CN113910600A - 一种制备高精度3d打印产品的方法 - Google Patents

一种制备高精度3d打印产品的方法 Download PDF

Info

Publication number
CN113910600A
CN113910600A CN202111185342.1A CN202111185342A CN113910600A CN 113910600 A CN113910600 A CN 113910600A CN 202111185342 A CN202111185342 A CN 202111185342A CN 113910600 A CN113910600 A CN 113910600A
Authority
CN
China
Prior art keywords
printing
primary
green
database
blanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111185342.1A
Other languages
English (en)
Other versions
CN113910600B (zh
Inventor
苏绍华
朱明露
何鑫
易善杰
邬均文
王明喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Gian Technology Co Ltd
Original Assignee
Jiangsu Gian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Gian Technology Co Ltd filed Critical Jiangsu Gian Technology Co Ltd
Priority to CN202111185342.1A priority Critical patent/CN113910600B/zh
Publication of CN113910600A publication Critical patent/CN113910600A/zh
Application granted granted Critical
Publication of CN113910600B publication Critical patent/CN113910600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种制备高精度3D打印产品的方法,包括以下步骤:S1、生坯打印:打印平台内具有多个打印工位,每个打印工位打印制备一个生坯;根据初始3D打印布局图在打印获得多个首次生坯;S2、对每个首次生坯进行称重并导入数据库;S3、对所有首次生胚进行脱脂烧结,获得首次烧结坯;S4、对所有首次烧结坯进行尺寸检测;S5、将所有首次烧结坯的尺寸导入数据库,并根据标准值计算出各首次生坯的重量与标准值的偏差ΔM;S6、图档补偿:补偿后形成新的3D打印布局图;S7、导入新的3D打印布局图后,再次进行步骤S1至S3。本发明通过大数据统计分析以及调整,确保批次内或者批次间的产品质量的一致性。

Description

一种制备高精度3D打印产品的方法
技术领域
本发明涉及粉末成型领域,特别涉及一种制备高精度3D打印产品的方法。
背景技术
3D打印是增材制造技术的典型应用,它是一种以数字模型文件为基础,运用特殊蜡材、塑料等可粘结剂为原料,先用三维造型软件在计算机生成部件的三维实体模型,而后用分层软件对其进行分层处理,即将三维模型分成一系列的层,将每一层的信息传送到成型机,通过液化、粉末化、丝化的固体材料逐层打印出产品。
粘结剂喷射3D打印技术是在喷墨打印机的技术原理基础之上,于1993年研发成功,开始使用的材料为塑料粉末,经发展衍变,材料拓宽至砂子,金属粉末及PMMA材料。粘结剂喷射3D打印技术原理与我们常用的办公室二维打印机类似,只是二维打印机喷射的是墨水,而粘结剂喷射打印技术通过喷头喷射粘结剂。之后通过不断地叠加生成生坯,通过脱脂烧结等方式最终成型。
烧结工艺最关键的是零件的收缩,这与零件的大小,薄厚及结构密切相关。同时因为铺粉的均匀性和Z轴方向受力不同导致各区域尺寸差异较大,目前,粘结剂喷射3D打印技术所做的零件结构还是处于结构相对简单,成形尺寸有限的范围。零件因各个方向收缩不均匀而引起批次内和批次间尺寸波动性较大,因此这也是此项技术能够大范围应用的的关键局限。
发明内容
本发明的目的是提供一种制备高精度3D打印产品的方法,该方法通过大数据统计分析以及调整,确保批次内或者批次间的产品质量的一致性。
实现本发明目的的技术方案是:本发明一种制备高精度3D打印产品的方法,包括以下步骤:
S1、生坯打印:打印平台内具有多个打印工位,每个打印工位打印制备一个生坯;根据初始3D打印布局图在打印平台的多个打印工位做第一次粘结剂喷射3D打印,同时获得多个首次生坯;
S2、对每个首次生坯进行称重,并将每个首次生坯的重量数据导入数据库;
S3、对所有首次生胚进行脱脂烧结,获得首次烧结坯;
S4、对所有首次烧结坯进行尺寸检测;
S5、将所有首次烧结坯的尺寸导入数据库,并在尺寸合格的首次烧结坯所对应的首次生坯的重量数据中选择标准值,并计算出各首次生坯的重量与标准值的偏差ΔM;
S6、图档补偿:根据生坯密度ρ算出各打印区域对应的首次生坯的体积偏差V,其中V=ΔM/ρ;然后补偿后形成新的3D打印布局图;
S7、导入新的3D打印布局图后,再次进行步骤S1至S3。
上述步骤S1中粘结剂喷射3D打印成形包括金属、陶瓷以及塑料粘结剂喷射打印成形中的一种或者2种以上的组合。
上述数据库包括原材料粉末数据库、生坯密度分布数据库、尺寸收缩数据库中的一种或者2种以上的组合;所述原材料粉末数据库用于提供每批打印生坯理论密度,生坯理论密度根据打印用金属粉末理论密度和粒径分布计算获得;所述生坯密度分布数据库用于做整个打印平台内各打印工位的生坯真实密度的补偿计算,每个区域的真实密度为生坯理论密度*补偿系数;所述尺寸收缩数据库用于判定产品尺寸是否在公差范围内,并输出正常批次的编号,同时用于根据偏差ΔM制定补偿方案。
上述补偿方案为在X轴、Y轴和Z轴方向上收缩调整,具体为根据各材料在不同方向典型收缩值进行补偿调整。
进一步,上述步骤S4对所有首次烧结坯通过3D扫描进行尺寸检测。
本发明具有积极的效果:(1)本发明通过对生坯重量的管控,有效提高3D打印产品的尺寸精度,相比于传统方法单纯尺寸的补偿具有更低的误差。
(2)本发明通过生坯重量的管控能够更简单更有效更快速的调整产品尺寸,而不需要脱脂烧结热处理后才能测量尺寸再进行二次尺寸优化,大大减少调整成本和调整时间。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明中首次生坯的重量分布图;
图2为本发明通过调整后打印的生坯重量分布图。
具体实施方式
本发明先根据制备产品的要求,进行316L作为本次制备的材料,选择使用金属粘结剂喷射3D打印机;制备产品为4cm*4cm*4cm的产品件。
本发明制备高精度3D打印产品的方法,包括以下步骤:
S1、生坯打印:打印平台内具有多个打印工位,每个打印工位打印制备一个生坯;根据初始3D打印布局图在打印平台的多个打印工位做第一次粘结剂喷射3D打印,同时获得多个首次生坯;
S2、对每个首次生坯进行称重,并将每个首次生坯的重量数据导入数据库,形成首次生坯重量分布图,见图1;图1中向上或者向下的箭头对应的打印区为需要调整的打印区;
S3、对所有首次生胚进行脱脂烧结,获得首次烧结坯;
S4、对所有首次烧结坯进行尺寸检测;
S5、将所有首次烧结坯的尺寸导入数据库,并在尺寸合格的首次烧结坯所对应的首次生坯的重量数据中选择中位数作为标准值,并计算出各首次生坯的重量与标准值的偏差ΔM;
S6、图档补偿:根据生坯密度ρ算出各打印区域对应的首次生坯的体积偏差V,其中V=ΔM/ρ;然后进行如下补偿调整后形成新的3D打印布局图:
收缩比 X Y Z
调整前 1.21 1.19 1.25
绿色区域 1.19 1.17 1.24
红色区域 1.23 1.2 1.28
S7、导入新的3D打印布局图后,再次进行步骤S1至S3,在进行步骤S2时,可获得此次制备的生坯重量分布图,参见图2;从图2可见,之前需调整的打印区大多数已经调整合格。
根据实际情况,而继续执行步骤S5至S7,直至所有打印区制备的烧结坯合格。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种制备高精度3D打印产品的方法,其特征在于包括以下步骤:
S1、生坯打印:打印平台内具有多个打印工位,每个打印工位打印制备一个生坯;根据初始3D打印布局图在打印平台的多个打印工位做第一次粘结剂喷射3D打印,同时获得多个首次生坯;
S2、对每个首次生坯进行称重,并将每个首次生坯的重量数据导入数据库;
S3、对所有首次生胚进行脱脂烧结,获得首次烧结坯;
S4、对所有首次烧结坯进行尺寸检测;
S5、将所有首次烧结坯的尺寸导入数据库,并在尺寸合格的首次烧结坯所对应的首次生坯的重量数据中选择标准值,并计算出各首次生坯的重量与标准值的偏差ΔM;
S6、图档补偿:根据生坯密度ρ算出各打印区域对应的首次生坯的体积偏差V,其中V=ΔM/ρ;然后补偿后形成新的3D打印布局图;
S7、导入新的3D打印布局图后,进行步骤S1至S3。
2.根据权利要求1所述的制备高精度3D打印产品的方法,其特征在于:所述步骤S1中粘结剂喷射3D打印成形包括金属、陶瓷以及塑料粘结剂喷射打印成形中的一种或者2种以上的组合。
3.根据权利要求1所述的制备高精度3D打印产品的方法,其特征在于:所述数据库包括原材料粉末数据库、生坯密度分布数据库、尺寸收缩数据库中的一种或者2种以上的组合;
所述原材料粉末数据库用于提供每批打印生坯理论密度;
所述生坯密度分布数据库用于做整个打印平台内各打印工位的生坯真实密度的补偿计算;
所述尺寸收缩数据库用于判定产品尺寸是否在公差范围内,并输出正常批次的编号,同时用于根据偏差ΔM制定补偿方案。
4.根据权利要求3所述的制备高精度3D打印产品的方法,其特征在于:所述补偿方案为在X轴、Y轴和Z轴方向上收缩调整,具体为根据各材料在不同方向典型收缩值进行补偿调整。
5.根据权利要求1所述的制备高精度3D打印产品的方法,其特征在于:所述步骤S4对所有首次烧结坯通过3D扫描进行尺寸检测。
CN202111185342.1A 2021-10-12 2021-10-12 一种制备高精度3d打印产品的方法 Active CN113910600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111185342.1A CN113910600B (zh) 2021-10-12 2021-10-12 一种制备高精度3d打印产品的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111185342.1A CN113910600B (zh) 2021-10-12 2021-10-12 一种制备高精度3d打印产品的方法

Publications (2)

Publication Number Publication Date
CN113910600A true CN113910600A (zh) 2022-01-11
CN113910600B CN113910600B (zh) 2023-10-24

Family

ID=79239481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111185342.1A Active CN113910600B (zh) 2021-10-12 2021-10-12 一种制备高精度3d打印产品的方法

Country Status (1)

Country Link
CN (1) CN113910600B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470626A (zh) * 2017-06-14 2017-12-15 吴敏 一种3d打印方法
CN108312547A (zh) * 2018-01-30 2018-07-24 清华大学 在增材制造过程中实时监控零件形状的方法
US20180307209A1 (en) * 2017-04-21 2018-10-25 Desktop Metal, Inc. Adaptive 3d printing
CN109895392A (zh) * 2019-02-15 2019-06-18 上海幂方电子科技有限公司 一种在设备工作区域标记和精确定位工作坐标的方法
US20200223144A1 (en) * 2019-01-11 2020-07-16 Hewlett-Packard Development Company, L.P. Dimensional compensations for additive manufacturing
CN111941849A (zh) * 2020-06-28 2020-11-17 西安理工大学 一种3d打印筒形件的尺寸误差补偿方法
CN113020619A (zh) * 2021-03-03 2021-06-25 华中科技大学鄂州工业技术研究院 一种减少间接3d打印金属零件缺陷的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180307209A1 (en) * 2017-04-21 2018-10-25 Desktop Metal, Inc. Adaptive 3d printing
CN107470626A (zh) * 2017-06-14 2017-12-15 吴敏 一种3d打印方法
CN108312547A (zh) * 2018-01-30 2018-07-24 清华大学 在增材制造过程中实时监控零件形状的方法
US20200223144A1 (en) * 2019-01-11 2020-07-16 Hewlett-Packard Development Company, L.P. Dimensional compensations for additive manufacturing
CN109895392A (zh) * 2019-02-15 2019-06-18 上海幂方电子科技有限公司 一种在设备工作区域标记和精确定位工作坐标的方法
CN111941849A (zh) * 2020-06-28 2020-11-17 西安理工大学 一种3d打印筒形件的尺寸误差补偿方法
CN113020619A (zh) * 2021-03-03 2021-06-25 华中科技大学鄂州工业技术研究院 一种减少间接3d打印金属零件缺陷的方法

Also Published As

Publication number Publication date
CN113910600B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN108995219A (zh) 一种层厚可变的切片方法、3d打印方法及3d打印的产品
US7406361B2 (en) Rapid prototyping method and apparatus using V-CAD data
Cho et al. A dithering algorithm for local composition control with three-dimensional printing
Islam et al. An experimental investigation into the dimensional error of powder-binder three-dimensional printing
CN109501272B (zh) 一种用于增材制造中悬垂特征结构的分层方法及其增材制造方法
Nirish et al. Suitability of metal additive manufacturing processes for part topology optimization–A comparative study
CN106600710B (zh) 一种几何网格模型邻接拓扑关联的层切多连通域构建方法
Kudelski et al. Comparison of cost, material and time usage in FDM and SLS 3D printing methods
WO2019047926A1 (zh) 一种砂型自适应梯度打印的成形方法
Islam et al. Comparison of dimensional accuracies of stereolithography and powder binder printing
Onuh et al. Improving stereolithography part accuracy for industrial applications
CN113910600A (zh) 一种制备高精度3d打印产品的方法
JP2004124201A (ja) 金属粉末光造形方法
CN114918370A (zh) 一种适用于增减材制造自适应切片的砂型成型方法
Teja et al. 3D Printing of complex structures: Case study of Eiffel Tower
CN105478765A (zh) 一种基于金属3d打印球形粉末的紧密堆积的配粉方法
CN117521171A (zh) 一种3d打印粉床颗粒粒径分布模型的构建方法
Cho et al. Methods for distributed design and fabrication of parts with local composition control
Singh et al. Investigations for statistically controlled rapid casting solution of low brass alloys using three dimensional printing
CN114571732A (zh) 一种适用于复杂曲面类零件的3d打印分层方法
Singh Process capability study of rapid casting solution for aluminium alloys using three dimensional printing
Pham et al. The RapidTool process: technical capabilities and applications
Rock et al. A New SFF process for functional part rapid prototyping and manufacturing: freeform powder molding
US12017408B2 (en) Method of manufacturing resin formed product having a leather grain
CN117103679B (zh) 一种高精度3d打印装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant