CN113894170B - Double-roller driving extrusion forming device and process for hollow screw rod - Google Patents

Double-roller driving extrusion forming device and process for hollow screw rod Download PDF

Info

Publication number
CN113894170B
CN113894170B CN202111192354.7A CN202111192354A CN113894170B CN 113894170 B CN113894170 B CN 113894170B CN 202111192354 A CN202111192354 A CN 202111192354A CN 113894170 B CN113894170 B CN 113894170B
Authority
CN
China
Prior art keywords
hollow
blank
roller
screw rod
hollow screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111192354.7A
Other languages
Chinese (zh)
Other versions
CN113894170A (en
Inventor
王宝雨
王佳鹏
李沛艾
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202111192354.7A priority Critical patent/CN113894170B/en
Publication of CN113894170A publication Critical patent/CN113894170A/en
Application granted granted Critical
Publication of CN113894170B publication Critical patent/CN113894170B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/14Making other products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/211Press driving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/21Presses specially adapted for extruding metal
    • B21C23/212Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/32Lubrication of metal being extruded or of dies, or the like, e.g. physical state of lubricant, location where lubricant is applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C33/00Feeding extrusion presses with metal to be extruded ; Loading the dummy block

Abstract

The invention relates to the technical field of metal plastic forming process and equipment, and provides a hollow screw rod double-roller driving extrusion forming device and a process, wherein the device comprises a die, a charging barrel, a guide barrel and two rollers; a spiral cavity is formed in the mold, and the linear hollow blank is formed into a hollow screw rod; the feeding barrel is used for feeding; two rollers are used for providing axial pressure for extrusion forming; the guide cylinder is used for improving the roundness of the hollow blank extruded by the roller. The process comprises the steps of softening a hollow blank, and lubricating a die and a guide cylinder; setting the inclination angle, the distance between rollers and the torque of the rollers; and (3) penetrating the blank into the charging barrel to be bitten by the roller, enabling the blank to rotate around the axis of the blank at a constant speed under the driving of the roller, enabling the blank to enter a die cavity through the guide barrel forwards at a constant speed, and performing extrusion forming to obtain a finished hollow screw rod. The invention has simple structure, easy manufacture, high forming precision and wide application prospect, and can continuously form hollow screw rods with any length.

Description

Double-roller driving extrusion forming device and process for hollow screw rod
Technical Field
The invention relates to the technical field of metal plastic forming process and equipment, in particular to a hollow screw rod double-roller driving extrusion forming device and process.
Background
The screw rod is in a spatial spiral rod-shaped structure, each vertical section of the screw rod along the axial direction is a complete circle, and the screw rod is commonly used for manufacturing a rotor of liquid conveying equipment such as a screw pump and the like, and the rotor and the stator are mutually meshed to form a sealed cavity to push liquid to advance so as to convey the liquid.
At present, the screw rod is mostly of a solid structure, and under the same flow and pressure, the requirement of a rotor made of the hollow screw rod on equipment power is lower than that of the rotor made of the solid screw rod, and meanwhile, the pressure on stator rubber is lower, so that the service life of the screw pump is prolonged.
In the prior art, the outer contour of a hollow screw rod is generally manufactured by adopting a cyclone milling machine, and is similar to the rotary turning of a numerical control lathe; the internal cavity of the hollow screw rod is difficult to process, and at present, two methods exist: firstly, cutting a hollow screw rod into two parts, and processing an internal cavity; and secondly, the inner material is corroded little by adopting a die with the same profile as the inner cavity and adopting the electrochemical corrosion principle. The method has the following defects: too high cost, low efficiency, too long time consumption and serious material waste.
Meanwhile, the extrusion forming of the traditional hollow screw rod is limited by the space of an extrusion chamber, and only a hollow screw rod with a certain length can be formed, so that a new extrusion forming process of the hollow screw rod is necessary to be formulated.
Disclosure of Invention
The invention aims to overcome at least one of the defects of the prior art, and provides a hollow screw rod double-roller driving extrusion forming device and a process, which have the advantages of simple structure, easy manufacture, capability of continuously forming hollow screw rods with any length and higher forming precision.
The invention adopts the following technical scheme:
on one hand, the invention discloses a hollow screw rod double-roller driving extrusion forming device, which comprises a die, a charging barrel, a guide barrel and two rollers, wherein the charging barrel is arranged on the die;
a spiral cavity is formed in the die, the shape contour of the spiral cavity is consistent with that of the hollow screw rod, and the spiral cavity is used for forming the linear hollow blank into the hollow screw rod; the feeding barrel is used for feeding the hollow blank; the two rollers are used for providing axial pressure for extrusion forming for the hollow blank; the guide cylinder is used for improving the roundness of the hollow blank extruded by the roller;
the hollow blank penetrates through the charging barrel, is shaped by the guide barrel under the driving of rolling friction force of the two rollers, and is extruded and formed into a hollow screw rod through the die.
Any one of the above possible implementation manners further provides an implementation manner, wherein two rollers are arranged between the charging barrel and the material guiding barrel, the two rollers are symmetrically distributed in the space around the hollow billet axis, and a connecting line of central points of the two rollers is perpendicularly intersected with the hollow billet axis; the included angles between the axes of the two rollers and the axis of the hollow blank are the same; the two rollers rotate in the same direction, for example, the rollers rotate along the counterclockwise direction from the feeding end, and the rotating angular speeds are the same.
Any one of the above possible implementation manners further provides an implementation manner, and the axes of the die, the material guiding cylinder, the material feeding cylinder and the hollow blank are all coincident.
Any of the possible implementations described above further provides an implementation in which the roll surface is knurled to increase the coefficient of friction.
Any of the possible implementations described above further provides an implementation in which the feed end of the roll is provided with a bite cone angle a, and the bite cone angle a is 3 ° to 10 °.
Any possible implementation manner described above further provides an implementation manner, and the feeding end of the mold is provided with a guide taper angle B for ensuring that the hollow blank smoothly enters the mold cavity.
Any one of the above possible implementation manners further provides an implementation manner, wherein an inner circular through hole with a taper is formed inside the material guiding cylinder, so that the roundness of the hollow blank extruded by the roller is improved.
In another aspect, the present invention provides a twin-roll driving extrusion forming process for a hollow screw rod, comprising:
s1, softening a hollow blank, and lubricating a die and a guide cylinder;
s2, setting the inclination angle, the roller distance and the roller torque of the roller; the inclination angle of the roller is the included angle between the axis of the roller and the axis of the hollow blank;
s3, penetrating the hollow blank into the charging barrel, and applying axial force to the hollow blank to enable the hollow blank to be bitten by the two rollers; the hollow blank is driven by two rollers to rotate around the axis of the hollow blank at a constant speed and move forwards at a constant speed, the hollow blank enters a die cavity after being shaped by a guide cylinder, and a finished product of the hollow screw rod is obtained by extrusion forming.
In any of the foregoing possible implementation manners, there is further provided an implementation manner that, in step S1, the softening process is performed on the hollow blank by annealing, and the hardness after the annealing process is not higher than 200HV.
In any of the above possible implementations, there is further provided an implementation that the material of the hollow blank is a metal material that can be used for cold plastic forming, and the material of the hollow blank includes stainless steel and copper.
In any of the above possible implementations, an implementation manner is further provided, and in step S2, the roller interval is set to ensure that there is enough friction between the roller and the hollow billet, and that no relative sliding occurs between the roller and the hollow billet.
In any of the possible implementations described above, there is further provided an implementation in which, in step S2, the torque of the rolls is set such that the metal blank is subjected to a stress level higher than its yield strength, so that the hollow blank is permanently plastically deformed.
In any one of the above possible implementation manners, there is further provided an implementation manner, in step S2, the corresponding parameter of the hollow screw rod and the roll inclination angle satisfy the following relation:
Figure BDA0003301679460000031
in the formula, alpha is a roll inclination angle, namely an acute angle formed by the roll axis and the blank axis; s is the screw pitch of the hollow screw rod; d is the diameter of the horizontal projection circle of the spiral line of the hollow screw rod.
In any of the above possible implementation manners, there is further provided an implementation manner, in step S2, the distance between the two rollers is such that the diameter of the inscribed circle sandwiched between the two rollers is smaller than the outer diameter of the blank.
Any one of the above possible implementation manners further provides an implementation manner that the reduction amount range of the hollow blank by the roller is as follows: 0.1mm < rolling reduction <0.5mm.
In any of the above possible implementations, there is further provided a computer program productIn one embodiment, the maximum diameter D of the hollow blank max <0.7R, R is the roll diameter. Experiments prove that when D is used max >At 0.7R, it is difficult for the roll to provide a sufficiently large frictional axial pressure.
The beneficial effects of the invention are as follows:
1. the invention can continuously form the hollow screw rod with any length, and solves the problem that the traditional hollow screw rod extrusion forming is limited by the space of an extrusion chamber and can only form the hollow screw rod with a certain length.
2. The invention has the advantages of high speed and higher efficiency for forming the hollow screw rod.
3. The extrusion force required by extrusion forming is shared by the two rollers, the stress state is good, the structure is simple, the equipment research and development difficulty is low, and the automatic production is easy to realize.
4. The invention has low requirements on the knowledge level and the personal skill of operators, is simple and easy to learn and is convenient to operate.
Drawings
Fig. 1 is a schematic structural view of a hollow screw rod twin-roll driving extrusion molding apparatus according to an embodiment of the present invention.
Fig. 2 is a schematic diagram illustrating the principle of extrusion in the embodiment.
Fig. 3 is a schematic view showing the structure of the knurled roller in the embodiment.
Fig. 4 is a schematic structural view of the mold in the example.
Fig. 5 is a schematic sectional view of the mold according to the embodiment along a symmetrical plane.
Fig. 6 is a schematic view showing a structure of a guide cylinder in the embodiment.
In the figure: 1. a mold; 2. a material guide cylinder; 3. rolling; 4. a hollow blank; 5. feeding into a charging barrel; A. the roll bite cone angle; B. a mold guide taper angle; C. (mold) helical cavity.
Detailed Description
Specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that technical features or combinations of technical features described in the following embodiments should not be considered as being isolated, and they may be combined with each other to achieve better technical effects. In the drawings of the embodiments described below, the same reference numerals appearing in the respective drawings denote the same features or components, and may be applied to different embodiments.
As shown in fig. 1 to 5, a hollow screw rod twin-roll driving extrusion forming device according to an embodiment of the present invention includes a die 1, a material guiding cylinder 2, a roller 3, a billet 4, and a material feeding cylinder 5; a cavity is formed in the die 1 and is used for forming the linear hollow blank 4 into a hollow screw rod; the charging barrel 5 is used for feeding the hollow blank 4; the two rollers 3 are used for providing axial pressure for extrusion forming for the hollow blank 4; the guide cylinder 5 is used for improving the roundness of the hollow blank 4 extruded by the roller 3.
In one specific embodiment, the axis of the die 1, the axis of the guide cylinder 2, the axis of the blank 4 and the axis of the charging cylinder 5 are coincident.
In a specific embodiment, the inclination angles of the two rollers 3 are the same, namely the included angle between the axis of the roller 3 and the axis of the hollow blank 4 is the same; the two rollers 3 rotate in the same direction and rotate along the anticlockwise direction from the feeding end, and the rotating angular speeds are the same.
In a preferred embodiment, as shown in fig. 3, the surface of the roller 3 is knurled to increase the friction coefficient.
In one embodiment, the feeding end of the roller 3 is provided with a biting taper angle A, and the biting taper angle A is 3-10 degrees.
In a specific embodiment, as shown in fig. 4, the feeding end of the mold 1 is provided with a guide taper angle B to ensure that the hollow blank 4 smoothly enters the mold cavity.
As shown in fig. 5, a spiral cavity C is formed in the mold 1, and the spiral cavity C is in accordance with the profile of the screw rod.
As shown in fig. 6, in a preferred embodiment, an inner circular through hole with a taper is provided inside the guide cylinder 2 for improving the roundness of the hollow billet 4 extruded by the rolls 3.
Without loss of generality, the following outer diameter
Figure BDA0003301679460000041
The invention discloses a double-roller driving extrusion forming process of a hollow screw rod, which is exemplified by a pure copper hollow screw rod with the wall thickness of 1.5mm, the length of 300mm and the screw pitch of 40 mm:
s1, feeding a pure copper pipe material, and carrying out annealing softening treatment, wherein the hardness of the pipe material after the softening treatment is reduced to below 200 HV; lubricating agents such as graphite, molybdenum disulfide and the like are adopted to fully lubricate the inner cavities of the die 1 and the guide cylinder 2;
s2, calculating to obtain an inclination angle alpha =52.6 degrees of the roller 3 according to the outer diameter D =15mm of the hollow screw rod and the screw pitch S =40mm, and setting the inclination angle, the torque and the distance between the rollers; the torque set by the roller 3 is required to ensure that the blank rotates smoothly; the set distance of the roller 3 ensures that the roller 3 and the hollow blank 4 have enough friction force and the roller 3 and the hollow blank 4 do not slide relatively; the roll torque and the roll gap can be determined experimentally or by calculation.
And S3, penetrating the softened pure copper hollow blank 4 into a charging barrel 5, applying axial force to the blank 4 to enable the blank to be bitten by a roller 3, enabling the hollow blank 4 to rotate around the axis of the hollow blank at a constant speed under the driving action of friction force generated by extrusion of the roller 3, enabling the hollow blank 4 to enter a spiral cavity C of the die 1 through a guide barrel 2 at a constant speed forward, and performing extrusion forming to obtain a finished hollow screw rod.
Further explanation regarding roll inclination angle determination:
according to the thread pitch S of the screw rod to be formed and the projection circle diameter D of the screw rod, the derivation is carried out by combining the formula (1), and the derivation process is as follows:
principle: principle of equal volume (volume V of propelling die) Into = extruded volume V Go out )
V Into =v Shaft ×T×S Number of
Wherein: v. of Shaft An axial feed rate; t time; s. the Cutting block The area of the cross section of the blank;
Figure BDA0003301679460000051
ω: a blank rotation angular velocity; s: pitch of the thread; d: the diameter of the blank;
V into =V Go out Namely:
Figure BDA0003301679460000052
in the prior art, omega is controlled by rotating a mold, and v is controlled by the push speed of a mandril Shaft . The two devices move to ensure the coordination of movement, which is troublesome.
In the application, omega and v are coordinately controlled by adjusting the inclination angle of the roller Shaft It is simple and convenient.
Figure BDA0003301679460000053
v Shaft =V sinα
Wherein V is the roller linear velocity; substituting into the above equation (2) results in equation (1), namely:
Figure BDA0003301679460000054
wherein alpha is the inclination angle of the roller, namely the included acute angle between the axis of the roller and the axis of the blank; s is the screw pitch of the hollow screw rod; d is the horizontal projection circle diameter of the spiral line of the hollow screw rod.
The roll inclination angles are coordinated to satisfy the axial feeding speed and the rotating speed of the screw rod. If the formula (1) is not satisfied, the formed screw rod is unbalanced in feeding and discharging, the screw pitch S is not up to standard, the cross section of the screw rod is not round, and the like.
The invention has simple structure, easy manufacture, high forming precision and wide application prospect, and can continuously form hollow screw rods with any length.
While several embodiments of the present invention have been presented herein, it will be appreciated by those skilled in the art that changes may be made to the embodiments herein without departing from the spirit of the invention. The above examples are merely illustrative and should not be taken as limiting the scope of the invention.

Claims (9)

1. A hollow screw rod double-roller driving extrusion forming device is characterized by comprising a die, a feeding barrel, a guide barrel and two rollers;
a spiral cavity is formed in the die and used for forming the hollow blank into a hollow screw rod; the feeding barrel is used for feeding the hollow blank; the two rollers are used for providing axial pressure for extrusion forming for the hollow blank; the guide cylinder is used for improving the roundness of the hollow blank extruded by the roller;
the hollow blank penetrates through the charging barrel, is shaped by the guide barrel under the driving of rolling friction force of the two rollers, and is extruded and formed into a hollow screw rod through the die; the rolling reduction range of the roller to the blank is as follows: 0.1mm < reduction <0.5mm;
the corresponding parameters of the hollow screw rod and the inclination angle of the roller satisfy the following relational expression:
Figure FDA0003842158730000011
in the formula, alpha is the inclination angle of the roller, namely the included acute angle between the axis of the roller and the axis of the blank; s is the screw pitch of the hollow screw rod; d is the diameter of the horizontal projection circle of the spiral line of the hollow screw rod.
2. A hollow screw twin roll driving extrusion forming apparatus as claimed in claim 1 wherein two said rolls are provided between said feed barrel and said guide barrel, said two said rolls being spatially symmetrically distributed about said hollow billet axis, a line connecting center points of said two said rolls perpendicularly intersecting said hollow billet axis; the included angles between the axes of the two rollers and the axis of the hollow blank are the same.
3. A hollow screw twin roll driven extrusion forming apparatus as claimed in claim 1 wherein the axes of the die, the guide cylinder, the feed cylinder and the hollow billet are all coincident.
4. A hollow screw twin roll driven extrusion forming apparatus as set forth in claim 1 wherein said roll surface is knurled.
5. A hollow screw twin roll driven extrusion apparatus as claimed in claim 1 wherein the feed end of the roll is provided with a cone angle of bite a of from 3 ° to 10 °.
6. A hollow screw twin roll driven extrusion forming apparatus as claimed in claim 1 wherein the feed end of the die is provided with a guide taper angle B for ensuring smooth entry of the hollow billet into the die cavity.
7. A hollow screw twin roll driving extrusion molding apparatus as set forth in claim 1, wherein said guide cylinder is provided with a tapered inner circular through hole inside.
8. A process for twin roll driven extrusion of hollow helical rods using apparatus as claimed in any one of claims 1 to 7, the process comprising:
s1, softening a hollow blank, and lubricating a die and a guide cylinder;
s2, setting the inclination angle, the roller interval and the roller torque of the roller; the inclination angle of the roller is the included angle between the axis of the roller and the axis of the hollow blank;
s3, the hollow blank is inserted into the charging barrel, and axial force is applied to the hollow blank to enable the hollow blank to be bitten by the two rollers; the hollow blank is driven by two rollers to rotate around the axis of the hollow blank at a constant speed and move forwards at a constant speed, the hollow blank enters a die cavity after being shaped by a guide cylinder, and a finished product of the hollow screw rod is obtained by extrusion forming.
9. A twin roll drive extrusion process for hollow screw rods as claimed in claim 8 wherein in step S1 the softening process is an annealing process of the hollow blank to a hardness of no more than 200HV.
CN202111192354.7A 2021-10-13 2021-10-13 Double-roller driving extrusion forming device and process for hollow screw rod Active CN113894170B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111192354.7A CN113894170B (en) 2021-10-13 2021-10-13 Double-roller driving extrusion forming device and process for hollow screw rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111192354.7A CN113894170B (en) 2021-10-13 2021-10-13 Double-roller driving extrusion forming device and process for hollow screw rod

Publications (2)

Publication Number Publication Date
CN113894170A CN113894170A (en) 2022-01-07
CN113894170B true CN113894170B (en) 2022-11-15

Family

ID=79191802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111192354.7A Active CN113894170B (en) 2021-10-13 2021-10-13 Double-roller driving extrusion forming device and process for hollow screw rod

Country Status (1)

Country Link
CN (1) CN113894170B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203076484U (en) * 2013-02-04 2013-07-24 烟台海歌机床有限公司 Double-stand-column curve roller material rotation type feeding device
CN104399834A (en) * 2014-12-01 2015-03-11 浙江科宇金属材料有限公司 Feeding device of copper bar straightening machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951493A (en) * 1988-05-30 1990-08-28 Siekmann Fittings Gmbh & Co. Kg Method and apparatus for making a spiral pipe
JP2003126916A (en) * 2001-10-18 2003-05-08 Sango Co Ltd Production method and equipment for pipe with helical groove
JP2004147988A (en) * 2002-10-31 2004-05-27 Toshiba Tec Corp Manufacturing method of mounting member, and manufacturing method of suction port body
DE102012100723B3 (en) * 2012-01-30 2013-05-29 Sieber Forming Solutions Gmbh Method and device for producing metallic components with a shank which is deformed along at least one helix along its longitudinal axis
CN105598214B (en) * 2015-12-21 2017-12-15 太原重工股份有限公司 A kind of straight roll-type tube straightener for pipe and method for aligning
CN209466640U (en) * 2018-12-10 2019-10-08 济南大学 A kind of novel rubber pipe conveying device
CN111229848B (en) * 2020-02-27 2021-05-18 北京科技大学 Rotary die extrusion forming process and device for hollow rotor with equal wall thickness of screw pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203076484U (en) * 2013-02-04 2013-07-24 烟台海歌机床有限公司 Double-stand-column curve roller material rotation type feeding device
CN104399834A (en) * 2014-12-01 2015-03-11 浙江科宇金属材料有限公司 Feeding device of copper bar straightening machine

Also Published As

Publication number Publication date
CN113894170A (en) 2022-01-07

Similar Documents

Publication Publication Date Title
CN111229848B (en) Rotary die extrusion forming process and device for hollow rotor with equal wall thickness of screw pump
CN111421009B (en) Screw pump rotor rotary die extrusion forming process and forming device
CN110102575B (en) Two-roller flexible skew rolling forming device and method for shaft parts
CN113941613B (en) Screw extrusion device and extrusion process for magnesium and magnesium alloy seamless pipe
CN113894171B (en) Screw rod three-roller driving extrusion forming device and process
CN113894172B (en) Screw rod double-roller driving extrusion forming device and process
CN106734301A (en) A kind of large-diameter thin-wall seamless pipe rotary extrusion forming method
CN113894170B (en) Double-roller driving extrusion forming device and process for hollow screw rod
CN113894173B (en) Hollow screw rod three-roller driving extrusion forming device and process
CN104985014A (en) Spiral-staircase extrusion die and application thereof
CN101642781B (en) Production method of water screen optimization trapezoidal internal threaded pipe of W-shaped flame boiler
CN101249506A (en) Posted sides seamless steel pipe roller milling method
CN111644466B (en) Rapid extrusion rolling reducing forming device and method for titanium alloy tube blank
CN1260018C (en) Hot-rolling perforation-cold-rolling forming method for hollow rock-drill steel
CN204182678U (en) A kind of four roller rotary rolling mill
CN113441675A (en) High-precision hydraulic cylinder barrel for radial cold forging and manufacturing method thereof
RU2461436C1 (en) Method of producing variable cross-section thin-wall shells
CN209272232U (en) A kind of device of short mandrel rod spinning large-diameter steel pipe
US2458110A (en) Apparatus for producing seamless tubes
CN218441786U (en) Different titanium pipe in excircle and rolling production line thereof
US2371125A (en) Method of making gun barbel
CN104307875B (en) A kind of four roller rotary rolling mill
KR102315642B1 (en) Method for mamufacturing tube having many-sided shape using cold rolling of pilger mill
CN103084520B (en) A kind of precision rolling manufacturing process of interior step cylindrical workpiece and device
CN104128372B (en) A kind of short route rolls the technique and equipment of minor diameter seamless steel tube with stationary core rod

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant