CN113886983A - 一种基于试验数据的航空发动机起动仿真模型修正方法 - Google Patents

一种基于试验数据的航空发动机起动仿真模型修正方法 Download PDF

Info

Publication number
CN113886983A
CN113886983A CN202111134909.2A CN202111134909A CN113886983A CN 113886983 A CN113886983 A CN 113886983A CN 202111134909 A CN202111134909 A CN 202111134909A CN 113886983 A CN113886983 A CN 113886983A
Authority
CN
China
Prior art keywords
starting
aircraft engine
target
simulation model
preset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111134909.2A
Other languages
English (en)
Other versions
CN113886983B (zh
Inventor
唐兰
郭海红
于涵
韩文俊
刘亚君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Shenyang Engine Research Institute
Original Assignee
AECC Shenyang Engine Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Shenyang Engine Research Institute filed Critical AECC Shenyang Engine Research Institute
Priority to CN202111134909.2A priority Critical patent/CN113886983B/zh
Publication of CN113886983A publication Critical patent/CN113886983A/zh
Application granted granted Critical
Publication of CN113886983B publication Critical patent/CN113886983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Testing Of Engines (AREA)

Abstract

本申请属于本申请属于航空发动机设计领域,特别涉及一种基于试验数据的航空发动机起动仿真模型修正方法,通过预设条件下计算修正值,在通过计算的修正值仿真计算得到目标条件下仿真修正值,并通过所得修正值计算目标条件下的转速,采用本发明可大大提升起动仿真精度,高、低压转速仿真与实际对比最大误差在6.9%之内,满足工程精度要求。

Description

一种基于试验数据的航空发动机起动仿真模型修正方法
技术领域
本申请属于航空发动机设计领域,特别涉及一种基于试验数据的航空发动机起动仿真模型修正方法。
背景技术
航空发动机起动数值模拟是发动机起动过程研究的重要手段,建立发动机起动仿真模型是非常必要的。起动仿真是助推航空发动机起动性能设计从“传统设计”到“预测设计”变革的重要手段,起动仿真能够为发动机及其控制系统的设计者提供许多信息,可大幅提高研发效率和质量,减少实物试验的反复,缩短研制周期,降低研制成本,有效加快实现我国航空发动机自主创新发展。
起动仿真模型能够以一定的精度计算出发动机在整个起动包线范围内的起动特性,可用于整个起动包线范围内的起动仿真和起动性能设计。因此,起动仿真模型的精度至关重要。目前已有的起动仿真模型基于理论基础建立,仿真精度与实际存在一定的差异。在已发表的文献中尚未发现提升起动仿真精度的具体指导方法,能查到的基于试验数据对起动仿真模型的修正技术更是寥寥无几,因此,有必要开展基于试验数据的通用的起动模型修正方法研究,提升起动仿真模型的仿真精度,为起动性能正向设计提供工具支撑。
发明内容
为了解决上述问题,本申请提供了一种基于试验数据的航空发动机起动仿真模型修正方法,航空发动机起动过程包含三个阶段,第Ⅰ阶段通过起动机带转,克服发动机阻力带动发动机主轴旋转加速,当所述发动机主轴转速达到第一预设值,发动机起动进入第Ⅱ阶段,发动机点火,涡轮产生功率,涡轮产生的功率和起动机的功率共同克服发动机阻力带动发动机主轴旋转加速,当所述发动机主轴转速达到第二预设值,发动机起动进入第Ⅲ阶段,起动机脱开,发动机依靠涡轮剩余功率克服发动机阻力带动发动机主轴旋转加速,当所述发动机主轴转速达到第三预设值,发动机起动成功,基于试验数据的航空发动机起动仿真模型修正方法,是由已知条件下计算位置条件下航空发动机的启动特性,其步骤包括,包括:
1、一种基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,包括:
步骤S1:在预设地面高度,预设大气温度下开展航空发动机起动试验,获取所述航空发动机瞬时转速n(t)、起动时间t,计算出修正值NXZ初始
步骤S2:将所述预设地面高度、所述预设大气温度、所述航空发动机瞬时转速n(t)及所述修正值NXZ初始输入起动仿真模型,通过所述起动仿真模型插值获得目标地面高度,目标大气温度下的修正值NXZ
步骤S3:通过所述起动仿真模型计算所述目标地面高度,目标大气温度下的涡轮功率NT、压气机功率NC,并基于所述修正值NXZ,计算克服所有阻力所消耗的功率Nz
步骤S4:基于所述仿真模型在所述目标地面高度,所述目标大气温度下的起动机功率NCT,涡轮功率NT、压气机功率NC、所述目标地面高度,所述目标大气温度下克服所有阻力所消耗的功率Nz计算所述目标地面高度、所述目标大气温度下的瞬时转速n(t) 目标的下一时刻转速n(t+Δt) 目标
优选的是,所述步骤S1中,在预设地面高度,预设大气温度下开展航空发动机起动试验,获取所述航空发动机瞬时转速n(t)、起动时间t,计算出修正值NXZ初始,具体为:
在预设地面高度、预设大气温度下,开展航空发动机起动试验,获取所述航空发动机瞬时转速n(t)、起动时间t,计算出修正值NXZ
Figure BDA0003281954640000021
其中,J为所述航空发动机主轴转动惯量,NCT(试验)为所述起动机功率, n(t)为试验时所述航空发动机的瞬时转速,n(t+Δt)为试验时所述航空发动机瞬时转速的下一瞬时速度,Δt为所述航空发动机n(t)与n(t+Δt)的时间间隔。
优选的是,其特征在于,所述步骤S3中的计算克服所有阻力所消耗的功率Nz,具体计算方法为:
Figure BDA0003281954640000022
其中ηm为所述航空发动机的主轴机械效率。
优选的是,其特征在于,所述步骤S4中所述的计算所述目标地面高度、所述目标大气温度下的瞬时转速n(t) 目标的下一时刻转速n(t+Δt) 目标,具体为:
Figure BDA0003281954640000031
其中
Figure BDA0003281954640000032
的初始值为0。
优选的是,其特征在于,步骤S1中修正值NXZ初始为多组不同预设地面高度、预设大气温度下计算所得,所述多组的数量不少于3个。
优选的是,其特征在于,步骤S1中绘制转速n(t)与时间t的曲线图,通过所述曲线图计算
Figure BDA0003281954640000033
的值。
优选的是,其特征在于,步骤S2中,将所述预设地面高度、所述预设大气温度、所述航空发动机瞬时转速n(t)及所述修正值NXZ通过矩阵形式输入起动仿真模型。
本申请的优点包括:采用本发明可大大提升起动仿真精度,以某型发动机地面起动仿真为例,采用本发明前,起动时间与实际相对误差为 69%,与实际严重不符,采用本发明后,起动时间与实际相对误差为1.4%,高、低压转速仿真与实际对比最大误差分别为6.9%和4.1%,满足工程精度要求。
附图说明
图1是地面起动过程扭矩与转速关系示意图;
图2海平面,不同大气温度下冷起动由于克服摩擦阻力与燃油附件阻力消耗功率;
图3采用本发明前后仿真结果对比示意图
具体实施方式
为使本申请实施的目的、技术方案和优点更加清楚,下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。下面通过参考附图描述的实施方式是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。下面结合附图对本申请的实施方式进行详细说明。
地面起动过程的扭矩与发动机转速的关系如图1所示,发动机在地面起动时发动机转子由起动机带动,燃烧室中尚未供油燃烧,发动机转子的加速是由起动机产生的功率大于压气机所需要的功率而产生的,达到一定的转速nig后,在燃烧室中喷入燃油并点燃,涡轮开始发出功率, nig称为点火转速,该阶段定义为第Ⅰ阶段。在涡轮前总温达到最大允许值且涡轮功率等于压气机功率时的最小转速即最小稳定工作转速np,称为平衡转速。在转速np下发动机本身不具备加速的潜力,只有当发动机转速超过转速np,涡轮功率大于压气机功率,才能依靠涡轮的剩余功率使发动机加速,此时起动机脱开,脱开时发动机转速nso称为脱开转速,该阶段定义为第Ⅱ阶段。起动机脱开后由发动机涡轮单独带动发动机转子加速至慢车转速nmc,该阶段定义为第Ⅲ阶段。
起动过程中的扭矩有:起动机扭矩、发动机涡轮扭矩、发动机阻力矩,净加速扭矩、发动机扭矩,具体定义为:
a)起动机扭矩MCT:起动机传到发动机主轴上的输出扭矩;
b)发动机涡轮扭矩MT:发动机点火成功后,涡轮发出功率产生的扭矩;
c)发动机阻力矩MZ:包括气动阻力矩MC、摩擦力矩Mmz和燃油附件阻力矩Mf
d)净加速扭矩:用于发动机转子加速的剩余扭矩,具体计算式为:
MCT+MT-MZ
e)发动机扭矩:发动机起动过程中自身的扭矩,在达到平衡转速前,
为负值,具体计算式为:MT-MZ
整个起动过程发动机转子的扭矩平衡方程为:
Figure BDA0003281954640000041
起动过程仿真的关键在于获得准确的扭矩特性,起动机扭矩特性可通过起动机扭矩测量试验获得,发动机涡轮扭矩和气动阻力矩可通过气动热力学公式计算。而摩擦阻力矩及燃滑油附件阻力矩虽然数值较小,但在低转速下该值所占的比例是不容忽视的,尤其在低温下滑油粘度变大,摩擦阻力矩增大。摩擦阻力矩与燃油附件阻力矩无法通过理论公式计算,并且很难单独地测量。
根据上式推导获得摩擦阻力矩与燃油附件阻力矩之和为:
Figure BDA0003281954640000051
离散情况下,转换成功率计算,上式转换为
Figure BDA0003281954640000052
以海平面,不同大气温度下的冷起动的试验数据为例,给出低转速下由于克服摩擦阻力与燃油附件阻力消耗功率给定方法。热起动、高原起动处理方法与海平面下的冷起动一致,不再赘述。
步骤S1:在预设地面高度(以海平面为例),预设大气温度下开展航空发动机起动试验,已知发动机主轴转动惯量J、起动机功率NCT(试验),获取所述航空发动机主轴物理转速n、起动时间t,发动机瞬时转速n(t),计算出修正值NXZ初始
Figure BDA0003281954640000053
其中,J为所述航空发动机主轴转动惯量,NCT(试验)为所述起动机功率, n(t)为试验时所述航空发动机的瞬时转速,n(t+Δt)为试验时所述航空发动机瞬时转速的下一瞬时速度,Δt为所述航空发动机n(t)与n(t+Δt)的时间间隔。
步骤S2:将所述预设地面高度、所述预设大气温度、所述航空发动机瞬时转速n(t)及所述修正值NXZ输入起动仿真模型,通过所述起动仿真模型插值获得目标地面高度,目标大气温度下的修正值NXZ,矩阵形式见表1,其中数据无量纲处理;
Figure BDA0003281954640000054
Figure BDA0003281954640000061
表1模型修正矩阵形式
步骤S3:已知起动机功率NCT(试验),通过所述仿真模型计算所述目标地面高度,目标大气温度下的涡轮功率NT、压气机功率NC,根据所述目标地面高度,所述目标大气温度下的所述修正值NXZ,计算克服所有阻力所消耗的功率Nz
Figure BDA0003281954640000062
其中ηm为所述航空发动机的主轴机械效率。
步骤S4:根据所述仿真模型在所述目标地面高度,所述目标大气温度下的起动机功率NCT,涡轮功率NT、压气机功率NC,所述目标地面高度,所述目标大气温度下Nz计算下一时刻转速,
Figure BDA0003281954640000063
其中
Figure BDA0003281954640000064
的初始值为0。
本发明给出了一种基于试验数据的航空发动机起动仿真模型修正方法,采用本发明可大大提升起动仿真精度。
以某型发动机地面起动仿真为例见图3,采用本发明前,起动时间与实际相对误差为69%,与实际严重不符,采用本发明后,起动时间与实际相对误差为1.4%,高、低压转速仿真与实际对比最大误差分别为6.9%和4.1%,满足工程精度要求。

Claims (7)

1.一种基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,包括:
步骤S1:在预设地面高度,预设大气温度下开展航空发动机起动试验,获取所述航空发动机瞬时转速n(t)、起动时间t,计算出修正值NXZ初始
步骤S2:将所述预设地面高度、所述预设大气温度、所述航空发动机瞬时转速n(t)及所述修正值NXZ初始输入起动仿真模型,通过所述起动仿真模型插值获得目标地面高度,目标大气温度下的修正值NXZ
步骤S3:通过所述起动仿真模型计算所述目标地面高度,目标大气温度下的涡轮功率NT、压气机功率NC,并基于所述修正值NXZ,计算克服所有阻力所消耗的功率Nz
步骤S4:基于所述仿真模型在所述目标地面高度,所述目标大气温度下的起动机功率NCT,涡轮功率NT、压气机功率NC、所述目标地面高度,所述目标大气温度下克服所有阻力所消耗的功率Nz计算所述目标地面高度、所述目标大气温度下的瞬时转速n(t) 目标的下一时刻转速n(t+Δt) 目标
2.如权利要求1所述的基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,所述步骤S1中,在预设地面高度,预设大气温度下开展航空发动机起动试验,获取所述航空发动机瞬时转速n(t)、起动时间t,计算出修正值NXZ初始,具体为:
在预设地面高度、预设大气温度下,开展航空发动机起动试验,获取所述航空发动机瞬时转速n(t)、起动时间t,计算出修正值NXZ
Figure FDA0003281954630000011
其中,J为所述航空发动机主轴转动惯量,NCT(试验)为所述起动机功率,n(t)为试验时所述航空发动机的瞬时转速,n(t+Δt)为试验时所述航空发动机瞬时转速的下一瞬时速度,Δt为所述航空发动机n(t)与n(t+Δt)的时间间隔。
3.如权利要求1所述的基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,所述步骤S3中的计算克服所有阻力所消耗的功率Nz,具体计算方法为:
Figure FDA0003281954630000012
其中ηm为所述航空发动机的主轴机械效率。
4.如权利要求1所述的基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,所述步骤S4中所述的计算所述目标地面高度、所述目标大气温度下的瞬时转速n(t) 目标的下一时刻转速n(t+Δt) 目标,具体为:
Figure FDA0003281954630000021
其中
Figure FDA0003281954630000022
的初始值为0。
5.如权利要求1所述的基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,步骤S1中修正值NXZ初始为多组不同预设地面高度、预设大气温度下计算所得,所述多组的数量不少于3个。
6.如权利要求2所述的基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,步骤S1中绘制转速n(t)与时间t的曲线图,通过所述曲线图计算
Figure FDA0003281954630000023
的值。
7.如权利要求1所述的基于试验数据的航空发动机起动仿真模型修正方法,其特征在于,步骤S2中,将所述预设地面高度、所述预设大气温度、所述航空发动机瞬时转速n(t)及所述修正值NXZ通过矩阵形式输入起动仿真模型。
CN202111134909.2A 2021-09-27 2021-09-27 一种基于试验数据的航空发动机起动仿真模型修正方法 Active CN113886983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111134909.2A CN113886983B (zh) 2021-09-27 2021-09-27 一种基于试验数据的航空发动机起动仿真模型修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111134909.2A CN113886983B (zh) 2021-09-27 2021-09-27 一种基于试验数据的航空发动机起动仿真模型修正方法

Publications (2)

Publication Number Publication Date
CN113886983A true CN113886983A (zh) 2022-01-04
CN113886983B CN113886983B (zh) 2022-09-20

Family

ID=79006964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111134909.2A Active CN113886983B (zh) 2021-09-27 2021-09-27 一种基于试验数据的航空发动机起动仿真模型修正方法

Country Status (1)

Country Link
CN (1) CN113886983B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114547917A (zh) * 2022-04-25 2022-05-27 国家超级计算天津中心 仿真预测方法、装置、设备及存储介质
CN114935419A (zh) * 2022-05-19 2022-08-23 中国航发沈阳发动机研究所 一种装机条件下航空发动机起动机功率特性评估方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376445A (zh) * 2018-11-07 2019-02-22 北京动力机械研究所 燃气涡轮发动机起动建模方法
CN111734535A (zh) * 2020-07-17 2020-10-02 中国航发沈阳发动机研究所 一种航空发动机高原起动供油修正方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109376445A (zh) * 2018-11-07 2019-02-22 北京动力机械研究所 燃气涡轮发动机起动建模方法
CN111734535A (zh) * 2020-07-17 2020-10-02 中国航发沈阳发动机研究所 一种航空发动机高原起动供油修正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜莹莹: "航空发动机起动过程数值仿真技术概述", 《成都航空职业技术学院学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114547917A (zh) * 2022-04-25 2022-05-27 国家超级计算天津中心 仿真预测方法、装置、设备及存储介质
CN114935419A (zh) * 2022-05-19 2022-08-23 中国航发沈阳发动机研究所 一种装机条件下航空发动机起动机功率特性评估方法
CN114935419B (zh) * 2022-05-19 2023-09-22 中国航发沈阳发动机研究所 一种装机条件下航空发动机起动机功率特性评估方法

Also Published As

Publication number Publication date
CN113886983B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN113886983B (zh) 一种基于试验数据的航空发动机起动仿真模型修正方法
US20230145878A1 (en) Methods for power transfer in cryogenic fuel applications
US8352149B2 (en) System and method for providing gas turbine engine output torque sensor validation and sensor backup using a speed sensor
CN114034489B (zh) 一种燃气涡轮发动机地面起动加速时间计算方法
US7290385B2 (en) Approach to extending life of gas turbine engine
EP2105817A2 (en) Transient performance data phase compensation system and method
CN113266474B (zh) 一种加载条件下的航空发动机起动阻力矩测量方法
Sexton A method to control turbofan engine starting by varying compressor surge valve bleed
EP2993309B1 (en) Engine-induced aircraft cabin resonance reduction system and method
CN113357017B (zh) 一种航空发动机加速过程转速控制方法
CN113266473B (zh) 一种不加载条件下的航空发动机起动阻力矩测量方法
EP1462634B1 (en) Acceleration control in multispool gas turbine engine
CN113432785B (zh) 一种不加载条件下的航空发动机转动惯量测量方法
WO2024120432A1 (zh) 一种舰用燃气轮机起动性能模型建模方法
EP3633167A1 (en) Corrected fuel-flow-rate-based control for variable geometry mechanisms
CN113447201B (zh) 一种加载条件下的航空发动机转动惯量测量方法
CN113323732B (zh) 一种航空发动机带转起动过程中涡轮功的测量方法
EP2971651B1 (en) Methods for operating a gas turbine engine
CN115688554B (zh) 一种涡轴发动机旋转部件低转速特性外推及修正方法
Tan et al. Turbo engine starting control law design and process simulation
Fuksman et al. Modeling of a Turbofan Engine Start Using a High Fidelity Aero-Thermodynamic Simulation
US20230304446A1 (en) System and method for use with gas turbine engine
EP4365430A1 (en) Compressor boost control for aircraft engine
US11873765B1 (en) Flywheel powered barring engine for gas turbine engine
CN118008584A (zh) 一种用于航空发动机起动转速变化率修正的设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant