CN113876968B - Mmp9响应的t1/t2切换型mr纳米探针及其制备方法和应用 - Google Patents
Mmp9响应的t1/t2切换型mr纳米探针及其制备方法和应用 Download PDFInfo
- Publication number
- CN113876968B CN113876968B CN202111274004.5A CN202111274004A CN113876968B CN 113876968 B CN113876968 B CN 113876968B CN 202111274004 A CN202111274004 A CN 202111274004A CN 113876968 B CN113876968 B CN 113876968B
- Authority
- CN
- China
- Prior art keywords
- mmp
- mmp9
- peg
- pix
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/12—Macromolecular compounds
- A61K49/126—Linear polymers, e.g. dextran, inulin, PEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/69—Boron compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/05—Dipeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/14—Peptides, e.g. proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1857—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
- A61K49/186—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1866—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了一种MMP9响应的T1/T2切换型MR纳米探针及其制备方法和应用,该方法通过自组装的方式将USPIO与疏水性药物一起包封在两亲性聚合物(PEG‑MMP)2‑PIX中,制备出MMP9响应的T1/T2切换型MR纳米探针。所述探针可特异性地在肿瘤微环境MMP9条件下进行T2造影信号到T1造影信号的切换,降低背景信号的干扰,从而具有高灵敏度和特异性的成像对比性能,实现对肿瘤部位的高质量成像;同时,所述探针能够可视化肿瘤内的MMP9活性,通过MR信号对MMP9进行半定量分析,从而可达到辅助预测疾病预后和转归的目的;此外,本发明探针通过结合荧光增敏剂PIX和包封疏水性药物,能够在实现T2造影剂向T1造影剂转变的双模态成像的同时,实现肿瘤特异性给药及光热协同治疗的作用。
Description
技术领域
本发明属于纳米材料和分子影像技术领域,具体涉及MMP9响应的T1/T2切换型MR纳米探针及其制备方法和应用。
背景技术
随着科技的发展,磁共振成像(MRI)已成为临床检测疾病的一种有效手段。磁共振成像是一种具有无创性、高时空分辨率的成像技术,在临床医学中具有广阔的应用前景。
近年来,MRI造影剂的发展极大地促进了MRI在肿瘤诊断领域的应用,在肿瘤微环境中,酶、pH、氧化还原态等均与正常组织不同,利用这些生物信息,人们设计出众多响应性单模态MRI造影剂,以提高其对肿瘤组织的选择性,进一步提高诊断的准确性。然而,虽然这类造影剂可以特异性增强肿瘤部位的对比效果,但仍会产生背景信号,影响诊断的准确性。因此,为了进一步提高造影剂的选择性和敏感性,T1/T2切换型造影剂的开发研究得到了本领域的广泛关注。例如,有研究报道了一种imotif-DNA辅助的pH响应型氧化铁纳米簇组装(RIA),在肿瘤微环境的酸性pH环境下可触发RIA的分解,导致其弛豫率急剧下降(R2/R1),从而将RIA从T2转为T1造影剂。但其仍存在DNA在生物体内的稳定性差、易降解的问题。
肿瘤微环境中的基质金属蛋白酶(MMPs)是一组具有许多共同生化性质的可降解细胞外基质的锌依赖蛋白内切酶家族,因其对辅因子如Ca2+和Zn2+等金属离子的需求而得名。MMPs能够调控细胞凋亡、血管生成和肿瘤生长、转移等多个方面,在多种肿瘤中过表达,而在健康组织中低表达或不表达,具有高选择性和催化活性,已被广泛用作肿瘤生物标志物和治疗靶点,并被认为是最有前途的内源性触发器。MMPs中的MMP9在肿瘤组织中的表达水平,与多种癌症包括乳腺癌、结肠癌和胃癌等的恶性程度都具相关性。此外,大量的医学文献已经证明癌症患者血清中MMP9与肿瘤的侵袭关系密切,可以用于肿瘤的诊断、鉴别、以及预后评估。
综上所述,研发一种可对肿瘤微环境MMP9半定量分析的T1/T2切换型MR纳米探针对疾病诊断,以及了解疾病的预后和转归具有重要意义。
发明内容
本发明公开了一种MMP9响应的T1/T2切换型MR纳米探针及其制备方法和应用,该纳米探针可特异性在肿瘤部位进行T2造影信号到T1造影信号的切换,且能可视化肿瘤内MMP9活性,以解决现有技术中MR纳米探针灵敏度不高、特异性和稳定性差且不能实现对肿瘤微环境MMP9半定量分析的问题。
为解决上述问题,本发明首先提供一种MMP9响应的T1/T2切换型MR纳米探针的制备方法,包括以下步骤:
S1,以PEG2000-NH2、MMP9敏感多肽Fmoc-GPLGL为原料,加入缩合剂进行反应,反应液经沉淀法洗涤、干燥后,于哌啶/DMF混合溶液中搅拌反应,分离得到PEG-MMP;
S2,以所述的PEG-MMP和光敏剂PIX为原料,加入缩合剂进行反应,分离得到两亲性聚合物(PEG-MMP)2-PIX;
S3,向溶剂中加入油酸铁、油酸和油醇,升温至100℃,负压下去除残留水,氩气条件下进行高温反应;反应液冷却至室温后用沉淀法洗涤,最终复溶于环己烷溶液中,得到均一的纳米胶束溶液,即超微超顺磁性氧化铁纳米粒USPIO溶液,备用;
S4,向溶剂中加入疏水性药物、步骤S2得到的(PEG-MMP)2-PIX、步骤S3得到的USPIO,进行旋转蒸发反应,反应结束后加入PBS溶液复溶、振荡,得到所述的MMP9响应的T1/T2切换型MR纳米探针溶液;
其中,步骤S4中,所述的(PEG-MMP)2-PIX、USPIO和疏水性药物的质量比为10:(0.5~2):1;优选地,(PEG-MMP)2-PIX、USPIO和疏水性药物的质量比为10:1:1。
优选地,步骤S1中,所述的PEG2000-NH2和Fmoc-GPLGL的用量比为1g:678mg;步骤S2中,所述的PEG-MMP和PIX的用量比为532mg:141mg。
优选地,步骤S1中,所述的哌啶/DMF混合溶液中哌啶和DMF的体积比为1:4。
优选地,步骤S4中,所述的溶剂为二氯甲烷/甲醇混合溶液,其中二氯甲烷和甲醇的体积比为1:1。
优选地,所述的疏水性药物包括阿霉素DOX、紫杉醇、硼替佐米。
优选地,所述步骤S1和S2中的缩合剂为Cl-HOBT和DIC组合,或EDC和NHS组合,两个步骤中所使用的缩合剂组合相同。
本发明另一方面还提供了前面任一所述的制备方法制备的MMP9响应的T1/T2切换型MR纳米探针及其用途,例如在制备造影用组合物中的用途,所述造影用组合物包括:所述的MMP9响应的T1/T2切换型MR纳米探针;以及药学上可接受的辅剂。
本发明另一方面还提供了所述的MMP9响应的T1/T2切换型MR纳米探针和造影用组合物在制备磁共振成像剂中的应用。
相对于现有技术,本发明的有益效果是:
1、本发明提供的MMP9响应的T1/T2切换型MR纳米探针,可特异性地在肿瘤部位进行T2造影信号到T1造影信号的切换,降低背景信号的干扰,从而具有高灵敏度和特异性的成像对比性能,实现对肿瘤部位的高质量成像。
2、本发明提供的MMP9响应的T1/T2切换型MR纳米探针通过PEG修饰MMP9敏感肽从而实现肿瘤特异性识别,同时,能够可视化肿瘤内MMP9活性,通过MR信号对MMP9进行半定量分析,从而可达到辅助预测疾病预后和转归的目的。
3、本发明制备方法简单,通过自组装的方式将USPIO(T1造影剂)与疏水性药物一起包封在两亲性聚合物(PEG-MMP)2-PIX中,最终制得MMP9响应的T1/T2切换型MR纳米探针,其中荧光增敏剂PIX可加强SPIO的光热效应,疏水性药物起到特异的治疗作用,使得本发明在实现T2造影剂向T1造影剂转变的双模态成像的同时,可实现肿瘤特异性给药及光热协同治疗作用。
附图说明
图1为实施例1制备PMP@USPIO/DOX纳米探针的流程图;
图2为实施例1制备的PMP@USPIO/DOX在有无MMP9条件下的形貌和粒径;
a为正常环境下PMP@USPIO/DOX纳米探针的TEM图;
b为在MMP9条件下PMP@USPIO/DOX纳米探针的TEM图;
c为正常环境下PMP@USPIO/DOX纳米探针的DLS数据;
d为在MMP9条件下PMP@USPIO/DOX纳米探针的DLS数据;
图3表示实施例1制备的PMP@USPIO/DOX纳米探针在体外不同浓度MMP9条件下的T1和T2信号强度图;
a为不同浓度MMP9条件下PMP@USPIO/DOX纳米探针的T1WI和T2WI图;
b为不同浓度MMP9条件下PMP@USPIO/DOX纳米探针的T1map和T2map图;
c-e不同浓度MMP9条件下PMP@USPIO/DOX纳米探针的T1弛豫率、T2弛豫率,以及T2弛豫率和T1弛豫率的比值;
图4表示小鼠经PMP@USPIO/DOX注射后的MRI成像图;
a为小鼠注射PMP@USPIO/DOX纳米探针后不同时间的T1WI和T2WI图;
b为小鼠注射PMP@USPIO/DOX纳米探针后不同时间的T1map和T2map图;
图5表示PMP@USPIO/DOX纳米探针的MR信号与体内MMP9含量的结果分析;
a为肿瘤内不同浓度MMP9条件下PMP@USPIO/DOX纳米探针的T1map图;
b-c为肿瘤内不同浓度MMP9条件下PMP@USPIO/DOX纳米探针的T1弛豫率,以及T2弛豫率和T1弛豫率的比值;
d为注射不同浓度MMP9的小鼠肿瘤的免疫组化染色结果。
具体实施方式
以下将结合附图和实施例对本发明的技术方案做进一步的说明。
如前所述,鉴于现有技术的不足,本发明申请人经长期研究和大量实践,提出本发明的技术方案,制备流程如图1所示:
首先利用PEG-NH2的活性氨基与Fmoc-GPLGL(MMP9敏感多肽)的羧基将PEG与Fmoc-GPLGL键合,合成PEG-MMP;然后将PEG-MMP和光敏剂PIX(protoporphyrin IX)键合,制备两亲性聚合物(PEG-MMP)2-PIX;同时制备T1造影剂超微超顺磁性氧化铁(Ultrasmallsuperparamagnetic iron oxide,USPIO);最后将制备的(PEG-MMP)2-PIX、USPIO和疏水性药物DOX(阿霉素)按照一定的比例共同孵育,USPIO与疏水性药物一起被包封在两亲性聚合物(PEG-MMP)2-PIX中,得到具有MMP9响应的T1/T2切换型MR纳米探针(PMP@USPIO/DOX,PMPSD)。
本发明提供的MMP9响应的T1/T2切换型MR纳米探针的制备方法,包括以下步骤:
一种MMP9响应的T1/T2切换型MR纳米探针的制备方法,包括以下步骤:
S1,以PEG2000-NH2、MMP9敏感多肽Fmoc-GPLGL为原料,加入缩合剂进行反应,反应液经沉淀法洗涤、干燥后,于哌啶/DMF混合溶液中搅拌反应,分离得到PEG-MMP;
S2,以所述的PEG-MMP和光敏剂PIX为原料,加入缩合剂进行反应,分离得到两亲性聚合物(PEG-MMP)2-PIX;
S3,向溶剂中加入油酸铁、油酸和油醇,升温至100℃,负压下去除残留水,氩气条件下进行高温反应;反应液冷却至室温后用沉淀法洗涤,最终复溶于环己烷溶液中,得到超微超顺磁性氧化铁纳米粒USPIO,备用;
S4,向溶剂中加入所述的(PEG-MMP)2-PIX、USPIO和疏水性药物,进行旋转蒸发反应,反应结束后加入PBS溶液复溶、振荡,得到均一的纳米胶束溶液,即所述的MMP9响应的T1/T2切换型MR纳米探针溶液;优选地,所述的(PEG-MMP)2-PIX、USPIO和疏水性药物的质量比为10:(0.5~2):1;优选地,(PEG-MMP)2-PIX、USPIO和疏水性药物的质量比为10:1:1。
优选地,步骤S1中,所述的PEG2000-NH2和Fmoc-GPLGL的用量比为1g:678mg;
步骤S2中,所述的PEG-MMP和PIX的用量比为532mg:141mg。
优选地,步骤S1中,所述的哌啶/DMF混合溶液中哌啶和DMF的体积比为1:4,所述的哌啶/DMF混合溶液用于脱除PEG2000-NH2和Fmoc-GPLGL反应产物的Fmoc,将其活性基团氨基暴露出来以进行下一步接枝反应。
优选地,步骤S4中,所述的溶剂为二氯甲烷/甲醇混合溶液,其中二氯甲烷和甲醇的体积比为1:1。
优选地,所述的疏水性药物包括阿霉素DOX、紫杉醇、硼替佐米。
优选地,所述步骤S1和S2中的缩合剂为Cl-HOBT和DIC组合,或EDC和NHS组合,,两个步骤中所使用的缩合剂组合相同。
本发明探针中的两亲性聚合物包含荧光增敏剂PIX,可加强SPIO的光热效应;两亲性聚合物(PEG-MMP)2-PIX同时包封USPIO(T1造影剂)与疏水性药物,在肿瘤微环境中,两亲性聚合物结构分裂,同时释放USPIO和疏水性药物,使得本发明在实现T2造影剂向T1造影剂转变的双模态成像的同时,可实现肿瘤特异性给药及光热协同治疗作用。
本发明还提供了前面任一所述的制备方法制备的MMP9响应的T1/T2切换型MR纳米探针及其用途,例如在制备造影用组合物中的用途,所述造影用组合物包括:所述的MMP9响应的T1/T2切换型MR纳米探针;以及药学上可接受的辅剂。“药学上可接受的”的成分是适用于人和/或哺乳动物而无过度不良副反应(如毒性)的,即具有合理的效益/风险比的物质。
本发明还提供了所述的MMP9响应的T1/T2切换型MR纳米探针和造影用组合物在制备磁共振成像剂中的应用。
本发明探针在肿瘤微环境中MMP9含量高的条件下,探针中的MMP9敏感肽被识别,导致两亲性聚合物(PEG-MMP)2-PIX结构分裂,USPIO从聚集状态再转变为分散状态,从而在体内实现T2造影剂向T1造影剂的转变,降低背景信号的干扰,实现对肿瘤部位的高质量成像;同时,经实验验证发现,转变的T1信号随MMP9浓度的增加而增高,R2/R1弛豫率随MMP9浓度增加而降低,结合免疫组化实验验证,MR信号可半定量肿瘤内MMP9的含量,为评估肿瘤预后以及治疗转归方面奠定基础。
下面对本发明的实验过程及实验结果进行详细说明。本发明实施例中所用试剂或材料购自商品化产品。
实施例1、PMPSD纳米探针的制备
(1)PEG-MMP的制备
取1g PEG2000-NH2、678mg Fmoc-GPLGL、135mg 6-氯1-羟基苯并三氮唑(6-Chloro-1-hydroxibenzotriazol,Cl-HOBT)溶于1mL DMF溶剂中,滴加124μL二异丙基碳二亚胺(diisopropylcarbodiimide,DIC),在室温下搅拌反应24h,反应结束后用乙醚沉淀反应物,离心分离,加入DMF复溶,并继续用乙醚沉淀,重复3次,然后在40℃下真空干燥24小时。再将产物取出加入5mL的哌啶/DMF溶液中搅拌两小时以脱除Fmoc,最后用乙醚沉淀三次,即可得到产物PEG-MMP。
(2)两亲性聚合物(PEG-MMP)2-PIX的制备
取532mg PEG-MMP、141mg PIX、72mg Cl-HOBT溶于1mL DMF溶剂中,并滴加66μLDIC,在室温下搅拌反应24h,反应产物用乙醚沉淀法清洗三遍,即可得到(PEG-MMP)2-PIX。
(3)超微超顺磁性氧化铁纳米粒USPIO的合成
取3.6g油酸铁、1.14g油酸和3.22g油醇溶于10g的二苯醚中,先升温至100℃,在负压下除去残留的水,防止升温爆沸,然后通氩气,并快速升温至250℃,反应30min,然后将反应物快速降温至室温,并用丙酮沉淀,然后用丙酮/环己烷洗3遍,最终溶于环己烷溶液中,得到USPIO,备用。
(4)PMP@USPIO/DOX的合成
称取10mg(PEG-MMP)2-PIX、1mg USPIO和1mg阿霉素DOX溶于4mL的二氯甲烷/甲醇混合溶液(体积比1:1),放置于10mL圆底烧瓶中,旋转蒸发30min,然后加入1mL PBS溶液进行复溶并震荡,得到均一的纳米胶束溶液,即得到MMP9响应的T1/T2切换型MR纳米探针PMP@USPIO/DOX。
(5)TEM和DLS分析
为了考察本发明T1/T2切换型MR纳米探针的形貌和粒径大小,我们对其在有或无MMP9的条件下,分别进行了透射电镜表征和动态光散射分析。具体地,无MMP9条件下,是指取2mg/mL的PMPSD样品,直接进行TEM和DLS检测;有MMP9条件下,是指在同等浓度PMPSD样品中加入终浓度为20μg/mL的MMP9,然后进行TEM和DLS检测。
结果图2所示,透射电镜图显示本发明PMPSD纳米探针在正常环境下(即无MMP9),USPIOs均匀而紧密地排列呈球形(图2中的a),对应DLS显示其水合粒径为102.2nm(图2中的c);在MMP9条件下,纳米胶束裂解,USPIOs分散(图2中的b),对应DLS显示其水合粒径为7.5nm(图2中的d)。表明本发明方法制备的纳米探针可在MMP9环境中,实现USPIOs从聚集状态转变为分散状态,从而在体内实现T2造影剂向T1造影剂的转变,降低背景信号的干扰,实现对肿瘤部位的高质量成像。
实施例2、PMPSD纳米探针的体外MMP9响应分析
以实施例1制备的T1/T2切换型MR纳米探针为例,对本发明的T1/T2切换型MR纳米探针的MMP9响应进行分析。
将实施例1制备的T1/T2切换型MR纳米探针、MMP9溶液和SDS溶液混合,制备纳米探针浓度相等但MMP9浓度分别为0、5、10、15和20μg/mL的样品,用3.0T的磁共振扫描仪进行测试,MR参数:T2WI:TR=2500ms,TE=60ms,T1WI:TR=522ms,TE=12ms;T2-map images:TR=1000ms,TE=12—180ms;T1-map images:TR=4.0ms,TE2.0 ms;层厚=2mm,层间距=1mm,FOV=13×13cm,matrix=324×339。测试得到不同MMP9浓度下的T1加权成像T1WI和T2加权成像T2WI。重复三次扫描并测量弛豫时间,计算R1。
结果如图3所示,本发明制备的T1/T2切换型MR纳米探针具有良好的MMP9响应性,在正常环境下表现为T2造影剂,图像暗,T2信号低;而在MMP9条件下能够转变为T1造影剂,且随着MMP9浓度的增加,图像逐渐变亮,T1信号逐渐增高(图3中的a和b);且随着MMP9浓度的增加,R1弛豫率逐渐增高,R2弛豫率逐渐降低,R2/R1下降,提示在MMP9条件下,本发明探针逐渐由T2造影剂向T1造影剂转变(图3中的c-e)。
实施例3、PMPSD纳米探针的体内MRI成像实验
以实施例1制备的PMPSD纳米探针为例,对本发明的T1/T2切换型MR纳米探针在体内的MRI成像效果进行分析。
选取4-6周大小的小鼠,在其右后背部(近大腿根部)皮下注射数量为1*106个4T1肿瘤细胞0.1mL,养育1周,观察小鼠皮下移植瘤大小,待长到尺寸5-7mm时,尾静脉注射2mg/mL PMPSD纳米探针200μl,注射后0h、1h、4h和12h分别进行T1WI、T2WI、T1 map、T2 map序列扫描,MR参数:T2WI:TR/TE=(2000/60ms),FOV(13×13cm)and matrix=324×417;T1WI:TR/TE=(450/12ms),FOV(13×13cm)and matrix=324×288;T2-map:TR/TE=(1000/12-180ms)and matrix=324×288;T1-map:TR/TE=(5.8/2.9ms),and matrix=100×66。
结果如图4中的a-b所示,裸鼠尾静脉注射PMPSD纳米探针后,能够在体内肿瘤部位具有良好的MMP9响应性,可特异性显影,表现为于1h时呈现T2增强效应,T2WI信号减低;4h时呈现T1增强效应,T1WI信号增强。表明本发明纳米探针不仅具有良好的生物兼容性,还能可视化MMP9的生物活性。
实施例4、PMPSD纳米探针的MR信号半定量体内MMP9
肿瘤小鼠模型构建同实施例3,向小鼠瘤内注射100μl不同浓度的MMP9溶液,人为造成瘤内MMP9浓度的差异。尾静脉注射2mg/mL PMPSD纳米探针200μl,在注射后4h进行T1map序列扫描和T2 map序列扫描,重复三次扫描并测量弛豫时间,计算R1和R2。
上述MR扫描结束后,处死裸鼠,对裸鼠注射MMP9的肿瘤病理切片后进行MMP9免疫组化染色,以检测MMP9的阳性表达率。
结果如图5所示,随着MMP9浓度的增加,肿瘤部位的弛豫时间逐渐降低(图5中的a);弛豫率R1值不断升高,R2/R1弛豫率逐渐降低(图5中的b和c),表明MR信号可半定量肿瘤内的MMP9含量。同时,免疫组化染色结果表明,MMP9阳性表达率随着注射浓度的增加而增多(图5中的d),进一步证明本发明纳米探针能够可视化肿瘤内的MMP9活性,通过MR信号对MMP9进行半定量分析,为评估肿瘤预后以及治疗转归方面奠定基础。
综上所述,本发明提供的MMP9响应的T1/T2切换型MR纳米探针生物相容性良好,毒性低,可特异性地在肿瘤部位进行T2造影信号到T1造影信号的切换,降低背景信号的干扰,从而实现对肿瘤部位的高质量成像;同时能够可视化肿瘤内的MMP9活性,通过MR信号对MMP9进行半定量分析,从而可达到辅助预测疾病预后和转归的目的;此外,本发明探针通过结合荧光增敏剂PIX和包封疏水性药物,能够在实现T2造影剂向T1造影剂转变的双模态成像的同时,实现肿瘤特异性给药及光热协同治疗的作用。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。
Claims (10)
1.一种MMP9响应的T1/T2切换型MR纳米探针的制备方法,其特征在于,包括以下步骤:
S1,以PEG2000-NH2、MMP9敏感多肽Fmoc-GPLGL为原料,加入缩合剂进行反应,反应液经沉淀法洗涤、干燥后,于哌啶/DMF混合溶液中搅拌反应,分离得到PEG-MMP;
S2,以所述的PEG-MMP和光敏剂PIX为原料,加入缩合剂进行反应,分离得到两亲性聚合物(PEG-MMP)2-PIX;
S3,向溶剂中加入油酸铁、油酸和油醇,升温至100℃,负压下去除残留水,氩气条件下进行高温反应;反应液冷却至室温后用沉淀法洗涤,最终复溶于环己烷溶液中,得到超微超顺磁性氧化铁纳米粒USPIO,备用;
S4,向溶剂中加入疏水性药物、步骤S2得到的(PEG-MMP)2-PIX、步骤S3得到的USPIO,进行旋转蒸发反应,反应结束后加入PBS溶液复溶、振荡,得到所述的MMP9响应的T1/T2切换型MR纳米探针溶液;
其中,步骤S4中,所述的(PEG-MMP)2-PIX、USPIO和疏水性药物的质量比为10:(0.5~2):1。
2.如权利要求1所述的制备方法,其特征在于,步骤S4中,所述的(PEG-MMP)2-PIX、USPIO和疏水性药物的质量比为10:1:1。
3.如权利要求1所述的制备方法,其特征在于,步骤S1中,所述的PEG2000-NH2和Fmoc-GPLGL的用量比为1g:678mg;
步骤S2中,所述的PEG-MMP和PIX的用量比为532mg:141mg。
4.如权利要求1所述的制备方法,其特征在于,步骤S1中,所述的哌啶/DMF混合溶液中哌啶和DMF的体积比为1:4。
5.如权利要求1所述的制备方法,其特征在于,步骤S4中,所述的溶剂为二氯甲烷/甲醇混合溶液,其中二氯甲烷和甲醇的体积比为1:1。
6.如权利要求1所述的制备方法,其特征在于,所述的疏水性药物包括阿霉素DOX、紫杉醇、硼替佐米。
7.如权利要求1所述的制备方法,其特征在于,所述步骤S1和S2中的缩合剂为Cl-HOBT和DIC的组合,或EDC和NHS的组合。
8.一种根据权利要求1-7中任一项所述的制备方法制备的MMP9响应的T1/T2切换型MR纳米探针。
9.一种造影用组合物,其特征在于,所述造影用组合物包括:权利要求8所述的MMP9响应的T1/T2切换型MR纳米探针;以及药学上可接受的辅剂。
10.权利要求8所述的MMP9响应的T1/T2切换型MR纳米探针或权利要求9所述的造影用组合物在制备磁共振成像剂中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111274004.5A CN113876968B (zh) | 2021-10-29 | 2021-10-29 | Mmp9响应的t1/t2切换型mr纳米探针及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111274004.5A CN113876968B (zh) | 2021-10-29 | 2021-10-29 | Mmp9响应的t1/t2切换型mr纳米探针及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113876968A CN113876968A (zh) | 2022-01-04 |
CN113876968B true CN113876968B (zh) | 2023-06-09 |
Family
ID=79015105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111274004.5A Active CN113876968B (zh) | 2021-10-29 | 2021-10-29 | Mmp9响应的t1/t2切换型mr纳米探针及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113876968B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118022011B (zh) * | 2024-04-15 | 2024-06-21 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种双响应型的t1-t2可切换mri造影剂及其制备方法与应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4583601A (en) * | 2000-03-15 | 2001-09-24 | Du Pont Pharm Co | Peptidase-cleavable, targeted antineoplastic drugs and their therapeutic use |
CN109172521B (zh) * | 2018-10-25 | 2021-12-10 | 广州医科大学附属第二医院 | 一种用于载药的酸性响应纳米胶束及其制备方法和应用 |
-
2021
- 2021-10-29 CN CN202111274004.5A patent/CN113876968B/zh active Active
Non-Patent Citations (1)
Title |
---|
基质金属蛋白酶MMP9敏感的阿霉素纳米药物用于肿瘤治疗;沈娜等;《中国化学会2017全国高分子学术论文报告会摘要集》;第340页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113876968A (zh) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles | |
Zhang et al. | Specific lipase-responsive polymer-coated gadolinium nanoparticles for MR imaging of early acute pancreatitis | |
Wang et al. | A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer | |
Chen et al. | A novel MMP-responsive nanoplatform with transformable magnetic resonance property for quantitative tumor bioimaging and synergetic chemo-photothermal therapy | |
US11896681B2 (en) | Particles comprising bilirubin derivative and metal | |
Wu et al. | Reduction-active Fe3O4-loaded micelles with aggregation-enhanced MRI contrast for differential diagnosis of Neroglioma | |
CN110302400B (zh) | 用于动脉粥样硬化易损斑块早期诊断的pet/mri多模式分子成像纳米探针及其应用 | |
CN113876968B (zh) | Mmp9响应的t1/t2切换型mr纳米探针及其制备方法和应用 | |
JP2016504945A (ja) | Mrにおける代謝マーカーとしての過分極エステル | |
Li et al. | Designing smart iron oxide nanoparticles for MR imaging of tumors | |
US20140228552A1 (en) | Mri contrast enhancing agent | |
Zhang et al. | Construction of ultrasmall gold nanoparticles based contrast agent via Host-Guest interaction for Tumor-targeted magnetic resonance imaging | |
Hao et al. | Molybdenum dioxide (MoS2)/gadolinium (Gd) containing arginine-glycine-aspartic acid (RGD) sequences as new nano-contrast agent for cancer magnetic resonance imaging (MRI) | |
Pagoto et al. | An efficient MRI agent targeting extracellular markers in prostate adenocarcinoma | |
CN112370537B (zh) | 一种双靶向磁性荧光纳米微球、其制备方法及在肝癌循环肿瘤细胞中的应用 | |
Zheng et al. | Dual-modal polypeptide-containing contrast agents for magnetic resonance/fluorescence imaging | |
Zhong et al. | VEGFR2 targeted microbubble-based ultrasound molecular imaging improving the diagnostic sensitivity of microinvasive cervical cancer | |
KR20180035722A (ko) | 1 나노몰 이하의 타겟 선택성을 갖는 정밀종양진단용 자기공명영상용 조영제 및 이의 제조방법 | |
CN114042172B (zh) | pH响应性T1-T2双激活纳米探针及其制备方法和应用 | |
Wang et al. | Development of a Novel MR Colonography via Iron-Based Solid Lipid Nanoparticles | |
Das et al. | Magnetic resonance imaging contrast enhancement in vitro and in vivo by octanuclear iron-oxo cluster-based agents | |
CN114949261B (zh) | 一种铁钆纳米复合物及其制备方法和应用 | |
CN115991736B (zh) | 一种靶向cd137的多肽及其应用 | |
Wang et al. | Amphiphilic branched polymeric nitroxides for efficient magnetic resonance imaging of multiple-object in vivo | |
Cui et al. | Enhanced Ferritin‐Manganese Interaction by Nanoplatinum Growth Enabling Liver Fibrosis 3D Magnetic Resonance Visualization and Synergistic Therapy with Real‐Time Monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |