CN113906087B - 一种用于燃料电池膜的组合物及其制备方法 - Google Patents

一种用于燃料电池膜的组合物及其制备方法 Download PDF

Info

Publication number
CN113906087B
CN113906087B CN202080039443.5A CN202080039443A CN113906087B CN 113906087 B CN113906087 B CN 113906087B CN 202080039443 A CN202080039443 A CN 202080039443A CN 113906087 B CN113906087 B CN 113906087B
Authority
CN
China
Prior art keywords
nafion
pnc
nanocellulose
polydopamine
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080039443.5A
Other languages
English (en)
Other versions
CN113906087A (zh
Inventor
K·尚穆加纳坦
F·拉姆
A·K·勒雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Council of Scientific and Industrial Research CSIR
Original Assignee
Council of Scientific and Industrial Research CSIR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Council of Scientific and Industrial Research CSIR filed Critical Council of Scientific and Industrial Research CSIR
Publication of CN113906087A publication Critical patent/CN113906087A/zh
Application granted granted Critical
Publication of CN113906087B publication Critical patent/CN113906087B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种用于燃料电池膜的组合物及其制备方法。特别地,本发明涉及热机械和化学稳定的聚合物电解质膜,其通过使用多官能聚多巴胺和机械上坚固的纳米纤维素制备而不损害质子电导率。

Description

一种用于燃料电池膜的组合物及其制备方法
技术领域
本发明涉及用于燃料电池膜的组合物及其制备方法。特别地,本发明涉及热-机械和化学稳定的聚合物电解质膜。更特别地,本发明涉及通过使用多官能聚多巴胺和机械上坚固的纳米纤维素增强聚合物电解质膜的热-机械和化学稳定性。本发明还涉及制备所述聚合物电解质膜的方法。本发明开发的膜可应用于燃料电池、电池用固体电解质膜和其它电化学装置领域。
背景技术
聚合物电解质膜Nafion是磺化四氟乙烯基含氟聚合物-共聚物。四氟乙烯(Teflon)骨架上用磺酸盐基团封端的全氟乙烯基醚基团的存在导致Nafion的一流离子特性。已知Nafion作为质子交换膜(PEM)燃料电池的质子导体。Nafion可被制造成具有各种不同的阳离子电导率。Nafion由于其特性而具有广泛的应用。Nafion被用于燃料电池、电化学装置、氯碱生产、金属离子回收、水电解、电镀、金属的表面处理、电池、传感器、Donnan透析槽、药物释放、气体干燥或增湿、以及用于精细化学品生产的超强酸催化中。Nafion还经常被引用作为许多领域中的理论潜能(即,迄今未测试)。
现今,燃料电池由于其从氢有效地产生清洁能源的潜力而受到关注。已知Nafion通过允许氢离子传输同时阻止电子传导而作为用于质子交换膜(PEM)燃料电池的膜。但是,燃料电池中的操作条件可能导致全氟磺酸离聚物的自由基引发的降解。自由基可在过渡金属阳离子或热的存在下通过过氧化氢裂解(由氧的两电子还原产生)而生成。自由基产生的第二途径是分别在低电流和高电流下的氢或氧渗透(crossover)。气体渗透导致在同一Pt电极(阴极或阳极)上存在氢和氧,并最终导致自由基生成。伴随该化学稳定性问题,Nafion还具有在高温下的热机械稳定性的问题,并且机械性能例如弹性模量和拉伸强度在接近80℃时开始急剧下降。
为了增强质子电导率和机械稳定性,已进行一些尝试来使用不同复合材料生产Nafion复合膜。由R.Kumar、C.Xu、K.Scott发表于期刊“RSC Advances 2(2012)8777-8782”的标题为“用于聚合物电解质燃料电池的氧化石墨/Nafion复合膜”的文章中报道了GO基Nafion复合膜表现出在80℃下较高的质子电导率和增强的机械稳定性,但没有提供关于膜的热-机械性能和化学稳定性的任何信息。
由H.Y.Li、Y.L.Liu发表于期刊“J.Mater.Chem.A,2(2014)37833793”的标题为“用于燃料电池中的高性能质子交换膜的Nafion-官能化电纺聚(偏二氟乙烯)(PVDF)纳米纤维”的文章报道的PVDF/Nafion复合膜显示出良好的质子电导率和机械稳定性,但是该方法复杂,涉及静电纺丝以制备纳米纤维。
由G.P.Jiang、J.Zhang等人发表于期刊“J.Power Sources 273(2015)697-706”的标题为“用于低温聚合物电解质燃料电池的细菌纳米纤维素/Nafion复合膜”的文章报道了细菌纤维素(BC)与Nafion共混以制造BC/Nafion纳米复合膜。但是,在30℃和100%的相对湿度(RH)下,BC/Nafion纳米复合膜(1:9质量比)的质子电导率略低于Nafion。
因此,考虑到迄今报道的现有技术的缺点,本发明的发明人意识到开发表现出热-机械以及化学稳定性,同时质子电导率增加的Nafion复合膜的迫切需要。
本发明的目的
因此,本发明的主要目的在于,提供具有增强的质子电导率的的化学和热-机械稳定的聚合物电解质膜,其消除了迄今报道的现有技术的缺点。
本发明的另一个目的在于提供一种新型聚合物电解质膜,其包含具有聚多巴胺涂覆的纳米纤维素的Nafion。
本发明的又另一个目的在于提供一种用于燃料电池膜的组合物及其制备方法。
本发明的再另一个目的在于提供一种用于制备所开发的聚合物电解质膜的方法。
本发明所用缩略词
PDA 聚多巴胺
PNC 聚多巴胺涂覆的纳米纤维素
PNC/Nafion 聚多巴胺涂覆的纳米纤维素和Nafion的复合膜
CNF 纳米纤维素纤维
DI 去离子
IEC 离子交换容量
IPA 异丙醇
EtOH 乙醇
发明内容
本发明涉及一种聚多巴胺涂覆纳米纤维素与Nafion的新型复合膜及其制备方法。
在本发明的一个实施方案中,提供了含有Nafion和聚多巴胺涂覆的纳米纤维素的热-机械和化学稳定的聚合物电解质膜,其中所述稳定性取决于Nafion中PNC的浓度。纳米纤维素纤维上的聚多巴胺的氧化聚合产生PNC,并且通过溶液共混将PNC进一步掺入Nafion得到PNC/Nafion,一种复合聚合物电解质膜。
在本发明的另一个实施方案中,提供了一种用于制备复合聚合物电解质膜PNC/Nafion的方法。用于制备PNC/Nafion膜的方法包括三个步骤,其包括A)制备棉碎布纳米纤维素;B)制备聚多巴胺涂覆的纳米纤维素(PNC);C)制备PNC/Nafion膜溶液并浇铸膜。图12以图画方式描述了该方法。
用于涂覆在纤维素纳米纤维上的聚多巴胺基于纳米纤维素干重在~10-12重量%的范围内。
附图说明
图1:a)NC的TEM图像,和b)CNF和PNC的WAXS谱。
图2:再铸和Nafion复合膜的吸水率和离子交换容量。
图3:a)Nafion复合膜的应力-应变曲线,和b)在一定温度范围内复合膜的模量的变化。
图4:在恒定载荷下复合膜的尺寸稳定性及其回复性,a)和b)在30℃和60℃下随时间的蠕变柔量;c)和d)在30℃和60℃下Jmax和Jres值的比较。
图5:再铸和Nafion复合膜的膜降解测试前后的a)离子交换容量和b)拉伸强度的比较。
图6:膜降解的ATR-FTIR分析,a)基于峰下面积的定量分析,b)和c)定性分析。
图7:a)、b)经过降解测试的纯和复合膜的19FCP MAS固态NMR谱比较,和c)它们的定量稳定性。
图8:a)在100%相对湿度下,不同温度下再铸Nafion和Nafion复合膜的质子电导率,b)显示在30℃-100℃下质子电导率值的差异。
图9:聚多巴胺和纳米纤维素纤维对Nafion的a)质子电导率和b)机械和化学稳定性的作用。
图10:再铸Nafion和3重量%PNC/Nafion膜的长期化学稳定性,a)拉伸强度,和b)19F CP MAS固态NMR,和c)19F CP MAS固态NMR中降解易感峰(-81ppm)的强度比。
图11:在60℃和80% RH下,再铸Nafion和PNC-Nafion复合膜的H2/O2单电池PEFC性能。
图12:图12以图画方式表示本发明的方法。
具体实施方式
应当理解,本发明的附图、方案和描述已被简化以阐明与清楚理解本发明相关的要素。下文将结合附图和方案提供详细描述。
本发明提供了使用多官能聚多巴胺和机械上坚固的纳米纤维素与Nafion增强聚合物电解质膜的化学和热-机械稳定性,其中所述稳定性取决于Nafion中的聚多巴胺涂覆的纳米纤维素(PNC)的浓度。Nafion中3重量%的聚多巴胺涂覆的纳米纤维素(PNC)浓度导致较高的化学、热-机械和机械稳定性,并具有较高的质子电导率。纳米纤维素纤维上的聚多巴胺氧化聚合产生PNC,并且通过溶液共混将PNC进一步掺入Nafion产生复合聚合物电解质膜PNC/Nafion。
本发明还提供了一种用于制备复合聚合物电解质膜PNC/Nafion的方法。用于制备PNC/Nafion膜的方法包括以下步骤:A)制备棉碎布纳米纤维素;B)制备聚多巴胺(PDA);C)聚多巴胺涂覆的纳米纤维素(PNC);D)制备PDA/Nafion、CNF/Nafion和PNC/Nafion膜溶液并浇铸膜。图12以图画方式描述了该过程。
更特别地,用于制备聚多巴胺涂覆的纳米纤维素(PNC)/Nafion复合膜的方法包括以下步骤:
a)通过用10%氢氧化钠溶液和随后用去离子水[DI]处理干净的棉碎布块,用醋酸盐缓冲液和1.5wt%次氯酸钠漂白获得的棉碎布,随后精制并研磨以获得棉碎布纳米纤维素来制备棉碎布纳米纤维素(CNF);
b)通过在70-90℃下搅拌20-30小时将盐酸多巴胺单体0.5-2mg/mL分散在tris缓冲溶液中并冻干以获得聚多巴胺(PDA)来制备聚多巴胺(PDA);
c)通过在25℃以500rpm的速度搅拌10-12小时将步骤[a]制备的2mg/mL纳米纤维素(CNF)分散在pH 8.5的tris缓冲溶液中,并超声浴15-20分钟;随后以1:4至1:1范围内的多巴胺:NC的比率向分散的NC溶液添加盐酸多巴胺单体,并在70-90℃下搅拌20-30小时,随后冻干获得的物质以获得聚多巴胺涂覆的纳米纤维素(PNC)来制备聚多巴胺涂覆的纳米纤维素(PNC);
d)通过将Nafion膜切成小片,并通过在25-30℃范围内的温度和500rpm的速度下搅拌将其溶解于24:1(v/v)的异丙醇和乙醇的混合物中来制备Nafion溶液;
e)通过在25-30℃范围内的温度和500rpm速度下伴随周期性超声浴搅拌2-3小时在24:1(v/v)的异丙醇和乙醇混合物中搅拌和超声处理来制备从上述步骤[a]、[b]和[c]获得的CNF或PDA或PNC的均匀分散体,随后将预分散的CNF或PDA或PNC溶液加入到根据步骤[d]获得的预溶解的Nafion溶液中,并通过在30℃的温度和500rpm的速度下涡旋混合和搅拌充分混合,将溶液脱气并在玻璃培养皿中浇铸以提供3重量%CNF/Nafion或3重量%PDA/Nafion或3-7.5重量%PNC/Nafion膜,其中所有膜的厚度在干燥条件下在5个随机位置测量并观察到为40-55μm。
纤维素是一种大量可得的生物聚合物,具有高机械强度,并且可容易地通过化学或机械处理从废料(例如甘蔗渣、棉碎布和木材或剑麻纤维)中提取。更特别地,在优选实施方案中,商业来源获得的棉碎布被用作纳米纤维素来源。已知纳米纤维素作为增强刚性填料增强聚合物的机械性能。
该方法中用于涂覆纳米纤维素的聚合物选自聚多巴胺、合成黑色素和其他含有邻苯二酚基团的聚合物。更特别地,在优选实施方案中,聚多巴胺被用于涂覆过程。
方法中使用的聚合物电解质膜选自Nafion、聚苯并咪唑(PBI)、聚醚醚酮(PEEK)、聚四氟乙烯(PTFE)、质子离子液体和质子有机离子塑料晶体。更特别地,在优选实施方案中,使用Nafion和聚苯并咪唑(PBI)。在特别优选的实施方案中,Nafion被用作聚合物电解质膜。
用于纤维素纳米纤维上的涂层的聚多巴胺在纳米纤维素干重的~10-12重量%的范围内。Nafion复合膜中3重量%和7.5重量%的PNC的结果表明Nafion中PNC的浓度起到关键的作用。PNC/Nafion复合膜的化学、机械和热-机械稳定性随PNC的浓度而变化。存在3-7.5wt%PNC时,PNC/Nafion复合膜的质子电导率提高15-76%。
通过各种温度下显示出的储能模量50-200%的提高,与PNC的共混显示了对Nafion的热机械性能的影响。PNC网络还增强了恒定应力下Nafion的尺寸稳定性。3重量%PNC的复合膜显示出蠕变柔量的大幅下降,在30℃和60℃下Jmax分别降低约39.9%和46.5%。通过19F CP MAS固态NMR、FTIR和拉伸测试确定,聚多巴胺的自由基清除特性也有助于显著增强Nafion的化学稳定性。在90℃和100% RH下使用3重量%PNC复合膜实现~125mS cm-1的质子电导率,表明PNC/Nafion复合膜可用于聚合物电解质膜燃料电池(PEMFCs)的潜力。即使在较低的吸水率下,质子电导率的保持可归因于通过存在于膜中的聚多巴胺的质子跳跃。
Nafion中1重量%至7.5重量%范围的不同的聚多巴胺涂覆的纳米纤维素(PNC)浓度的结果表明,3重量%聚多巴胺涂覆的纳米纤维素(PNC)的复合膜具有高度热-机械和化学稳定性。因此,Nafion中3重量%和7.5重量%浓度的聚多巴胺涂覆的纤维素(PNC)的结果作为代表性结果在附图中进行描述。
通过进行不同的测试,Nafion中PNC的存在和Nafion中PNC的重量%的总体影响以及温度对具有不同重量%浓度的复合膜的影响总结如下:
1.结构表征:通过超摩擦微研磨从棉碎布获得的NC纤维具有20-50nm范围的直径和超过1μm的长度,如图1a所示。然后通过多巴胺的原位聚合用聚多巴胺涂覆这些纤维。NC和PNC的广角X射线散射(WAXS)显示聚多巴胺改性后纤维素的结晶形态没有显著变化,如图1b所示。
2.吸水率:发现复合膜的吸水率略低于再铸Nafion膜。再铸Nafion具有37%的吸水率,而3重量%和7.5重量%PNC/Nafion分别表现出35.2%和30.5%的吸水率,如图2所示。类似地,再铸Nafion的IEC值(0.61meqg-1)高于3重量%PNC/Nafion(0.59meqg-1)和7.5重量%PNC/Nafion复合膜(0.47meqg-1),如图2所示。
3.机械和热机械稳定性:如图3a所示,添加3重量%的PNC将Nafion的拉伸强度从11.5MPa提高到15.15MPa。将PNC浓度进一步增加至7.5重量%导致拉伸强度略微降低至13MPa,该值仍高于再铸Nafion。
图3b示出PNC的掺入对Nafion的热机械性能具有非常显著的影响,其导致其在升高的温度下储能模量提高200%。3重量%PNC/Nafion复合膜在30℃下的储能模量为约540MPa,其比再铸Nafion的储能模量高约50%。图3b示出了复合膜的模量在一定温度范围内的变化。3重量%PNC/Nafion复合膜在较高的60℃和90℃下分别显示比再铸Nafion高70%和96%的模量。随着PNC浓度提高,增强明显更高,并且7.5重量%PNC/Nafion复合膜表现出755MPa(30℃)、555MPa(60℃)和310(90℃)的模量,这比相应温度下的再铸Nafion高约150、170和200%。较高温度下增强的膜储能模量可在通过热压组装催化剂层过程中提供热机械稳定性,并有助于在大规模生产中保持膜电极组件(MEA)的质量。
4.膜的尺寸稳定性:蠕变柔量越低,膜的尺寸稳定性越高。图4a和4b显示,再铸Nafion表现出最高的蠕变柔量,其随着PNC负载显著降低。最大柔量(恒定负载下的最大应变/应力)表示为Jmax,残余柔量(Jres)是去除负载后膜中残余应变的量度。Jres值越低表示残余应变越低且尺寸稳定性越高。图4c和4d显示再铸Nafion在30℃和60℃下分别具有6.62x10-2和1.16的Jmax。3重量%复合膜的Jmax在30℃和60℃下降低至3.98×10-2和0.62,其比再铸Nafion低约39.9%和46.5%。3重量%PNC复合膜的Jres相对于再铸Nafion也显示出相似的趋势。7.5重量%PNC复合膜显示出蠕变柔量的大幅下降,在30℃和60℃下Jmax分别降低69.5%和61.6%,而Jres在30℃和60℃下分别下降69.1%和56.7%。这清楚地说明了PNC对膜的尺寸稳定性的影响。
5.化学稳定性测试/膜降解测试:燃料电池中的操作条件导致自由基的产生。这些自由基与Nafion的主链或侧链基团反应并降解膜。为了检验复合聚合物电解质膜用于真实燃料电池应用的适用性,在70℃下,将这些膜在Fenton试剂(10ppm Fe2+,3wt%H2O2)中浸泡7天。Fenton试剂测试条件是提供苛性化学条件(自由基的产生)和评价膜的氧化/化学稳定性的模拟环境。膜的性能通过一些重要测试(即离子交换容量测量和拉伸测试)确定。与再铸Nafion相比,纯净膜的离子交换容量大幅下降,但复合膜显示出高的IEC值保留,如图5a所示。再铸Nafion的IEC值下降62.3%(从0.61至0.23meq/g),而3重量%和7.5重量%复合膜的IEC相对于它们的原始值分别显示出约16.9%和8.5%的非常轻度的降低。图5b显示了再铸Nafion膜的拉伸强度从11.5MPa降低至8.5MPa,其比化学稳定性测试前的值低约26.1%,而复合膜的拉伸强度仅降低4-8%。
膜的定量和定性分析通过ATR-FTIR方法测定,其中Nafion的主链和侧链在不同波数下显示不同的带。如图6所示,降解测试前后FTIR带下面积的比率表明膜的化学稳定性。接近于1的值意味着更高的化学稳定性。带1+2和4对应于骨架和侧链,而带5仅对应于Nafion中的侧链。再铸Nafion膜具有0.92的比率(对于CF2伸缩带,带1+2),而对于3重量%膜,其比率为0.99(带1+2),这意味着与再铸Nafion膜相比,CF2基团在3%复合膜中保留的更好。
对于再铸Nafion和3重量%复合膜,Fenton测试之前和之后的-C-F带(带4)的峰下面积比率分别为0.76和0.92。在对应于Nafion骨架的侧链的条带5的情况中,与具有比率~1的3重量%复合膜相比,再铸Nafion具有仅为0.86的比率。CF2和CF伸缩带对应于Nafion的骨架和侧链,其中对于再铸Nafion,这些带的曲线下面积显著降低。但是,3重量%复合膜的曲线下面积对于被分析的所有带几乎保留。-C-H键的存在表明骨架也发生了降解。图6b是降解测试后再铸Nafion的ATR-FTIR谱,其显示在2850cm-1和2930cm-1处的两个带,对应于-C-H键的对称和不对称伸缩。这证实了Nafion侧链和骨架的化学降解。图6c显示3重量%复合膜没有此类C-H伸缩带,这表明PNC针对自由基攻击的化学稳定作用。因此,3重量%复合膜提供优于再铸Nafion的化学稳定性。
在化学稳定性测试之前和之后,再铸和复合Nafion膜的19F交叉极化魔角旋转(19FCP MAS)固态NMR也支持ATR-FTIR分析。两种膜都显示Nafion的特征峰,其中Nafion的侧链在-81ppm(OCF2和CF3)、-117ppm(SF2)和-144(CF)处显示峰,如图7a和7b所示。Nafion的骨架峰由于(CF2)n出现于-121ppm处并且由于主链中的CF键出现于-138.5ppm处。化学稳定性测试后所有带的强度均降低。如FTIR谱中所见,Nafion的-CF键易于降解,其在19F NMR谱中具有非常低的强度。因此,通过获取降解测试之前和之后的侧链峰的强度比来量化降解。如图7c所示,Nafion中-81ppm(OCF2和CF3)、-117ppm(SF2)和-144(CF)的强度比分别降低至0.56、0.69和0.82,而3重量%复合膜对这些峰显示更高的强度比,0.78、0.83和0.90。化学稳定性可归因于PDA可清除化学稳定性测试期间产生的自由基的事实。因此,复合膜对自由基攻击表现出增强的耐化学性。
6.质子电导率:在100% RH下,再铸Nafion和PNC/Nafion复合膜在不同温度下的质子电导率如图8a所示。有趣的是,在100% RH下,3重量%PNC/Nafion复合膜在30℃至90℃的范围内显示出比原始Nafion更高的质子电导率。纳米纤维素纤维有助于在Nafion膜内形成渗透网络且纳米纤维素上的PDA涂层有助于质子电导率,因为存在多个可通过从一个氢键键合位点跳跃到另一个氢键键合位点来促进质子转移的醌、羟基和胺基。再铸Nafion在30、60和90℃下分别具有46.6、77.6和94.6mS/cm的质子电导率,对于3重量%PNC/Nafion复合膜,其分别增加至66.4、94.9和125.3mS/cm。3重量%的PNC使Nafion的质子电导率在30、60和90℃的温度下分别提高了42%、22.5%和32%。在80℃和100% RH下3重量%PNC复合膜的质子电导率(122mS/cm)与类似条件下的先前复合膜相当或更高。
质子电导率随着PNC浓度的升高而降低,低于再铸Nafion的质子电导率。因此,PNC/Nafion相对于其他Nafion复合膜显示出相似或更好的质子电导率,同时也提供了更高的尺寸稳定性(较小的蠕变)和优异的化学稳定性。
7.PDA对改善性能的作用:为了阐明纤维素上的PDA涂层的作用,进行了一系列实验。制备另外的膜并测量它们的质子电导率(图9a)。与再铸Nafion相比,所有膜中3重量%PNC/Nafion膜具有最高的质子电导率。3重量%CNF/Nafion膜的质子电导率与Nafion类似,而在Nafion中单独添加聚多巴胺导致质子电导率的轻微降低。具有长纤维几何形状的纳米纤维素有助于形成质子传导通道,其中在其表面上的聚多巴胺涂层有助于通过Grotthuss机制的质子传导。因此,纳米纤维素提供的机械稳定性和PDA中的质子传导基团彼此互补得到更好的质子电导率,这不能通过单独添加它们实现。为了确定PDA对化学稳定性的作用,通过在Fenton测试之前和之后测量这两种复合膜的机械性能进行比较。3重量%PNC/Nafion膜显示较高的拉伸强度(15.15MPa),且在化学稳定性测试后仅降低~4%。相比于PNC/Nafion复合膜,3重量%CNF/Nafion复合膜显示出较低的拉伸强度(12.1MPa),并降低至8.6Ma(~28.7%)。这表明与3重量%CNF/Nafion复合膜相比,3wt%PNC膜具有更高的机械和化学稳定性。值得注意的是,与CNF相比,Nafion中具有单独聚多巴胺导致较小的强化效果,但它有助于在Fenton测试后保持机械稳定性,这清楚地显示了聚多巴胺在增强化学稳定性中的作用(图9b)。因此,CNF增强了机械稳定性,而PDA增强了化学稳定性。PDA涂覆的CNF有助于实现增强的机械和化学稳定性,及高的质子电导率。
8.再铸Nafion和3wt%PNC/Nafion膜的长期化学稳定性:此外,为了检验长期稳定性,再铸Nafion和3重量%PNC/Nafion复合膜已经在70℃下于Fenton试剂中浸泡40天。这是用于化学稳定性的模拟和加速测试条件,其意味着可以预期膜在燃料电池的正常操作条件下表现好得多。3重量%PNC/Nafion复合膜的机械性能明显保持(拉伸强度仅下降5.6%,从15.15MPa下降至14.3MPa),而再铸Nafion的拉伸强度在40天后从11.5MPa大幅下降至3.04MPa(图10a)。
这证实Nafion在活性自由基的存在下经历显著的化学降解,而PNC掺杂膜具有增强的化学稳定性。这也通过固态19F NMR分析得到证实。与再铸Nafion相比,3重量%PNC/Nafion的接近-81ppm(OCF2和CF3)、-117ppm(SF2)和-144(CF)的峰强度降低得较少(图10b)。选择接近-81ppm(OCF2和CF3)的峰,发现这是对Fenton试剂暴露最敏感的基团。再铸Nafion在Fenton测试之前和之后的峰强度比率为0.56(暴露7天后),暴露40天后降低至0.39。另一方面,3重量%PNC/Nafion暴露7天后的该比率为0.78,其在暴露40天后降低至0.62(图10c)。这表明在70℃下超过40天的加速自由基产生条件下,3重量%PNC/Nafion膜比再铸Nafion更稳定。
9.PEMFC性能评价:再铸Nafion和PNC-Nafion复合膜的单电池PEMFC极化和功率密度数据如图11所示。再铸Nafion和PNC-Nafion复合膜均表现出约0.9V的开路电压(OCV)。包含PNC-Nafion复合膜的PEMFC在300mA/cm2的负载电流密度下表现出124mW/cm2的峰值功率密度。另一方面,在类似操作条件下,再铸Nafion在233mA/cm2的负载电流密度下仅提供102mW/cm2的峰值功率密度,如图11所示。复合膜的更高PEMFC性能归因于其相比于再铸Nafion膜的更优异的质子电导率。
通用信息
透射电子显微镜分析:为了测定纤维直径,在DI水中将研磨的纤维素悬浮液稀释至0.05mg/mL。将稀释的分散体超声处理30分钟并滴铸在碳涂覆的铜网格上。网格在25-30℃下通风橱中干燥24-36h以除去任何痕量水。在200kV的加速电压下对干燥的网格进行TEM分析。
广角X射线散射(WAXS)分析:进行WAXS以测定NC和PNC的晶体性质。在40kV和30mA下使用具有旋转阳极铜X射线源(波长的室温(25℃)RigakuMicroMax-007HF进行这些分析。所获得的2-D散射图案减去背景并使用Rigaku 2DP软件转换为1-D分布图。散射强度相对于2θ作图以观察峰。
FTIR和NMR分析:在NC、PNC、Nafion和它们的复合膜上进行衰减全反射-傅立叶变换红外(ATR-FTIR)光谱分析,以鉴定在NC上涂覆PDA后以及向Nafion加入PNC后的任何化学变化。Perkin Elmer的FTIR仪器(Spectrum GX Q5000IR)用于使用衰减全反射模式进行这些分析。使用4cm-1分辨率进行16次扫描。
进行化学稳定性测试之前和之后,在再铸Nafion和它们的复合膜上完成19F交叉极化魔角旋转(CPMAS)固态NMR分析,以分析化学稳定性测试的定性和定量效果。通过膜的低温破碎,随后在70℃下真空烘箱中干燥24小时制备粉末样品。使用配有11.74T超导磁体和4mm X/F/H魔角旋转探头的Bruker Avance III 500MHz WB分光仪在14kHz下完成分析。使用用于F的单一90°激发脉冲和用于质子的去耦90°脉冲进行氟高功率去耦实验(HPDEC)。使用的单一激发脉冲长度对于F为2.5μs。用于HPDEC的质子去耦脉冲长度为4.8μs。扫描32次,每个样品延迟时间在1-5s内变化。
吸水率评价:在60℃下评价再铸Nafion和Nafion复合膜的吸水率。简言之,将真空干燥的膜浸泡在DI水中48小时。膜在水中浸泡之前和之后称重,并分别表示为Wdry和Wsoaked。48小时后,从DI水中取出浸泡过的膜并轻轻置于纸巾之间以除去表面水。吸水率百分比计算如下:
离子交换容量测试:离子交换容量(IEC)是1g干膜中存在的离子的毫当量的量度。将膜浸泡在饱和NaCl溶液中24小时以释放H+离子。24小时后,使用酚酞作为指示剂,用0.01N NaOH滴定浸泡膜的溶液。使用如下计算公式计算IEC:
其中,Wdry是膜的干重,VNaOH是用于滴定的氢氧化钠的体积,CNaOH是NaOH的浓度。
质子电导率评价:使用具有Pt电极的四探针电导率电池(Bekktech,BT-112),通过电化学阻抗谱(EIS)技术在不同的温度和相对湿度(RH)下测量膜的面内质子电导率,使用湿度箱(Espec,SH-242)控制温度和RH。使用恒电位仪(Biologic,SP-150)在1MHz至1Hz的频率范围内获得EIS谱,并使用以下公式,从对应于X-轴截距的的电阻值计算膜的质子电导率;
其中,σ是膜的质子电导率,单位为S cm-1;L=0.425cm,两个铂电极之间的固定距离;R是膜电阻,单位为Ω;W是样品的宽度,单位为cm;以及T是膜的厚度,单位为cm。
热机械性能:在动态热机械分析仪(DMA),TA仪器,USA(RSA3)上测试Nafion复合膜的蠕变、拉伸和热机械性能。进行拉伸测量以记录应力-应变性能。拉伸试验的应变速率为0.1mm/s。在蠕变实验中,将样品保持在恒力(5N)下并针对时间记录应变。60分钟后,移除力并允许样品恢复。使用以下公式计算最大柔量(Jmax)和剩余柔量(Jres):
Jmax=(Smax)/应力和Jres=(St)/应力
其中,Smax和St是移除力后的最大应变和时间t时的应变,应力单位为MPa。使用动态温度斜坡测试评价作为温度的函数的复合膜的模量。在0.05%应变和1Hz频率下,使用2℃/min的温度斜坡记录作为20℃至120℃温度的函数的储能模量。
化学稳定性测试:按照之前报道的方法制备Fenton试剂。简言之,在3重量%H2O2中制备10ppm Fe2+离子溶液。将膜浸入该溶液中并在70℃下保持7或40天。7或40天后,将膜转移到热DI水中洗涤,然后在真空烘箱中干燥。干燥的膜用于拉伸测试、吸水率、IEC测量、FTIR和19F固态NMR分析。
实施例
以下实施例仅作为说明给出,因此不应解释为以任何方式限制本发明的范围。
材料来源:
盐酸多巴胺采购自Sigma Aldrich。氢氧化钠(NaOH)、次氯酸钠(NaOCl)、乙酸、通常称为TRIS缓冲液的三(羟甲基)氨基甲烷、异丙醇(IPA)、乙醇(EtOH)、七水硫酸亚铁(FeSO4.7H2O)、酚酞和氯化钠(NaCI)购自Chemlab,印度。30%过氧化氢购自Merck,印度。Nafion 211膜采购自Ion Power Inc.,USA。所有化学品按原样使用,未经过进一步纯化。
实施例-1:棉碎布纳米纤维素(CNF)的制备
采用组合化学和机械处理从棉碎布中提取纳米纤维素。将棉碎布切成小块并用去离子(DI)水清洗。在60-80℃下用10% NaOH处理清洗过的棉碎布块,然后用DI水洗涤。NaOH处理后,通过使用等比例醋酸盐缓冲液(27g NaOH和75mL冰醋酸,使用蒸馏水稀释至1000mL)和1.5重量%次氯酸钠漂白棉碎布。重复该过程多次(取决于纤维的柔软度),直到纤维变成白色,并随后用DI水洗涤。用瓦利打浆机将漂白的棉碎布精制成细浆,然后用超摩擦微研磨机(Supermass Collider,Masuko,Japan)研磨。当在静态和旋转磨轮之间经受高剪切力时,微纤维纸浆被去纤为纳米纤维(用TEM证实)。最后,根据需要冻干棉碎布纳米纤维素(CNF)浆以获得多孔气凝胶。
实施例-2:聚多巴胺(PDA)和聚多巴胺涂覆的纳米纤维素(PNC)的制备
通过在25℃下搅拌12小时将1.0g NC(2mg/mL)分散于500mL的10mM tris缓冲溶液中,并超声处理20分钟。向充分分散的NC溶液中添加1.0g(2mg/mL)盐酸多巴胺单体(与NC的重量比为1:1)。80℃下搅拌反应混合物24小时。通过添加DI水淬灭反应。过滤淬灭的反应混合物并用DI水洗涤直至获得无色上清液。将滤液再分散于DI水中并冻干以供进一步使用。以类似的方式,通过将多巴胺(2mg/mL)分散于水中,随后添加tris缓冲液以制备10mM溶液来合成聚多巴胺颗粒。
实施例-3:Nafion及其复合膜的制备
将Nafion膜切成小片并溶解于24:1(v/v)的IPA和EtOH混合物。通过在相似的溶剂混合物中搅拌和超声也获得CNFs或PDA或PNCs的均匀分散体。将具有~51mg PNC或PDA或CNF的分散体添加至Nafion溶液(含有1.65g Nafion),以产生3重量%的Nafion复合材料。类似地,通过向预溶解的1.57g Nafion中添加127.5mg预分散的PNC制备7.5wt%PNC/Nafion复合材料。作为对照样品,我们还通过将1.7g Nafion溶解于IPA:EtOH共溶剂混合物中制备Nafion溶液。所有溶液在40℃真空下脱气以去除滞留空气。将脱气的溶液倒入膜浇铸培养皿中,并在环境条件下使溶剂逐渐蒸发36h,然后在真空下蒸发24h以去除任何残留的溶剂。所有膜的厚度在干燥条件下在5个随机位置测量并发现为~40-55μm,并将干燥的膜用于进一步表征。
优点:
·使用聚多巴胺涂覆的纳米纤维素(PNC)增强Nafion的热机械和化学稳定性而不损害质子电导率。
·3重量%PNC显著增强Nafion膜的热机械稳定性、化学稳定性,以及它们的质子电导率也显著提高。
·增强的热机械性能可导致在电池和其它电化学装置中的应用。
·Nafion墨水也用于制备燃料电池用催化剂墨水制剂。Nafion中PNC的存在可导致碳负载Pt催化剂和Nafion之间更好的界面,从而有效利用催化剂。

Claims (5)

1.一种用于燃料电池膜的组合物,其中所述组合物包含Nafion和3-7.5重量%的聚多巴胺涂覆的纤维素纳米纤维,其中所述纤维素纳米纤维上的聚多巴胺涂层为纤维素纳米纤维重量的10-12重量%。
2.如权利要求1所述的组合物,其中所述组合物在质子电导率、热稳定性、机械稳定性和化学稳定性中表现出15-76%的提高。
3.如权利要求1所述的组合物,其中所述组合物包含3重量%的聚多巴胺涂覆的纤维素纳米纤维。
4.一种制备如权利要求1所述的用于燃料电池膜的组合物的方法,其中所述方法包括以下步骤:
[a]通过用10%氢氧化钠溶液和随后用去离子水[DI]处理干净的棉碎布块,用醋酸盐缓冲液和1.5重量%次氯酸钠漂白获得的棉碎布,随后使用瓦利打浆机精制为细浆,随后在超摩擦微研磨机中研磨以获得棉碎布纳米纤维素来制备棉碎布纳米纤维素(CNF);
[b]通过在70-90℃下搅拌20-30小时将盐酸多巴胺单体0.5-2mg/mL分散在tris缓冲溶液中并冻干以获得聚多巴胺(PDA)来制备聚多巴胺(PDA);
[c]通过将步骤[a]制备的2mg/mL纳米纤维素(CNF)在25℃下以500rpm的速度搅拌10-12小时分散在pH 8.5的tris缓冲溶液中,并超声浴处理15-20分钟;随后以1:4至1:1范围内的多巴胺:纳米纤维素的比率向分散的纳米纤维素溶液添加盐酸多巴胺单体,并在70-90℃下搅拌20-30小时,随后冻干获得的物质以获得聚多巴胺涂覆的纳米纤维素(PNC)来制备聚多巴胺涂覆的纳米纤维素(PNC);
[d]通过将Nafion膜切成小片,并通过25-30℃范围内的温度和500rpm的速度下搅拌将其溶解于24:1(v/v)的异丙醇和乙醇的混合物中来制备Nafion溶液;
[e]通过在25-30℃范围内的温度和500rpm速度下伴随周期性超声浴搅拌2-3小时在24:1(v/v)的异丙醇和乙醇混合物中搅拌和超声处理来制备从上述步骤[b]和[c]获得的PDA或PNC的均匀分散体,随后将预分散的PDA或PNC溶液添加到从步骤[d]获得的预溶解的Nafion溶液中,并通过在30℃的温度和500rpm的速度下涡旋混合和搅拌充分混合,将溶液脱气并在玻璃培养皿中浇铸以提供包含3-7.5重量%的聚多巴胺涂覆的纤维素纳米纤维的PNC/Nafion膜,其中所有膜的厚度在干燥条件下在5个随机位置测量并观察到为40-55μm。
5.如权利要求1所述的组合物,其中所述燃料电池膜的厚度为40-55μm。
CN202080039443.5A 2019-05-27 2020-05-26 一种用于燃料电池膜的组合物及其制备方法 Active CN113906087B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201911020868 2019-05-27
IN201911020868 2019-05-27
PCT/IN2020/050470 WO2020240585A1 (en) 2019-05-27 2020-05-26 A composition for fuel cell membranes and a process for the preparation thereof

Publications (2)

Publication Number Publication Date
CN113906087A CN113906087A (zh) 2022-01-07
CN113906087B true CN113906087B (zh) 2024-01-19

Family

ID=73553600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080039443.5A Active CN113906087B (zh) 2019-05-27 2020-05-26 一种用于燃料电池膜的组合物及其制备方法

Country Status (6)

Country Link
US (1) US20220311037A1 (zh)
EP (1) EP3976695A1 (zh)
JP (1) JP2022550655A (zh)
CN (1) CN113906087B (zh)
CA (1) CA3141780A1 (zh)
WO (1) WO2020240585A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970589B2 (en) 2021-01-29 2024-04-30 Uop Llc Composite proton conductive membranes
CN113604817B (zh) * 2021-08-06 2023-05-30 阳光氢能科技有限公司 一种pem水电解膜电极、其制备方法及其应用
CN113603937B (zh) * 2021-08-10 2022-06-14 复旦大学 纤维素气凝胶-明胶固态电解质薄膜材料、超组装方法、瞬态Zn-MnO2二次电池系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842931A (zh) * 2007-08-29 2010-09-22 科学与工业研究委员会 可用于聚合物电解质燃料电池的质子传导聚合物电解质膜
CN102738494A (zh) * 2012-05-18 2012-10-17 东华大学 细菌纤维素/Nafion质子交换混合膜及制备和应用
CN103620843A (zh) * 2011-06-16 2014-03-05 Lg化学株式会社 用于燃料电池的聚合物电解质膜以及包括该聚合物电解质膜的膜电极组件和燃料电池
CN103715438A (zh) * 2013-12-27 2014-04-09 郑州大学 一种纳米复合质子交换膜及其制备方法和应用
CN104530682A (zh) * 2015-01-16 2015-04-22 长春工业大学 纳米纤维素/磺化聚芳醚酮复合膜及其制备方法与应用
CN108285643A (zh) * 2017-10-19 2018-07-17 天津工业大学 一种纤维素纳米纤维/磺化聚醚砜质子交换膜及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI543201B (zh) * 2005-02-15 2016-07-21 東麗股份有限公司 高分子電解質成形體、高分子電解質零件、膜電極複合體及高分子電解質型燃料電池
KR102339036B1 (ko) * 2017-09-29 2021-12-13 코오롱인더스트리 주식회사 라디칼 분해 촉매, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 그리고 이를 포함하는 연료 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842931A (zh) * 2007-08-29 2010-09-22 科学与工业研究委员会 可用于聚合物电解质燃料电池的质子传导聚合物电解质膜
CN103620843A (zh) * 2011-06-16 2014-03-05 Lg化学株式会社 用于燃料电池的聚合物电解质膜以及包括该聚合物电解质膜的膜电极组件和燃料电池
CN102738494A (zh) * 2012-05-18 2012-10-17 东华大学 细菌纤维素/Nafion质子交换混合膜及制备和应用
CN103715438A (zh) * 2013-12-27 2014-04-09 郑州大学 一种纳米复合质子交换膜及其制备方法和应用
CN104530682A (zh) * 2015-01-16 2015-04-22 长春工业大学 纳米纤维素/磺化聚芳醚酮复合膜及其制备方法与应用
CN108285643A (zh) * 2017-10-19 2018-07-17 天津工业大学 一种纤维素纳米纤维/磺化聚醚砜质子交换膜及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gao-peng Jiang等.Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells.《Journal of Power Sources》.2014,697-706. *
Quan Xu等.Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator.《RSC Advances》.2012,第4卷7845-7850. *

Also Published As

Publication number Publication date
EP3976695A1 (en) 2022-04-06
CA3141780A1 (en) 2020-12-03
CN113906087A (zh) 2022-01-07
JP2022550655A (ja) 2022-12-05
US20220311037A1 (en) 2022-09-29
WO2020240585A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
CN113906087B (zh) 一种用于燃料电池膜的组合物及其制备方法
Bai et al. Poly (arylene piperidine) s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells
Sahin The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells
Park et al. Crosslinked poly (phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells
Ivanchev et al. Polymer membranes for fuel cells: manufacture, structure, modification, properties
He et al. Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells
Li et al. Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells
Zhu et al. Enhanced chemical durability of perfluorosulfonic acid membranes through incorporation of terephthalic acid as radical scavenger
Binsu et al. Studies on N-methylene phosphonic chitosan/poly (vinyl alcohol) composite proton-exchange membrane
Tseng et al. Interpenetrating network-forming sulfonated poly (vinyl alcohol) proton exchange membranes for direct methanol fuel cell applications
Wang et al. Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application
Gong et al. Novel anion-conducting interpenetrating polymer network of quaternized polysulfone and poly (vinyl alcohol) for alkaline fuel cells
Ram et al. Enhancing thermomechanical and chemical stability of polymer electrolyte membranes using polydopamine coated nanocellulose
Mohanty et al. Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: synthesis, characterization and microbial fuel cell performance
Huo et al. A highly stable reinforced PEM assisted by resveratrol and polydopamine-treated PTFE
Chang et al. The effect of electric field on the oxidative degradation of polybenzimidazole membranes using electro-Fenton test
Sood et al. Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes
Devrim Preparation and testing of Nafion/titanium dioxide nanocomposite membrane electrode assembly by ultrasonic coating technique
Zhang et al. Impregnation of imidazole functionalized polyhedral oligomeric silsesquioxane in polymer electrolyte membrane for elevated temperature fuel cells
Zhang et al. Preparation of sulfonated polysulfone/sulfonated titanium dioxide hybrid membranes for DMFC applications
Ban et al. High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity
Wang et al. Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane
Huang et al. Mitigation of chemical degradation in perfluorosulfonic acid proton exchange membrane using regenerable hindered amine functionalized carbon quantum dots
Mu'min et al. Electrospun phosphonated poly (pentafluorostyrene) nanofibers as a reinforcement of Nafion membranes for fuel cell application
Samsudin et al. Poly (vinyl alcohol)-Based Anion Exchange Membranes for Alkaline Direct Ethanol Fuel Cells.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant