽略,得到光强I如公式(15)所示:because is a very high frequency term, and the
将预设相位公式(1)和公式(2)进行整理得到公式(16)、公式(17):Arrange the preset phase formula (1) and formula (2) to obtain formula (16) and formula (17):
将公式(16)、公式(17)代入公式(17)进行整理,整理后得到公式(3)-公式(6)。Substitute formula (16) and formula (17) into formula (17) for sorting, and obtain formula (3)-formula (6) after sorting.
I=IT+IR+ATARcos[ωPhτ+a-b],(0+xT≤t<τ+xT) (3)I=I T +I R +A T A R cos[ω Ph τ+ab], (0+xT≤t<τ+xT) (3)
图7示出了本实施例中根据公式(3)-公式(6)获得的混频光信号的波形图的示意图。如图7所示,光电探测信号的波形图(需要说明的是,图7仅仅为便于说明的示意图)及光强I的公式(3)-公式(6)可知,IT+IR为可探测的本振光束LO和回波光束Rx的光强之和,为可探测的参量;AT、AR表现在波形图则为相关振幅,为可通过图7求取的参量;ωPhτ、a、b皆为常数,飞行时间τ可通过读取图7中混频光信号脉冲的宽度获取。获取飞行时间τ,通过公式(18)即可获取激光测距系统与待测距目标6之间距离数据,公式(18)如下所示:FIG. 7 shows a schematic diagram of the waveform diagram of the mixed optical signal obtained according to the formula (3)-formula (6) in this embodiment. As shown in Figure 7, the waveform diagram of the photoelectric detection signal (it should be noted that Figure 7 is only a schematic diagram for convenience of description) and the formula (3)-formula (6) of the light intensity I can know that I T + I R can be The sum of the light intensities of the detected local oscillator beam LO and the echo beam Rx is a detectable parameter; A T and AR are the relevant amplitudes in the waveform diagram, which are parameters that can be obtained through Fig. 7; ω Ph τ, a, and b are all constants, and the flight time τ can be obtained by reading the width of the mixed optical signal pulse in Fig. 7 . To obtain the flight time τ, the distance data between the laser ranging system and the
其中,c为光速,s表示激光测距系统与待测距目标6之间距离。Among them, c is the speed of light, and s is the distance between the laser ranging system and the
本发明实施例4提供的激光测距方法中,根据上述公式就可得到待测距目标6的距离,即利用了相干检测的原理提高了信噪比,在即使回波信号较弱的情况下也能够测量较远距离,并保持高分辨率。本发明实施例4提供的激光测距方法中的相位调制的波形更容易实现,本发明实施例4提供的激光测距方法中相位调制是针对波形为方波的调制,对于改变激光光束的相位来说,只需要施加方波电信号就可以实现相位调制。而现有技术中的相位调制一般是二次方的波形,这种波形就需要更复杂的电信号以及许多校准的过程,才能实现所需的相位调制。因此本发明实施例4提供的激光测距方法的调相简单、易实现。In the laser ranging method provided in
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it is to be understood that the above-described embodiments are exemplary and should not be construed to limit the present invention. Variations, modifications, substitutions, and alterations to the above-described embodiments can be made by those of ordinary skill in the art within the scope of the present invention.
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。The above specific embodiments of the present invention do not constitute a limitation on the protection scope of the present invention. Any other corresponding changes and modifications made according to the technical concept of the present invention shall be included in the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111331242.5A CN113917474A (en) | 2021-11-11 | 2021-11-11 | Laser ranging method, laser ranging system and laser radar system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111331242.5A CN113917474A (en) | 2021-11-11 | 2021-11-11 | Laser ranging method, laser ranging system and laser radar system thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113917474A true CN113917474A (en) | 2022-01-11 |
Family
ID=79246009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111331242.5A Pending CN113917474A (en) | 2021-11-11 | 2021-11-11 | Laser ranging method, laser ranging system and laser radar system thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113917474A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646940A (en) * | 2022-03-15 | 2022-06-21 | 中国科学院微电子研究所 | Laser sweep frequency ranging device and method |
CN117233783A (en) * | 2023-11-14 | 2023-12-15 | 中国科学院长春光学精密机械与物理研究所 | Laser radar optical communication integrated system |
CN118859226A (en) * | 2024-09-26 | 2024-10-29 | 中国科学院长春光学精密机械与物理研究所 | Phase-modulated continuous-wave laser radar ranging system with multi-directional parallel modulation |
CN118859224A (en) * | 2024-09-26 | 2024-10-29 | 中国科学院长春光学精密机械与物理研究所 | Laser radar ranging system and method with parallel modulation of multi-directional intermediate frequency pulses |
-
2021
- 2021-11-11 CN CN202111331242.5A patent/CN113917474A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646940A (en) * | 2022-03-15 | 2022-06-21 | 中国科学院微电子研究所 | Laser sweep frequency ranging device and method |
CN117233783A (en) * | 2023-11-14 | 2023-12-15 | 中国科学院长春光学精密机械与物理研究所 | Laser radar optical communication integrated system |
CN117233783B (en) * | 2023-11-14 | 2024-01-12 | 中国科学院长春光学精密机械与物理研究所 | A laser radar optical communication integrated system |
CN118859226A (en) * | 2024-09-26 | 2024-10-29 | 中国科学院长春光学精密机械与物理研究所 | Phase-modulated continuous-wave laser radar ranging system with multi-directional parallel modulation |
CN118859224A (en) * | 2024-09-26 | 2024-10-29 | 中国科学院长春光学精密机械与物理研究所 | Laser radar ranging system and method with parallel modulation of multi-directional intermediate frequency pulses |
CN118859226B (en) * | 2024-09-26 | 2024-11-22 | 中国科学院长春光学精密机械与物理研究所 | Phase-modulated continuous-wave laser radar ranging system with multi-directional parallel modulation |
CN118859224B (en) * | 2024-09-26 | 2024-12-10 | 中国科学院长春光学精密机械与物理研究所 | Laser radar ranging system and method for multi-direction intermediate frequency pulse parallel modulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113917474A (en) | Laser ranging method, laser ranging system and laser radar system thereof | |
US10330778B2 (en) | Coherent lidar system using tunable carrier-suppressed single-sideband modulation | |
CN110596679B (en) | A solid-state lidar system | |
CN114035174B (en) | Dual-channel dual-chirp linear frequency modulation continuous wave laser radar method and device | |
CN112764050A (en) | Laser radar measuring method and laser radar system | |
WO2021036315A1 (en) | Microwave and laser radar integration method and apparatus | |
CN104677396A (en) | Dynamic distributed Brillouin optical fiber sensing device and method | |
CN108303704B (en) | A laser measurement method and lidar based on polarization modulation | |
CN113759345B (en) | Laser radar based on polarization modulated light injection laser and its control method | |
CN111175780A (en) | A kind of injection locking frequency modulation continuous wave laser radar speed measuring device and method | |
CN111983628B (en) | Speed and distance measuring system based on monolithic integrated linear frequency modulation dual-frequency DFB laser | |
CN113702993A (en) | Multi-wavelength multi-modulation frequency modulation continuous wave laser range radar | |
CN114895318B (en) | Laser radar system | |
CN116106917A (en) | Parallel linear frequency modulation continuous wave laser radar ranging and speed measuring system | |
CN218120898U (en) | A Phase Distance Measuring Device Based on Dual Electro-optical Heterodyne Modulation | |
CN215932129U (en) | Lidar Based on Polarization Modulated Light Injection Laser | |
CN115308715A (en) | Method and system for sparse modulation wind-measuring radar | |
CN113534106B (en) | Microcavity optical comb laser, ranging device and ranging method | |
CN109884655A (en) | Optical carrier frequency modulation continuous wave laser ranging system based on optical injection semiconductor laser | |
CN111239754A (en) | A laser radar system based on tunable continuous wave and its imaging method | |
CN116482702A (en) | A kind of measuring system and its measuring method | |
CN116626696A (en) | Frequency modulation continuous wave laser range unit | |
CN214704000U (en) | A High Precision Frequency Modulated Continuous Wave Lidar System Based on FDML Technology | |
CN211905692U (en) | A Frequency Modulated Continuous Wave Lidar Velocity Measurement System in the Form of Triangular Waves | |
CN118859224B (en) | Laser radar ranging system and method for multi-direction intermediate frequency pulse parallel modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |