CN113874798B - CNC device - Google Patents
CNC device Download PDFInfo
- Publication number
- CN113874798B CN113874798B CN201980096558.5A CN201980096558A CN113874798B CN 113874798 B CN113874798 B CN 113874798B CN 201980096558 A CN201980096558 A CN 201980096558A CN 113874798 B CN113874798 B CN 113874798B
- Authority
- CN
- China
- Prior art keywords
- identification
- unit
- tool
- vibration
- recognition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003754 machining Methods 0.000 claims abstract description 98
- 238000012545 processing Methods 0.000 claims abstract description 76
- 238000012937 correction Methods 0.000 claims description 48
- 230000009471 action Effects 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 17
- 230000001360 synchronised effect Effects 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 description 121
- 238000000034 method Methods 0.000 description 42
- 238000006073 displacement reaction Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 22
- 238000004364 calculation method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000013016 damping Methods 0.000 description 5
- 238000002271 resection Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000013178 mathematical model Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 244000145845 chattering Species 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37435—Vibration of machine
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41115—Compensation periodical disturbance, like chatter, non-circular workpiece
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种对工作机械进行控制的数控装置。The invention relates to a numerical control device for controlling working machinery.
背景技术Background technique
工作机械是使用刀具对工件赋予力或者能量而进行从工件将不要部分去除的加工即去除加工的加工装置。特别地,在去除加工的一个即切削加工中,使刀具的刃尖以高速度与工件接触,由此在工件表面引起剪切破坏,进行将工件的不要部分刮削的加工。A machine tool is a processing device that performs removal processing by applying force or energy to a workpiece using a tool to remove unnecessary parts from the workpiece. In particular, in cutting processing, which is one type of removal processing, the cutting edge of the tool is brought into contact with the workpiece at a high speed, thereby causing shear damage on the surface of the workpiece and scraping unnecessary parts of the workpiece.
切削加工是加工工艺和机械动力学相互地影响的物理现象,因此为了对加工状态进行管理,优选对两者同时地管理。在这里,加工工艺表示在刀具刃尖侵入工件而产生切屑的同时形成加工面的一系列的过程。机械动力学表示通过机械内外的振动源,构成机械的构件施振时的机械构件的动作。一般来说,切削加工是包含上述的加工工艺及机械动力学在内的各种物理现象复杂地相互影响的现象,因此难以进行综合的解析。因此,在生产现场,对评价对象进行限定,由此达到与目的相对应的加工管理。Cutting is a physical phenomenon in which machining technology and machine dynamics interact with each other. Therefore, in order to manage the machining state, it is preferable to manage both simultaneously. Here, the machining process refers to a series of processes in which the cutting edge of the tool invades the workpiece and generates chips while forming the machined surface. Mechanical dynamics refers to the behavior of mechanical components when the components constituting the machine are vibrated by vibration sources inside and outside the machine. Generally speaking, cutting processing is a phenomenon in which various physical phenomena including the above-mentioned machining technology and mechanical dynamics interact with each other in a complex manner, so it is difficult to conduct a comprehensive analysis. Therefore, at the production site, evaluation objects are limited to achieve processing management corresponding to the purpose.
如上所述,在切削加工中,机械动力学和加工工艺相互地影响,因此加工前或者加工后的工作机械的状态和加工中的工作机械的状态不同。即,在加工前或者加工后,无法对加工中的工作机械的状态准确地进行推定。因此,优选使用在加工中得到的信息,对机械动力学和加工工艺进行辨识。使用对机械动力学和加工工艺辨识到的结果,由此生产现场的作业者例如能够有效地进行刀具寿命的管理、高效率的加工条件的设定、固定夹具的设计变更等改善作业。由此,期待生产率的提高。As described above, in cutting processing, mechanical dynamics and machining technology influence each other, so the state of the machine tool before or after machining is different from the state of the machine tool during machining. That is, the state of the machine tool during processing cannot be accurately estimated before or after processing. Therefore, it is preferable to use the information obtained during machining to identify the mechanical dynamics and machining process. Using the results of machine dynamics and machining process identification, workers at the production site can effectively perform improvement operations such as managing tool life, setting efficient machining conditions, and changing the design of fixed fixtures. As a result, improvements in productivity are expected.
作为在实际加工中根据将加工条件逐次变更而得到的信息进行参数辨识的方法,在专利文献1中提出了以下的方法。在专利文献1所记载的方法中,根据在通过多个主轴转速进行加工时产生的位移和力对适应性频谱进行计算,根据将各主轴转速的适应性频谱合成时得到的峰值对刀具的固有振动频率进行计算。在该方法中,以在各进给轴的单独动作或者进给轴的复合动作中使主轴转速阶段性地变化的方式使工作机械进行加工动作,使用加工中的位移和力的检测结果对适应性频谱进行计算。Patent Document 1 proposes the following method as a method of performing parameter identification based on information obtained by gradually changing processing conditions during actual processing. In the method described in Patent Document 1, the adaptability spectrum is calculated based on the displacement and force generated when machining is performed at multiple spindle speeds, and the peak value obtained when the adaptability spectrum of each spindle speed is synthesized is used to respond to the unique characteristics of the tool. Vibration frequency is calculated. In this method, the machine tool is made to perform machining operations in such a manner that the spindle rotation speed is changed step by step in the individual movements of each feed axis or in the combined movements of the feed axes, and the detection results of the displacement and force during processing are used to adapt the spectrum is calculated.
专利文献1:日本特开2017-94463号公报Patent Document 1: Japanese Patent Application Publication No. 2017-94463
发明内容Contents of the invention
但是,在专利文献1所记载的方法中,设定为不发生颤振的进刀量而使主轴转速阶段性地变更,由此得到各种适应性频谱,对固有振动频率进行计算。因此,在专利文献1所记载的方法中,存在仅能够对固有振动频率进行辨识,无法对相对切削阻力这样的加工特性参数进行辨识的课题。另外,在专利文献1所记载的方法中,在对固有振动频率以外的参数进行辨识的情况下,需要进行其他辨识动作。并且,在专利文献1所记载的方法中,将主轴转速仅阶段性地变更为预先规定的多个阶段,因此为了取得与各种各样的主轴转速相对应的参数而需要时间。However, in the method described in Patent Document 1, various adaptive spectrums are obtained by setting the feed amount so that chatter does not occur and changing the spindle rotation speed step by step, and calculating the natural vibration frequency. Therefore, in the method described in Patent Document 1, there is a problem that only the natural frequency of vibration can be identified and machining characteristic parameters such as relative cutting resistance cannot be identified. In addition, in the method described in Patent Document 1, when identifying parameters other than the natural vibration frequency, it is necessary to perform other identification operations. Furthermore, in the method described in Patent Document 1, the spindle rotation speed is only changed stepwise to a plurality of predetermined steps, so it takes time to obtain parameters corresponding to various spindle rotation speeds.
本发明就是鉴于上述情况而提出的,其目的在于,得到能够有效地以短时间对加工特性参数进行辨识的数控装置。The present invention is proposed in view of the above situation, and its purpose is to obtain a numerical control device that can effectively identify machining characteristic parameters in a short time.
为了解决上述的课题,达到目的,本发明是一种数控装置,其对具有主轴和进给轴、通过刀具对工件进行加工的工作机械的运转进行控制,该数控装置具有:辨识动作生成部,其生成使主轴的旋转速度和进给速度各自独立且连续地变化的辨识动作指令。另外,该数控装置具有:数据取得部,其使基于辨识动作指令而生成的用于对工作机械进行控制的控制信号和表示基于控制信号而动作的工作机械的运转状态的运转状态信号同步而作为辨识用数据进行输出;以及振动判定部,其基于辨识用数据,对工作机械的振动的状态是稳定加工、颤振及强制振动之中的哪一者进行判别。并且,该数控装置具有辨识部,其基于振动判定部的判别结果,将表示刀具和工件之间的加工现象的特性的加工特性参数之中的能够辨识的加工特性参数作为选择参数进行选择,使用辨识用数据而进行选择参数的辨识。In order to solve the above-mentioned problems and achieve the purpose, the present invention is a numerical control device that controls the operation of a machine tool that has a spindle and a feed axis and processes a workpiece through a tool. The numerical control device has: a recognition action generation unit, It generates identification action instructions that cause the rotation speed and feed speed of the spindle to change independently and continuously. In addition, the numerical control device has a data acquisition unit that synchronizes a control signal for controlling the machine tool generated based on the recognized operation command and an operation state signal indicating an operation state of the machine tool operated based on the control signal to obtain the data as a data acquisition unit. The identification data is outputted; and the vibration determination unit determines whether the vibration state of the machine tool is stable machining, chatter vibration, or forced vibration based on the identification data. Furthermore, the numerical control device has an identification unit that selects, as a selection parameter, an identifiable machining characteristic parameter among the machining characteristic parameters indicating the characteristics of the machining phenomenon between the tool and the workpiece based on the identification result of the vibration determination unit, using The identification data is used to identify the selection parameters.
发明的效果Effect of the invention
本发明所涉及的数控装置具有下述效果,即,能够有效地以短时间对加工特性参数进行辨识。The numerical control device according to the present invention has the effect of being able to effectively identify machining characteristic parameters in a short time.
附图说明Description of drawings
图1是表示实施方式1所涉及的数控装置的结构例的框图。FIG. 1 is a block diagram showing a structural example of a numerical control device according to Embodiment 1.
图2是表示实施方式1的辨识动作生成部所生成的辨识动作指令的模式的例子的图。FIG. 2 is a diagram showing an example of a pattern of recognition operation instructions generated by the recognition operation generation unit in Embodiment 1. FIG.
图3是表示实施方式1的辨识动作生成部所生成的辨识动作指令的模式的例子的图。FIG. 3 is a diagram showing an example of a pattern of recognition operation instructions generated by the recognition operation generating unit in Embodiment 1. FIG.
图4是表示实施方式1的辨识动作生成部所生成的辨识动作指令的模式的例子的图。FIG. 4 is a diagram showing an example of a pattern of recognition operation instructions generated by the recognition operation generating unit in Embodiment 1. FIG.
图5是表示在实施方式1中,在固定于工作台的工件通过切削力而振动的情况下,对工作台传递干扰力的情形的示意图。FIG. 5 is a schematic diagram illustrating how interference force is transmitted to the table when the workpiece fixed to the table vibrates due to cutting force in Embodiment 1.
图6是表示在实施方式1中,刀具刃尖与工件接触的刀具的旋转角度的一个例子的图。FIG. 6 is a diagram showing an example of the rotation angle of the tool at which the cutting edge of the tool comes into contact with the workpiece in Embodiment 1. FIG.
图7是表示在实施方式1中,刀具刃尖不与工件接触的刀具的旋转角度的一个例子的图。FIG. 7 is a diagram showing an example of the rotation angle of the tool when the cutting edge of the tool does not contact the workpiece in Embodiment 1. FIG.
图8是表示在实施方式1中,在刀具中心和主轴旋转中心之间产生了偏移量的情况下的第1刃尖处的切削的情形的图。FIG. 8 is a diagram showing the state of cutting at the first cutting edge when an offset amount occurs between the tool center and the spindle rotation center in Embodiment 1. FIG.
图9是表示在实施方式1中,在刀具中心和主轴旋转中心之间产生了偏移量的情况下的第2刃尖处的切削的情形的图。FIG. 9 is a diagram illustrating the state of cutting at the second cutting edge when an offset amount occurs between the tool center and the spindle rotation center in Embodiment 1. FIG.
图10是表示由振动判定部判定为颤振的情况下的实施方式1的辨识部中的辨识处理顺序的一个例子的流程图。FIG. 10 is a flowchart showing an example of the identification processing procedure in the identification unit of Embodiment 1 when the vibration determination unit determines that the vibration is judder.
图11是表示实施方式1的数控装置的动作的一个例子的流程图。FIG. 11 is a flowchart showing an example of the operation of the numerical control device according to the first embodiment.
图12是表示实施方式1的处理电路的结构例的图。FIG. 12 is a diagram showing a structural example of the processing circuit according to Embodiment 1.
图13是表示实施方式2所涉及的数控装置的结构例的框图。FIG. 13 is a block diagram showing a structural example of a numerical control device according to Embodiment 2.
图14是表示实施方式2的数控装置的动作的一个例子的流程图。FIG. 14 is a flowchart showing an example of the operation of the numerical control device according to the second embodiment.
图15是表示实施方式3所涉及的数控装置的结构例的框图。FIG. 15 is a block diagram showing a structural example of a numerical control device according to Embodiment 3.
图16是表示实施方式4所涉及的数控装置的结构例的框图。FIG. 16 is a block diagram showing a structural example of a numerical control device according to Embodiment 4.
具体实施方式Detailed ways
下面,基于附图对本发明的实施方式所涉及的数控装置详细地进行说明。此外,本发明不受本实施方式限定。Hereinafter, the numerical control device according to the embodiment of the present invention will be described in detail based on the drawings. In addition, this invention is not limited to this embodiment.
实施方式1.Embodiment 1.
图1是表示本发明的实施方式1所涉及的数控装置1的结构例的框图。实施方式1的数控装置1对工作机械2发送控制信号,由此对工作机械2的运转进行控制,从未图示的传感器接收表示工作机械2的运转状态的运转状态信号。FIG. 1 is a block diagram showing a structural example of a numerical control device 1 according to Embodiment 1 of the present invention. The numerical control device 1 of Embodiment 1 controls the operation of the machine tool 2 by transmitting a control signal to the machine tool 2 and receives an operation state signal indicating the operation state of the machine machine 2 from a sensor (not shown).
工作机械2具有主轴和进给轴,通过刀具对工件进行加工。具体地说,工作机械2使刀具及工件之中的至少一者动作,由此对工件进行切削加工。例如,工作机械2具有:主轴,其对刀具或者工件赋予旋转运动;以及进给轴,其是对刀具或者工件赋予位置的伺服轴。主轴及进给轴各自具有电动机。The working machine 2 has a spindle and a feed axis, and processes the workpiece through a tool. Specifically, the machine tool 2 operates at least one of a tool and a workpiece to perform cutting processing on the workpiece. For example, the machine tool 2 has a spindle that imparts rotational motion to a tool or a workpiece, and a feed axis that is a servo axis that imparts a position to the tool or the workpiece. The spindle and the feed axis each have an electric motor.
工作机械2具有传感器,其对工作机械2的运转状态进行检测,将检测结果作为运转状态信号而输出。工作机械2所具有的传感器包含能够对刀具及工件之中的至少一者的振动进行检测的传感器。能够对刀具及工件之中的至少一者的振动进行检测的传感器,例如是为了进行工作机械2的各电动机的反馈控制而预先设置于工作机械2的线性编码器及电流传感器。线性编码器对工作机械2的各轴的位置进行检测,电流传感器对各轴的电动机的电动机电流进行检测。作为传感器的其他例子,可以举出加速度传感器、位置传感器、力传感器或者传声器。下面,作为一个例子,对工作机械2所具有的传感器为线性编码器、电流传感器及力传感器而进行说明。力传感器例如设置于构成进给轴的工作台等构件之上或者构件的内部。力传感器的设置位置并不限定于此,只要设置于能够对刀具和工件间的力进行检测的位置即可。The machine tool 2 has a sensor that detects the operating state of the machine tool 2 and outputs the detection result as an operating state signal. Sensors included in the machine tool 2 include sensors capable of detecting vibration of at least one of the tool and the workpiece. Sensors capable of detecting vibration of at least one of the tool and the workpiece are, for example, linear encoders and current sensors that are previously installed in the machine tool 2 for feedback control of each motor of the machine tool 2 . The linear encoder detects the position of each axis of the machine tool 2, and the current sensor detects the motor current of the motor of each axis. Other examples of the sensor include an acceleration sensor, a position sensor, a force sensor, or a microphone. Next, as an example, a linear encoder, a current sensor, and a force sensor will be described as the sensors included in the machine tool 2 . The force sensor is provided on, for example, a member such as a worktable constituting the feed axis or inside the member. The installation position of the force sensor is not limited to this, as long as it is installed at a position where the force between the tool and the workpiece can be detected.
数控装置1如图1所示,具有校正部11、振动判定部12、辨识部13、辨识动作生成部14、驱动控制部15及数据取得部16。对本实施方式1的数控装置1的各部的动作进行说明。As shown in FIG. 1 , the numerical control device 1 includes a correction unit 11 , a vibration determination unit 12 , an identification unit 13 , an identification operation generation unit 14 , a drive control unit 15 and a data acquisition unit 16 . The operation of each part of the numerical control device 1 according to the first embodiment will be described.
辨识动作生成部14生成使工作机械2的主轴转速和进给速度各自独立且连续地变化的辨识动作指令,对驱动控制部15输出辨识动作指令。主轴转速是主轴的旋转速度,表示每单位时间主轴旋转几周。辨识动作是为了取得辨识部13执行后面记述的辨识处理时所使用的数据即辨识用数据,使驱动控制部15及工作机械2各自生成控制信号和运转状态信号的动作。辨识动作指令是为了进行辨识动作而生成的指令,包含针对主轴转速的指令、针对进给速度的指令。The identification operation generation unit 14 generates an identification operation command that independently and continuously changes the spindle rotation speed and the feed speed of the machine tool 2 , and outputs the identification operation command to the drive control unit 15 . Spindle speed is the rotation speed of the spindle, indicating how many times the spindle rotates per unit time. The identification operation is an operation in which the drive control unit 15 and the machine tool 2 each generate a control signal and an operating state signal in order to obtain identification data that is used when the identification unit 13 performs identification processing described later. The identification action command is a command generated for the purpose of identification action, and includes a command for the spindle speed and a command for the feed speed.
图2~图4是表示实施方式1的辨识动作生成部14所生成的辨识动作指令的模式的例子的图。下面,也将辨识动作指令的模式称为指令模式。图2~图4表示在从辨识动作开始时刻t1至辨识动作结束时刻t2之间,主轴转速和进给速度各自连续地变化的指令模式。图2~4的横轴表示时间(时刻),纵轴是上层表示主轴转速,下层表示进给速度。下面,有时将主轴转速、进给速度各自记载为S、F。2 to 4 are diagrams showing examples of patterns of recognition operation instructions generated by the recognition operation generation unit 14 in Embodiment 1. Hereinafter, the mode for recognizing action commands will also be referred to as a command mode. Figures 2 to 4 show command patterns in which the spindle rotation speed and the feed speed each continuously change from the identification operation start time t1 to the identification operation end time t2. The horizontal axis in Figures 2 to 4 represents time (moment), the vertical axis represents the spindle speed in the upper layer, and the feed speed in the lower layer. In the following, the spindle rotation speed and feed speed may be described as S and F respectively.
在这里,S0是辨识动作前的主轴转速即基准主轴转速,S1是辨识动作中的主轴转速的最大值。T1是从主轴转速为S0的状态加速至主轴转速为S1的状态为止时的时间常数。T2是从进给速度为F0的状态加速至进给速度为F1的状态为止时的时间常数。图2是主轴转速和进给速度分别进行加减速的指令模式。在图2所示的例子中,主轴转速在以时间常数T1加速后,如果主轴转速称为S1则减速。而且,主轴转速如果通过减速而成为S0,则维持S0不变。进给速度如果主轴转速通过减速而成为S0,则以时间常数T2进行加速而直至成为F1为止。然后,如果进给速度成为F1,则进给速度减速。Here, S0 is the spindle speed before the identification operation, that is, the reference spindle speed, and S1 is the maximum value of the spindle speed during the identification operation. T1 is the time constant when accelerating from the state where the spindle rotation speed is S0 to the state where the spindle rotation speed is S1. T2 is the time constant when accelerating from the state where the feed speed is F0 to the state where the feed speed is F1. Figure 2 is a command pattern in which the spindle speed and feed speed are accelerated and decelerated respectively. In the example shown in Figure 2, after the spindle speed accelerates with the time constant T1, it decelerates if the spindle speed is called S1. Furthermore, if the spindle rotation speed reaches S0 through deceleration, it remains unchanged at S0. When the spindle speed reaches S0 through deceleration, the feed speed accelerates with the time constant T2 until it reaches F1. Then, when the feed speed becomes F1, the feed speed is decelerated.
图3示出了在主轴转速加速后,进给速度加速而然后减速,主轴转速减速的指令模式。图4示出了主轴转速加速而然后减速,进给速度在主轴转速的变化中重复加速及减速的指令模式。FIG. 3 shows a command pattern in which after the spindle speed is accelerated, the feed speed is accelerated and then decelerated, and the spindle speed is decelerated. Figure 4 shows a command pattern in which the spindle speed accelerates and then decelerates, and the feed speed repeats acceleration and deceleration as the spindle speed changes.
此外,在图2~图4中,示出了将S1作为辨识动作中的主轴转速的最大值,使主轴转速在S0和S1之间变化的例子,但辨识动作生成部14也可以对辨识动作中的主轴转速的最小值S2进行设定,示出在S0至S2的范围内变化的指令模式。同样地,关于进给速度,也可以对辨识动作中的进给速度的最小值F2进行设定,示出在F0至F2之间变化的指令模式。In addition, in FIGS. 2 to 4 , an example is shown in which S1 is used as the maximum value of the spindle rotation speed in the identification operation and the spindle rotation speed is changed between S0 and S1 . However, the identification operation generation unit 14 may also be configured for the identification operation. The minimum value of the spindle speed S2 is set, showing a command pattern that changes within the range of S0 to S2. Similarly, regarding the feed speed, the minimum value F2 of the feed speed in the identification operation can also be set, and a command pattern changing between F0 and F2 can be shown.
另外,在图2~图4中例示出以三角波状进行加减速的指令模式,但如果是主轴转速和进给速度连续地加减速的指令模式,则辨识动作生成部14能够生成任意的指令模式。例如,辨识动作生成部14可以取代三角波而是生成以正弦波状或者S字曲线状变化的指令模式。In addition, FIGS. 2 to 4 exemplify a command pattern that accelerates and decelerates in a triangular waveform. However, if it is a command pattern that continuously accelerates and decelerates the spindle rotation speed and the feed speed, the recognition operation generating unit 14 can generate any command pattern. . For example, the recognition operation generating unit 14 may generate a command pattern that changes in a sinusoidal wave shape or an S-shaped curve shape instead of a triangular wave.
如上所述,辨识动作生成部14使主轴转速和进给速度各自独立地变化,由此能够生成包含各种各样的主轴转速和进给速度的组合的辨识动作。As described above, the identification operation generating unit 14 can generate an identification operation including various combinations of the spindle rotation speed and the feed speed by independently changing the spindle rotation speed and the feed speed.
已知在刀具对工件进行切削时产生的力即切削力的大小主要依赖于每1刃的进给量,切削力的振动周期主要依赖于主轴转速。因此,一般来说,在使主轴转速和进给速度变化时,使它们以相同比率变化。由此,刀具刃尖所承受的负荷成为恒定,因此刀具1刃所产生的切削力的大小不变化。辨识动作生成部14使主轴转速和进给速度各自独立地变化,因此切削力的大小和振幅能够各种各样地变化,进而能够使辨识动作中的工作机械2发生后面记述的各种各样的振动状态。It is known that the force generated when the tool cuts the workpiece, that is, the magnitude of the cutting force mainly depends on the feed amount per blade, and the vibration period of the cutting force mainly depends on the spindle speed. Therefore, generally speaking, when changing the spindle rotation speed and feed speed, make them change at the same ratio. As a result, the load on the cutting edge of the tool becomes constant, so the magnitude of the cutting force generated by one cutting edge of the tool does not change. The identification operation generating unit 14 changes the spindle rotation speed and the feed speed independently, so that the magnitude and amplitude of the cutting force can be varied in various ways, and can cause the machine tool 2 during the identification operation to generate various types of events described later. vibration state.
驱动控制部15基于由辨识动作生成部14生成的辨识动作指令,生成用于对工作机械2进行控制的控制信号,以使得工作机械2的主轴及进给轴以由辨识动作指令规定出的动作进行运转。在这里,控制信号是针对工作机械2的主轴及进给轴的指令,包含针对主轴及进给轴的各电动机的位置指令、速度指令及电流指令之中的至少1个。此外,驱动控制部15在辨识动作指令没有从辨识动作生成部14输入时,即在通常的加工动作时,基于加工路径和该加工路径中的基准主轴转速及基准进给速度,生成针对工作机械2的控制信号。另外,驱动控制部15从后面记述的校正部11取得校正信号,基于校正信号而校正针对工作机械2的控制信号,将校正后的控制信号向工作机械2输出。The drive control unit 15 generates a control signal for controlling the machine tool 2 based on the recognition operation command generated by the recognition operation generation unit 14 so that the main shaft and the feed axis of the machine machine 2 operate in the manner specified by the recognition operation command. Carry out operation. Here, the control signal is a command for the spindle and the feed axis of the machine tool 2, and includes at least one of a position command, a speed command, and a current command for each motor of the spindle and the feed axis. In addition, when the recognition operation command is not input from the recognition operation generation unit 14 , that is, during a normal machining operation, the drive control unit 15 generates a target for the machine tool based on the machining path and the reference spindle rotation speed and the reference feed speed in the machining path. 2 control signal. In addition, the drive control unit 15 obtains a correction signal from the correction unit 11 to be described later, corrects the control signal for the machine tool 2 based on the correction signal, and outputs the corrected control signal to the machine machine 2 .
在驱动控制部15预先设定有加工路径和该加工路径中的基准主轴转速及基准进给速度。加工路径和该加工路径中的基准主轴转速及基准进给速度可以由数控程序赋予。驱动控制部15在辨识动作指令从辨识动作生成部14输入的情况下,也生成控制信号以使得所设定的加工路径不变化,而是仅使主轴转速和进给速度按照辨识动作指令变化。工作机械2针对每个轴,具有电动机和电动机控制装置,电动机控制装置基于从驱动控制部15接收到的控制信号、位置、速度、电动机电流等反馈信号对电动机进行控制。位置、速度的反馈信号是基于由线性编码器检测的位置而计算的,电动机电流的反馈信号是根据电流传感器的检测结果而计算的。将位置、速度、电动机电流的反馈信号以下分别称为位置反馈信号、速度反馈信号、电流反馈信号。A machining path, a reference spindle rotation speed, and a reference feed speed in the machining path are preset in the drive control unit 15 . The processing path and the reference spindle speed and reference feed speed in the processing path can be given by the CNC program. When the recognition operation command is input from the recognition operation generation unit 14 , the drive control unit 15 also generates a control signal so that the set machining path does not change and only the spindle rotation speed and the feed speed change according to the recognition operation command. The machine tool 2 has an electric motor and a motor control device for each axis. The electric motor control device controls the electric motor based on feedback signals such as control signals, position, speed, and motor current received from the drive control unit 15 . The position and speed feedback signals are calculated based on the position detected by the linear encoder, and the motor current feedback signal is calculated based on the detection results of the current sensor. The feedback signals of position, speed, and motor current will be referred to as position feedback signal, speed feedback signal, and current feedback signal respectively below.
数据取得部16使从驱动控制部15输出的控制信号和表示基于该控制信号而动作的工作机械2的运转状态的运转状态信号同步而作为辨识用数据进行输出。具体地说,数据取得部16使用从驱动控制部15输出的控制信号和从工作机械2的传感器输出的运转状态信号,使各信号所包含的数据时间性地同步,作为辨识用数据向振动判定部12及辨识部13输出。运转状态信号如上所述,是表示工作机械2的运转状态的信号,包含能够对刀具及工件之中的至少一者的振动进行检测的信号。在这里,如上所述,以作为传感器而具有线性编码器、电流传感器及力传感器为前提,因此数据取得部16能够取得主轴及进给轴的位置、速度及电流的反馈信号和由力传感器检测的力、扭矩等而作为运转状态信号。下面,也将由力传感器检测的力、扭矩等实测值称为力信息。运转状态信号由于在在工作机械接收到控制信号后生成的信号,因此由于通信所需的时间等的影响,运转状态信号相对于所对应的控制信号而时间性地发生延迟。因此,数据取得部16以与通信时间等的差异相当的时间将运转状态信号所包含的数据或者控制信号所包含的数据错开,由此对两个信号间的时间偏差进行补偿。数据取得部16将时间上的偏移被补偿后的数据,即同步的数据汇总为辨识用数据,输出至振动判定部12及辨识部13。The data acquisition unit 16 synchronizes the control signal output from the drive control unit 15 with an operating state signal indicating the operating state of the machine tool 2 operating based on the control signal, and outputs the synchronized control signal as identification data. Specifically, the data acquisition unit 16 uses the control signal output from the drive control unit 15 and the operating state signal output from the sensor of the machine tool 2 to temporally synchronize the data included in each signal, and provides the vibration determination data as identification data. unit 12 and recognition unit 13 output. As mentioned above, the operating state signal is a signal indicating the operating state of the machine tool 2 and includes a signal capable of detecting the vibration of at least one of the tool and the workpiece. Here, as mentioned above, it is assumed that the sensors include a linear encoder, a current sensor, and a force sensor. Therefore, the data acquisition unit 16 can acquire the feedback signals of the position, speed, and current of the spindle and the feed axis and the force sensor detection signals. The force, torque, etc. are used as operating status signals. Hereinafter, actual measured values such as force and torque detected by the force sensor will also be referred to as force information. The operating status signal is generated after the machine tool receives the control signal. Therefore, due to the influence of the time required for communication and the like, the operating status signal is temporally delayed with respect to the corresponding control signal. Therefore, the data acquisition unit 16 compensates for the time difference between the two signals by shifting the data included in the operating status signal or the data included in the control signal by a time corresponding to the difference in communication time or the like. The data acquisition unit 16 aggregates data in which the temporal offset has been compensated, that is, synchronized data, into identification data, and outputs the data to the vibration determination unit 12 and the identification unit 13 .
振动判定部12使用辨识用数据,对是否在工作机械2发生了振动进行判定,在判定为发生了振动的情况下对其振动的种类进行判别,将判别结果输出至辨识部13。下面,叙述振动判定部12的详细内容。此外,振动判定部12对是否发生了振动进行判定时的振动,表示与由刀具和工件的切削力引起的振动成分相比振幅大的振动。The vibration determination unit 12 uses the identification data to determine whether vibration has occurred in the machine tool 2 , and if it is determined that vibration has occurred, determines the type of vibration, and outputs the determination result to the identification unit 13 . Next, the details of the vibration determination unit 12 will be described. In addition, the vibration when the vibration determination unit 12 determines whether vibration has occurred indicates a vibration having a larger amplitude than a vibration component caused by the cutting force of the tool and the workpiece.
由振动判定部12进行的振动发生的判定是通过公知的单元执行的。例如,在从力传感器输出的力信息所示的力或者扭矩在时间区域中超过规定的振幅的情况下判定为发生了振动。振动判定所使用的信号的种类并不限定于力信息,例如振动判定部12也可以使用运转状态信号所包含的电流反馈信号而判定是否发生了振动。另外,振动判定部12也可以将是否发生了振动的判定所使用的信号变换为频率区域的信号,在频率区域上成为最大振幅的振动成分超过规定的振幅的情况下判定为发生了振动。The determination of occurrence of vibration by the vibration determination unit 12 is performed by a well-known means. For example, when the force or torque indicated by the force information output from the force sensor exceeds a predetermined amplitude in the time domain, it is determined that vibration has occurred. The type of signal used for vibration determination is not limited to the force information. For example, the vibration determination unit 12 may determine whether vibration occurs using a current feedback signal included in the operating state signal. Alternatively, the vibration determination unit 12 may convert the signal used to determine whether vibration has occurred into a signal in a frequency range, and determine that vibration has occurred when the vibration component with the largest amplitude in the frequency range exceeds a predetermined amplitude.
另外,在振动现象存在强制振动和自激振动,颤振是自激振动的一种。强制振动是切削力成为施振源,在刀具或者工件的附近存在的构件被激励的振动现象。已知通过该性质,强制振动的振动频率成为基本切削频率的整数倍。另一方面,自激振动即颤振是由切削力和该构件的位移构成的系统不稳定而发生的振动现象。根据该性质,已知颤振的振动频率成为基本切削频率的非整数倍。在上述中,基本切削频率是主轴转速乘以刀具刃数而得到的频率。In addition, there are forced vibration and self-excited vibration in vibration phenomena, and flutter is a type of self-excited vibration. Forced vibration is a vibration phenomenon in which the cutting force becomes the vibration source and the components existing near the tool or workpiece are excited. It is known that due to this property, the vibration frequency of the forced vibration becomes an integer multiple of the basic cutting frequency. On the other hand, self-excited vibration, that is, chatter, is a vibration phenomenon that occurs when the system composed of cutting force and displacement of the member is unstable. Based on this property, it is known that the vibration frequency of chatter becomes a non-integer multiple of the basic cutting frequency. In the above, the basic cutting frequency is the frequency obtained by multiplying the spindle speed by the number of tool edges.
振动判定部12在判定为发生了振动的情况下,对振动的种类进行判别。详细地说,振动判定部12作为振动的种类的判别而对所发生的振动是强制振动还是颤振进行判定。振动的种类的判别是基于判定出的振动的频率是否是基本切削频率的整数倍而执行的。即,如果振动的频率是基本切削频率的整数倍,则振动判定部12判别为强制振动,如果该频率是基本切削频率的非整数倍,则判别为颤振。When the vibration determination unit 12 determines that vibration has occurred, the vibration determination unit 12 determines the type of vibration. Specifically, the vibration determination unit 12 determines whether the generated vibration is a forced vibration or a flutter vibration as a determination of the type of vibration. The type of vibration is determined based on whether the determined frequency of vibration is an integer multiple of the basic cutting frequency. That is, if the frequency of vibration is an integer multiple of the basic cutting frequency, the vibration determination unit 12 determines it to be forced vibration, and if the frequency is a non-integer multiple of the basic cutting frequency, it determines it to be chatter vibration.
此外,振动判定部12在判定为没有发生振动的情况下,判定为稳定加工。稳定加工是仅产生由刀具和工件的切削力引起的振动成分的加工状态,是没有激励出构件的固有振动频率附近的振动的加工状态。In addition, when the vibration determination unit 12 determines that no vibration occurs, it determines that the processing is stable. Stable machining is a machining state in which only vibration components caused by the cutting force of the tool and the workpiece are generated, and no vibration near the natural vibration frequency of the component is excited.
振动判定部12始终执行上述的处理,由此对各时刻的辨识用数据是稳定加工、强制振动、颤振中的哪一者进行判别,将判别结果作为振动判定结果而输出至辨识部13。即,振动判定部12基于辨识用数据,对工作机械2的振动的状态是稳定加工、强制振动、颤振的多个状态之中的哪一者进行判别。The vibration determination unit 12 always executes the above-described processing to determine whether the identification data at each time point is stable machining, forced vibration, or chatter vibration, and outputs the determination result to the identification unit 13 as a vibration determination result. That is, the vibration determination unit 12 determines, based on the identification data, which one of a plurality of states of stable machining, forced vibration, or chatter vibration the vibration state of the machine tool 2 is.
辨识部13基于振动判定部12的判别结果,将加工特性参数之中的能够辨识的加工特性参数作为选择参数进行选择,使用从数据取得部16输入的辨识用数据而进行选择参数的辨识。另外,辨识部13基于振动判定部12的判别结果,作为选择参数,进一步对动态特性参数之中的能够辨识的动态特性参数进行选择。下面,也将选择参数称为能够辨识的参数。辨识部13将辨识处理的结果向校正部11输出。辨识处理是使用辨识用数据和加工条件信息而执行的。加工条件信息是表示辨识动作中的加工条件的信息,是预先设定于辨识部13的信息。在加工条件信息例如包含刀具直径、刀具刃数、刀具扭转角、刀具轴向进刀量、刀具径向进刀量、上切或者下切的加工样式。The identification unit 13 selects an identifiable machining characteristic parameter among the machining characteristic parameters as a selection parameter based on the identification result of the vibration determination unit 12 , and identifies the selection parameter using the identification data input from the data acquisition unit 16 . In addition, the identification unit 13 further selects, as a selection parameter, an identifiable dynamic characteristic parameter among the dynamic characteristic parameters based on the identification result of the vibration determination unit 12 . In the following, the selection parameters will also be referred to as identifiable parameters. The recognition unit 13 outputs the result of the recognition process to the correction unit 11 . The identification process is executed using identification data and processing condition information. The processing condition information is information indicating the processing conditions in the recognition operation, and is information set in the recognition unit 13 in advance. The processing condition information includes, for example, the tool diameter, the number of tool edges, the tool twist angle, the tool axial feed amount, the tool radial feed amount, and the machining style of upper or lower cutting.
此外,下面,说明辨识部13进行动态特性参数和加工特性参数这两者的辨识的例子,但辨识部13也可以仅对动态特性参数和加工特性参数中的任一者进行辨识。例如,辨识部13基于振动判定部12的判别结果,将加工特性参数之中的能够辨识的加工特性参数作为选择参数进行选择,使用辨识用数据而进行选择参数的辨识。In the following, an example will be described in which the identification unit 13 identifies both the dynamic characteristic parameters and the machining characteristic parameters. However, the identification unit 13 may identify only one of the dynamic characteristic parameters and the machining characteristic parameters. For example, based on the determination result of the vibration determination unit 12 , the identification unit 13 selects an identifiable machining characteristic parameter among the machining characteristic parameters as the selection parameter, and identifies the selection parameter using the identification data.
一般来说,加工中的主轴转速和进给速度以恒定值被指定。在该情况下,辨识部13仅能够取得通过一组主轴转速和进给速度进行了加工的情况下的辨识用数据。在辨识用数据中,如上所述,包含由工作机械2的传感器检测出的运转状态信号,因此辨识部13仅能够取得通过一组主轴转速和进给速度进行了加工的情况下的运转状态信号。但是,在本实施方式中,通过辨识动作生成部14而生成主轴转速和进给速度各自连续地变化的指令,因此辨识部13能够取得通过在各时刻不同组合的主轴转速和进给速度进行了加工的情况下的运转状态信号。Generally, the spindle speed and feed rate during machining are specified as constant values. In this case, the identification unit 13 can only acquire identification data when machining is performed using a set of spindle rotational speeds and feed speeds. The identification data includes the operating state signal detected by the sensor of the machine tool 2 as described above. Therefore, the identification unit 13 can only obtain the operating state signal when processing is performed using one set of spindle rotation speed and feed speed. . However, in the present embodiment, the recognition operation generating unit 14 generates commands in which the spindle rotation speed and the feed speed each change continuously. Therefore, the recognition unit 13 can obtain the operation performed by using different combinations of the spindle rotation speed and the feed speed at each time. Operation status signal during processing.
在这里,对动态特性参数和加工特性参数进行说明。动态特性参数是表示后面记述的动力学模型的特性的参数,是表示工作机械2的振动的特性的参数。动态特性参数例如是等价质量、衰减系数、固有振动频率。另一方面,加工特性参数是表示后面记述的加工工艺模型的特性的参数,是表示刀具和工件之间的加工现象的特性的参数。加工特性参数例如是相对切削阻力、边缘力、刀具偏心量、刀具磨损幅度。Here, the dynamic characteristic parameters and machining characteristic parameters are explained. The dynamic characteristic parameter is a parameter that represents the characteristics of a dynamic model described later, and is a parameter that represents the vibration characteristics of the machine tool 2 . Dynamic characteristic parameters are, for example, equivalent mass, attenuation coefficient, and natural vibration frequency. On the other hand, the machining characteristic parameter is a parameter that represents the characteristics of a machining process model described later, and is a parameter that represents the characteristics of the machining phenomenon between the tool and the workpiece. Machining characteristic parameters are, for example, relative cutting resistance, edge force, tool eccentricity, and tool wear amplitude.
动力学模型是对工作机械2内部的机械构件、刀具和工件的动力学进行记述的数学模型。下面,对动力学模型的一个例子进行说明。图5是表示在实施方式1中,在固定于工作台的工件通过切削力而振动的情况下,对工作台传递干扰力的情形的示意图。在图5中,示出了工作机械2通过刀具33的旋转而进行铣削加工的例子。在图5中,以在构成驱动轴的工作台31上载置工件32,构成主轴的工具系统34对刀具33进行保持的结构例为前提。另外,在图5中,相对位移35示出工件前端相对于工作台31的振动方向上的相对位移,切削力36示出工件32中的切削力,干扰力37示出对工作台31传递的干扰力。此时的切削力36、干扰力37、相对位移35的关系能够通过下面的式(1)表示。式(1)所示的动力学模型是用于在产生切削力36时,通过包含刀具33或者工件32的机械构造对传递至进给轴的干扰力37进行计算,并且在产生切削力36时通过机械构造对在各进给轴产生的位置偏差进行计算的数学模型。The dynamic model is a mathematical model describing the dynamics of the mechanical components, tools, and workpieces inside the machine tool 2 . Next, an example of a dynamic model is explained. FIG. 5 is a schematic diagram illustrating how interference force is transmitted to the table when the workpiece fixed to the table vibrates due to cutting force in Embodiment 1. FIG. 5 shows an example in which the machine tool 2 performs milling processing by rotating the tool 33 . In FIG. 5 , a structural example is assumed in which a workpiece 32 is placed on a table 31 constituting a drive shaft, and a tool system 34 constituting a spindle holds a tool 33 . In addition, in FIG. 5 , the relative displacement 35 represents the relative displacement of the front end of the workpiece relative to the worktable 31 in the vibration direction, the cutting force 36 represents the cutting force in the workpiece 32 , and the interference force 37 represents the force transmitted to the worktable 31 . Interference power. The relationship between the cutting force 36, the interference force 37, and the relative displacement 35 at this time can be expressed by the following equation (1). The dynamic model shown in equation (1) is used to calculate the interference force 37 transmitted to the feed axis through the mechanical structure including the tool 33 or the workpiece 32 when the cutting force 36 is generated. A mathematical model that calculates the positional deviation generated in each feed axis based on the mechanical structure.
式1Formula 1
在这里,it's here,
fc:切削力,fd:干扰力,mt:等价质量,f c : cutting force, f d : interference force, m t : equivalent mass,
x:工件前端相对于工作台的振动方向的相对位移x: relative displacement of the front end of the workpiece relative to the vibration direction of the worktable
ζ:衰减系数,ωn:固有振动频率ζ: attenuation coefficient, ω n : natural vibration frequency
式(1)所示的动力学模型是将工作台31上的工件32作为1自由度振动系统而记述的模型,但动力学模型并不限定于上述的例子。例如,也可以作为包含对工件32进行固定的固定部及工作台31在内的多自由度振动系统而记述。并且,可以设定与由刀具33、工具系统34及主轴电动机构成的刀具侧构件相关的动力学模型。并且,也可以设定作为将包含对工件32进行固定的固定部及工作台31在内的工件侧构件和刀具侧构件组合后的振动系统的动力学模型。The dynamic model represented by equation (1) describes the workpiece 32 on the table 31 as a one-degree-of-freedom vibration system, but the dynamic model is not limited to the above example. For example, it may be described as a multi-degree-of-freedom vibration system including a fixing part for fixing the workpiece 32 and the table 31 . Furthermore, a dynamic model related to the tool-side member composed of the tool 33, the tool system 34, and the spindle motor can be set. Furthermore, a dynamic model may be set as a vibration system that combines the workpiece-side member and the tool-side member including the fixing portion that fixes the workpiece 32 and the table 31 .
加工工艺模型是对刀具和工件之间的切削工艺进行记述的数学模型。在下面的式(2)表示加工工艺模型的一个例子。The machining process model is a mathematical model that describes the cutting process between the tool and the workpiece. The following equation (2) represents an example of a machining process model.
式2Formula 2
fc:切削力,Kc:相对切削阻力,Kce:边缘力, fc : cutting force, Kc : relative cutting resistance, Kce : edge force,
a:刀具轴向进刀量,h:工件切除厚度,刀具旋转角度,t:时间a: tool axial feed amount, h: workpiece removal thickness, Tool rotation angle, t: time
刀具啮合角度,/>刀具未啮合角度 Tool engagement angle,/> Tool non-engagement angle
上述的式(2)是根据与各时刻的刀具33的旋转角度相对应的切除厚度,对由刀具33对工件32赋予的切削力进行计算的算式。在这里,切除厚度是指在刀具33的刃尖即刀具刃尖经过工件32时将工件32切除的厚度。切削力如图6及图7所示,在处于刀具刃尖与工件32接触的角度的情况下作为大于或等于零的值进行计算,但在处于刀具刃尖不与工件32接触的角度的情况下作为零进行计算。图6是表示在实施方式1中,刀具刃尖与工件32接触的刀具33的旋转角度的一个例子的图,图7是表示刀具刃尖不与工件32接触的刀具33的旋转角度的一个例子的图。即,在刀具33的每个旋转角度或者时刻,基于位置偏差对是否与工件接触进行判定,在刀具刃尖与工件32接触的情况下对切除厚度进行计算,在刀具刃尖不与工件32接触的情况下将切除厚度作为零进行计算。The above-mentioned equation (2) is an equation that calculates the cutting force applied to the workpiece 32 by the tool 33 based on the cutting thickness corresponding to the rotation angle of the tool 33 at each time. Here, the cutting thickness refers to the thickness of the workpiece 32 when the cutting edge of the tool 33 passes through the workpiece 32 . As shown in FIGS. 6 and 7 , the cutting force is calculated as a value greater than or equal to zero when the tool edge is in contact with the workpiece 32 , but when it is at an angle where the tool edge is not in contact with the workpiece 32 , the cutting force is calculated as a value greater than or equal to zero. Calculated as zero. FIG. 6 is a diagram showing an example of the rotation angle of the tool 33 when the tool edge is in contact with the workpiece 32 in Embodiment 1. FIG. 7 is a diagram showing an example of the rotation angle of the tool 33 when the tool edge is not in contact with the workpiece 32 . picture. That is, at each rotation angle or time of the tool 33, whether it is in contact with the workpiece is determined based on the position deviation, and the cutting thickness is calculated when the tool tip is in contact with the workpiece 32, and when the tool tip is not in contact with the workpiece 32, the cutting thickness is calculated. In the case of , the resection thickness is calculated as zero.
将式(2)所示的运算在刀具的切线方向、半径方向及轴向这3个方向进行,由此能够对3方向的切削力进行计算。在加工工艺模型中,针对具有上述3方向的成分的切削力而乘以与刀具33的旋转角度即刀具旋转角度相对应的旋转矩阵,由此进行坐标变换,由此对刀具基准坐标系中的切削力进行计算。在式(3)示出坐标变换的一个例子。The calculation shown in equation (2) is performed in three directions: the tangential direction, the radial direction, and the axial direction of the tool, so that the cutting force in the three directions can be calculated. In the machining process model, the cutting force having the components in the three directions is multiplied by the rotation matrix corresponding to the rotation angle of the tool 33, that is, the tool rotation angle, and coordinate transformation is performed, whereby the coordinate transformation in the tool reference coordinate system is performed. Cutting forces are calculated. An example of coordinate transformation is shown in equation (3).
式3Formula 3
fcx:X轴方向切削力,fcy:Y轴方向切削力,fcz:Z轴方向切削力,f cx : cutting force in the X-axis direction, f cy : cutting force in the Y-axis direction, f cz : cutting force in the Z-axis direction,
fct:刀具切线方向切削力,fcr:刀具半径方向切削力,fca:刀具轴向切削力f ct : cutting force in the tangential direction of the tool, f cr : cutting force in the radial direction of the tool, f ca : cutting force in the axial direction of the tool
将上述的式(2)及式(3)所示的运算以刀具刃尖的数量执行,对计算结果进行累计,由此能够最终地对刀具整体产生的切削力进行运算。式(2)所示的加工工艺模型是用于基于刀具刃尖和刀具33的加工对象即工件32之间的相对位置及刀具旋转角度对切除厚度进行计算,基于切除厚度对在刀具和工件之间产生的切削力进行计算的数学模型。式(2)中的切除厚度能够使用每1刃的进给量和刀具旋转角度通过式(4)进行计算。By executing the calculations shown in the above-mentioned equations (2) and (3) for the number of tool edges and accumulating the calculation results, the cutting force generated by the entire tool can be finally calculated. The machining process model shown in formula (2) is used to calculate the resection thickness based on the relative position between the tool tip and the processing object of the tool 33, that is, the workpiece 32, and the tool rotation angle. Based on the resection thickness, the relationship between the tool and the workpiece is calculated. A mathematical model for calculating the cutting forces generated during the cutting process. The cutting thickness in equation (2) can be calculated using equation (4) using the feed amount per blade and the tool rotation angle.
式4Formula 4
c:每1刃的进给量c: Feed per blade
作为其他例,切除厚度也能够使用式(5)进行计算。As another example, the resection thickness can also be calculated using equation (5).
式5Formula 5
v:刀具半径方向的刀具中心位移量,w:刀具半径方向的前加工面位移量,v: the tool center displacement in the tool radius direction, w: the front machining surface displacement in the tool radius direction,
Δr:与各刀具刃尖相对应的校正量,Ntooth:刀具刃尖编号Δr: Correction amount corresponding to each tool edge, N tooth : Tool edge number
式(5)是相对于式(4),追加根据当前的刀具位移和1刃前的刀具刃尖所生成的加工面即前加工面的差而进行计算的变动量,并且追加有与各刀具刃尖相对应的校正量的切除厚度的计算式。在式(5)所示的运算中,在当前的刀具刃尖产生的位移量和在大于或等于1刃前的刀具刃尖产生的位移量内,以对加工面形状赋予影响的位移量和在当前的刀具刃尖产生的位移量的差对切除厚度进行修正。即,切除厚度是基于与切削相关的当前的刀具刃尖所生成的轨迹和以当前的刀具刃尖为基准而在大于或等于1刃前的刀具刃尖内对加工面形状赋予影响的刀具刃尖的轨迹的差进行计算的。Equation (5) is a variation calculated based on the difference between the current tool displacement and the front machining surface generated by the tool edge in front of the first edge, and is added with the equation (4). Calculation formula for the resection thickness corresponding to the correction amount at the blade tip. In the calculation shown in Equation (5), the sum of the displacement amount that affects the shape of the machined surface is the sum of the displacement amount caused by the current tool edge and the displacement amount caused by the tool edge one edge ahead or more. The removal thickness is corrected by the difference in displacement generated at the current tool tip. That is, the cutting thickness is based on the trajectory generated based on the current tool edge related to cutting and the tool edge that affects the shape of the machined surface within the tool edge that is one or more edges in front based on the current tool edge. The difference between the sharp trajectories is calculated.
在这里,刀具中心位移量v是与式(1)的相对位移x之中的从刀具中心至刀具刃尖为止的方向的成分相当的位移量。另外,前加工面位移量w是通过由大于或等于1刃前的刀具刃尖进行切削时的相对位移x而在加工面产生的位移量。此外,大于或等于1刃前的刀具刃尖是与以关于切削的刀具刃尖为基准的时刻相比在之前的时刻与切削有关的刀具刃尖。例如,在刃数为2的刀具中,在当前切削中的刀具刃尖为第2刃的情况下,1刃前的刀具刃尖是180度旋转前的第1刃,2刃前是360度旋转前的第2刃,3刃前的刀具刃尖是540度旋转前的第1刃。在切削中在刀具产生位移而暂时地刃尖从工件32分离的情况下,当前的刀具刃尖不仅对通过1刃前的刀具刃尖生成的前加工面,还对通过大于或等于2刃前的刀具刃尖生成的前加工面进行切削。Here, the tool center displacement amount v is a displacement amount corresponding to the component of the relative displacement x in the equation (1) in the direction from the tool center to the tool edge. In addition, the displacement amount w of the front machining surface is the amount of displacement generated on the machining surface due to the relative displacement x when cutting with the tool edge that is one or more front edges. In addition, the tool edge that is equal to or greater than 1 edge is the tool edge that is related to cutting at a previous time compared to the time that is based on the tool edge that is cutting. For example, in a tool with 2 edges, if the tool edge currently cutting is the 2nd edge, the tool edge in front of the 1st edge is the 1st edge before the 180-degree rotation, and the 2nd edge is 360 degrees in front of it. The cutting edge of the tool before the 2nd and 3rd edges before rotation is the 1st edge before 540 degree rotation. When the tool is displaced during cutting and the cutting edge is temporarily separated from the workpiece 32, the current cutting edge not only affects the front machining surface generated by the cutting edge of 1 cutting edge, but also the front surface formed by the cutting edge of 2 or more cutting edges. The front machining surface generated by the tool edge is cut.
并且,在式(5)所示的运算中,切除厚度通过与表示刀具刃尖的编号即刀具刃尖编号和刀具旋转角度相对应的校正量进行修正。在这里,校正量是为了对以针对每个刀具刃尖而不同的旋转半径进行切削所引起的切除厚度的变化进行修正而导入的。作为需要导入校正量的事例,以下进行举例。例如,在特定的刃尖发生了磨损、卷刃等的情况下,其刀具刃尖的旋转半径与其他刀具刃尖相比变短,因此追加与磨损幅度、卷刃幅度等相对应的校正量。作为其他例,在刃尖更换式的刀具中,在存在刀具刃尖的安装误差的情况下,追加与安装误差相对应的校正量。作为其他例,在主轴旋转中心与刀具中心不一致的情况下即存在刀具偏心的情况下,追加与刀具偏心量相对应的校正量。此外,刀具中心是刀具的外切圆的中心。Furthermore, in the calculation shown in equation (5), the cutting thickness is corrected by a correction amount corresponding to the tool edge number, which is a number indicating the tool edge, and the tool rotation angle. Here, the correction amount is introduced in order to correct the change in the removal thickness caused by cutting with a different rotation radius for each tool edge. As an example where correction amounts need to be introduced, the following is an example. For example, when wear, curling, etc. occurs at a specific cutting edge, the rotation radius of the cutting edge becomes shorter than that of other cutting edges, so a correction amount corresponding to the wear width, curling width, etc. is added. . As another example, in a cutting edge replaceable type tool, when there is an installation error of the cutting edge of the tool, a correction amount corresponding to the installation error is added. As another example, when the spindle rotation center and the tool center do not coincide with each other, that is, when tool eccentricity exists, a correction amount corresponding to the tool eccentricity amount is added. Furthermore, the tool center is the center of the circumscribed circle of the tool.
刀具偏心量是指如图8及图9所示在刀具中心和主轴旋转中心之间产生了偏移量的情况下,针对每个刀具刃尖以刀具刃尖的旋转半径增减的量对切除厚度进行修正的量。图8是表示在实施方式1中,在刀具中心和主轴旋转中心之间产生了偏移量的情况下的第1刃尖处的切削的情形的图,图9是表示在刀具中心和主轴旋转中心之间产生了偏移量的情况下的第2刃尖处的切削的情形的图。第1刃尖43及第2刃尖44是刀具的刃尖。在图8及图9所示的例子中,在刀具中心41和主轴旋转中心42之间存在偏差。在如上所述的情况下,需要相对于没有偏差的情况下的切除厚度而对切除厚度进行修正,刀具偏心量表示此时的修正量。即,在切除厚度加上或者减去与刀具33的旋转角度相对应的刀具偏心量。通过修正量对切除厚度进行修正的事例并不限定于上述的事例,修正量也可以与在刀具刃尖发生的现象相应地适当变更。Tool eccentricity refers to the amount of offset that occurs between the tool center and the spindle rotation center as shown in Figures 8 and 9. The amount of increase or decrease in the rotation radius of the tool edge for each tool edge is The amount by which the thickness is corrected. FIG. 8 is a diagram showing the state of cutting at the first cutting edge when an offset amount occurs between the tool center and the spindle rotation center in Embodiment 1. FIG. 9 is a diagram showing the state of cutting between the tool center and the spindle rotation center. This is a diagram of the cutting situation at the second cutting edge when there is an offset between the centers. The first blade edge 43 and the second blade edge 44 are blade edges of the tool. In the example shown in FIGS. 8 and 9 , there is a deviation between the tool center 41 and the spindle rotation center 42 . In the case described above, the cutting thickness needs to be corrected relative to the cutting thickness without deviation, and the tool eccentricity amount represents the correction amount at this time. That is, the cutter eccentricity amount corresponding to the rotation angle of the cutter 33 is added to or subtracted from the cutting thickness. The example of correcting the cutting thickness by the correction amount is not limited to the above-mentioned example, and the correction amount may be appropriately changed according to the phenomenon occurring at the cutting edge of the tool.
此外,加工工艺模型并不限定于式(2)。例如,可以使用式(2),在切削速度大于或等于阈值的高速的情况下和切削速度小于阈值的低速的情况下使相对切削阻力的值变化。并且,可以在式(2)右边,设为追加有工艺阻尼力的模型。在这里,工艺阻尼力是刀具刃尖的退刀面与工件接触而产生的力。工艺阻尼能够表现为例如将退刀面接触面积乘以工艺阻尼系数而得到的值。在该情况下,工艺阻尼系数成为加工特性参数的一个。In addition, the processing technology model is not limited to Formula (2). For example, equation (2) can be used to change the value of the relative cutting resistance when the cutting speed is higher than or equal to the threshold value at a high speed and when the cutting speed is lower than the threshold value at a low speed. Furthermore, a model in which process damping force is added to the right side of equation (2) can be used. Here, the process damping force is the force generated by the contact between the relief surface of the tool tip and the workpiece. The process damping can be expressed, for example, as a value obtained by multiplying the contact area of the relief surface by the process damping coefficient. In this case, the process damping coefficient becomes one of the processing characteristic parameters.
作为其他例,可以使用针对存在扭转角的刀具的加工工艺模型。具体地说,可以设为下述模型,即,将刀具在轴向分割为微小厚度的刀具,对分割后的各微小厚度刀具中的切削力进行计算,将该切削力在刀具轴向累计而对最终的切削力进行计算。并且作为其他例,可以设为通过有限要素解析对切除厚度和切削力进行计算的模型。As another example, a machining process model for a tool with a twist angle can be used. Specifically, the following model can be used: the tool is divided into micro-thick tools in the axial direction, the cutting force in each divided micro-thickness tool is calculated, and the cutting force is accumulated in the tool axial direction. Calculate the final cutting force. As another example, a model that calculates the cutting thickness and cutting force by finite element analysis can be used.
下面,在动力学模型为式(1),加工工艺模型为式(2)的情况下,根据振动判定结果对能够辨识的参数进行判别,关于对该参数进行辨识的处理进行叙述。此外,以下所述的能够辨识的参数的候选是动态特性参数即等价质量、衰减系数、固有振动频率、加工特性参数即相对切削阻力、边缘力和刀具偏心量。Next, when the dynamic model is equation (1) and the machining process model is equation (2), parameters that can be identified are determined based on the vibration determination results, and the process of identifying the parameters is described. In addition, candidates for identifiable parameters described below are dynamic characteristic parameters, namely, equivalent mass, attenuation coefficient, natural vibration frequency, and machining characteristic parameters, namely, relative cutting resistance, edge force, and tool eccentricity.
辨识部13如果从振动判定部12作为振动判定结果而输入了表示是稳定加工、强制振动、颤振中的任一者的振动判定结果,则与该振动判定结果相应地进行以下处理。此外,强制振动和颤振同时地发生的情况很稀少,在如上所述的情况下,判定为颤振而进行辨识。When a vibration determination result indicating that it is stable machining, forced vibration, or chatter vibration is input from the vibration determination unit 12 as a vibration determination result, the identification unit 13 performs the following processing according to the vibration determination result. In addition, it is rare that forced vibration and chatter vibration occur simultaneously. In such a case, it is determined as chatter vibration and is identified.
[判定结果为稳定加工的情况][The judgment result is stable processing]
辨识部13作为能够辨识的参数对加工特性参数即相对切削阻力和边缘力进行选择。并且,辨识部13通过下述的处理对相对切削阻力和边缘力进行辨识。辨识部13使用从力传感器输出的力信息和在辨识部13中预先记录的加工条件,按照式(2)~式(4)对相对切削阻力和边缘力进行计算。即,以在向式(3)代入式(2)及式(4)时计算的各轴向的力的计算值与由力传感器检测出的力的实测值大致一致的方式,对式(2)中的相对切削阻力和边缘力进行计算。相对切削阻力和边缘力的计算方法只要使用已知的优化方法或者数值仿真即可。例如,能够使用最小2乘法或者梯度法。The identification unit 13 selects machining characteristic parameters, that is, relative cutting resistance and edge force, as parameters that can be identified. Furthermore, the identification unit 13 identifies the relative cutting resistance and edge force through the following processing. The identification unit 13 uses the force information output from the force sensor and the machining conditions pre-recorded in the identification unit 13 to calculate relative cutting resistance and edge force according to equations (2) to (4). That is, when formula (2) and formula (4) are substituted into formula (3), the calculated value of the force in each axial direction is substantially consistent with the actual measured value of the force detected by the force sensor. ) to calculate the relative cutting resistance and edge force. The calculation method of relative cutting resistance and edge force only needs to use known optimization methods or numerical simulation. For example, the least square multiplication or the gradient method can be used.
[判定结果为强制振动的情况][When the judgment result is forced vibration]
辨识部13作为能够辨识的参数对动态特性参数即衰减系数和固有振动频率及加工特性参数即相对切削阻力和边缘力进行选择。并且,辨识部13通过下述的处理对衰减系数、固有振动频率、相对切削阻力和边缘力进行辨识。The identification unit 13 selects the attenuation coefficient and natural vibration frequency, which are dynamic characteristic parameters, and relative cutting resistance and edge force, which are machining characteristic parameters, as identifiable parameters. Furthermore, the identification unit 13 identifies the attenuation coefficient, natural vibration frequency, relative cutting resistance, and edge force through the following processing.
辨识部13使用从力传感器输出的力信息和在辨识部13中预先记录的加工条件,按照式(1)~式(4)对衰减系数、固有振动频率及相对切削阻力和边缘力进行辨识。具体地说,在将式(1)变形而得到的下式(6)中的fd,代入由力传感器检测出的力的实测值。The identification unit 13 uses the force information output from the force sensor and the machining conditions pre-recorded in the identification unit 13 to identify the attenuation coefficient, natural vibration frequency, relative cutting resistance, and edge force according to equations (1) to (4). Specifically, the actual measured value of the force detected by the force sensor is substituted for f d in the following equation (6) obtained by deforming equation (1).
式6Formula 6
并且,将在向式(3)代入式(2)及式(4)时计算的各轴向的力的计算值代入至式(6)中的fc。此时,存在式(6)成立的衰减系数和固有振动频率及相对切削阻力和边缘力的组合,因此辨识部13对满足式(6)的衰减系数和固有振动频率及相对切削阻力和边缘力的组合进行计算。具体地说,辨识部13使用梯度法以使得式(6)的两边的误差成为最小,对衰减系数和固有振动频率及相对切削阻力和边缘力进行探索。作为其他方法,也能够通过最小2乘法对衰减系数和固有振动频率及相对切削阻力和边缘力进行计算。Then, the calculated value of the force in each axial direction calculated when formula (2) and formula (4) are substituted into formula (3) is substituted into f c in formula (6). At this time, there is a combination of attenuation coefficient, natural vibration frequency, relative cutting resistance, and edge force that satisfies equation (6). Therefore, the identification unit 13 determines the combination of attenuation coefficient, natural vibration frequency, relative cutting resistance, and edge force that satisfies equation (6). combinations are calculated. Specifically, the identification unit 13 uses the gradient method to minimize the errors on both sides of equation (6), and searches for the attenuation coefficient, natural vibration frequency, relative cutting resistance, and edge force. As another method, the attenuation coefficient, natural vibration frequency, relative cutting resistance, and edge force can also be calculated by the least square method.
[判定结果为颤振的情况][When the judgment result is chatter]
辨识部13作为能够辨识的参数对动态特性参数即等价质量、衰减系数和固有振动频率及加工特性参数即相对切削阻力、边缘力和刀具偏心量进行选择。并且,辨识部13通过下述的处理对等价质量、衰减系数、固有振动频率、相对切削阻力、边缘力和刀具偏心量进行辨识。The identification unit 13 selects the dynamic characteristic parameters, namely equivalent mass, attenuation coefficient, and natural vibration frequency, and the machining characteristic parameters, namely relative cutting resistance, edge force, and tool eccentricity, as identifiable parameters. Furthermore, the identification unit 13 identifies the equivalent mass, attenuation coefficient, natural vibration frequency, relative cutting resistance, edge force, and tool eccentricity through the following processing.
辨识部13使用从力传感器输出的力信息和在辨识部13中预先记录的加工条件,按照式(1)、式(2)、式(3)及式(5)对等价质量、衰减系数、固有振动频率及相对切削阻力、边缘力和刀具偏心量进行辨识。具体地说,按照图10所示的顺序能够对等价质量、衰减系数、固有振动频率及相对切削阻力、边缘力和刀具偏心量进行辨识。The identification unit 13 uses the force information output from the force sensor and the processing conditions pre-recorded in the identification unit 13 to calculate the equivalent mass and attenuation coefficient according to equations (1), (2), (3) and (5). , natural vibration frequency and relative cutting resistance, edge force and tool eccentricity are identified. Specifically, according to the sequence shown in Figure 10, the equivalent mass, attenuation coefficient, natural vibration frequency and relative cutting resistance, edge force and tool eccentricity can be identified.
图10是表示由振动判定部12判定为颤振的情况下的实施方式1的辨识部13中的辨识处理顺序的一个例子的流程图。首先,辨识部13在步骤S1,关于参数的组对初始值进行设定。此时的参数的组是动态特性参数即等价质量、衰减系数和固有振动频率及加工特性参数即相对切削阻力、边缘力和刀具偏心量的各参数的组合。FIG. 10 is a flowchart showing an example of the identification processing procedure in the identification unit 13 of Embodiment 1 when the vibration determination unit 12 determines that the vibration is vibration. First, in step S1, the identification unit 13 sets initial values for the parameter groups. The set of parameters at this time is a combination of dynamic characteristic parameters, that is, equivalent mass, attenuation coefficient, and natural vibration frequency, and machining characteristic parameters, that is, relative cutting resistance, edge force, and tool eccentricity.
在步骤S2,辨识部13对同时满足动力学模型和加工工艺模型的位移量进行计算。例如,对同时满足动力学模型即式(1)和加工工艺模型即式(2)及式(5)的位移量进行计算。在这里,位移量是式(1)中的相对位移x和式(5)中的v、w。In step S2, the identification unit 13 calculates a displacement amount that satisfies both the dynamic model and the machining process model. For example, the displacement amount that satisfies the dynamic model (1) and the machining process model (2) and (5) is calculated. Here, the displacement amount is the relative displacement x in equation (1) and v and w in equation (5).
在步骤S3,辨识部13对向动力学模型赋予位移量时的干扰力进行计算。例如,辨识部13向动力学模型即式(1)赋予通过步骤S2计算出的位移量而对干扰力fd进行计算。In step S3, the identification unit 13 calculates the interference force when a displacement is given to the dynamic model. For example, the identification unit 13 adds the displacement amount calculated in step S2 to the dynamic model, which is equation (1), and calculates the interference force f d .
在步骤S4,辨识部13对由力传感器检测出的力的实测值和通过步骤S3计算出的力的计算值的误差是否小于或等于容许值进行判定。辨识部13如果误差小于或等于容许值(步骤S4 Yes),则将该时刻的参数的组的值作为辨识结果,结束辨识处理。辨识部13在误差超过容许值的情况下(步骤S4 No),在步骤S5,对参数的组的值进行更新,返回步骤S2的处理。In step S4, the identification unit 13 determines whether the error between the actual measured value of the force detected by the force sensor and the calculated value of the force calculated in step S3 is less than or equal to the allowable value. If the error is less than or equal to the allowable value (step S4 Yes), the identification unit 13 uses the value of the parameter set at that time as the identification result, and ends the identification process. When the error exceeds the allowable value (step S4 No), the identification unit 13 updates the value of the parameter group in step S5 and returns to the process of step S2.
作为步骤S5中的参数的更新方法,例如能够使用使各参数以预先确定的量增加或者减少的方法。此外,由振动判定部12判定为颤振的情况下的辨识部13中的辨识处理并不限定于上述的步骤S1~S5的处理。例如,也可以将式(1)、式(2)、式(3)及式(5)联立,使用最小2乘法对各参数进行计算。As a method of updating the parameters in step S5, for example, a method of increasing or decreasing each parameter by a predetermined amount can be used. In addition, the identification processing in the identification unit 13 when the vibration determination unit 12 determines that the vibration is vibration is not limited to the processing of steps S1 to S5 described above. For example, Equation (1), Equation (2), Equation (3), and Equation (5) can also be combined to calculate each parameter using least square multiplication.
返回图1的说明,校正部11从辨识部13对辨识结果即动态特性参数和加工特性参数进行接收,基于辨识结果,将用于对工作机械2的运转进行校正的校正信号输出至驱动控制部15。具体地说,在校正部11内执行与机械动力学及加工工艺相关的仿真,对刀具刃尖的振动振幅小于或等于规定值的主轴转速和进给速度的组合进行计算。校正部11基于计算出的主轴转速和进给速度,生成用于对主轴转速和进给速度进行校正的校正信号,向驱动控制部15输出。在这里规定值是在校正部11预先设定的值,是为了满足确定了加工结果的尺寸公差所设定的值。此外,进行校正的对象除了主轴转速和进给速度以外,也可以包含刀具轴向或者刀具径向的进刀量。Returning to the description of FIG. 1 , the correction unit 11 receives the dynamic characteristic parameters and machining characteristic parameters that are the identification results from the identification unit 13 , and outputs a correction signal for correcting the operation of the machine tool 2 to the drive control unit based on the identification results. 15. Specifically, the correction unit 11 executes simulation related to mechanical dynamics and machining processes, and calculates a combination of the spindle rotation speed and the feed speed at which the vibration amplitude of the tool edge is less than or equal to a predetermined value. The correction unit 11 generates a correction signal for correcting the spindle rotation speed and the feed speed based on the calculated spindle rotation speed and feed speed, and outputs the correction signal to the drive control unit 15 . The predetermined value here is a value set in advance in the correction unit 11, and is a value set in order to satisfy the dimensional tolerance that determines the processing result. In addition, in addition to the spindle rotation speed and feed speed, the objects for correction may also include the amount of feed in the tool axial direction or the tool radial direction.
使用图11对以上所述的实施方式1的数控装置1的动作的例子进行说明。图11是表示实施方式1的数控装置1的动作的一个例子的流程图。在步骤S11,数控装置1开始辨识动作。具体地说,辨识动作生成部14生成辨识动作指令,驱动控制部15针对工作机械2,将控制信号输出至工作机械2,以使得工作机械2执行通过辨识动作指令所指定出的动作。An example of the operation of the numerical control device 1 according to the first embodiment described above will be described using FIG. 11 . FIG. 11 is a flowchart showing an example of the operation of the numerical control device 1 according to the first embodiment. In step S11, the numerical control device 1 starts the identification operation. Specifically, the recognition operation generation unit 14 generates a recognition operation command, and the drive control unit 15 outputs a control signal to the machine tool 2 so that the machine machine 2 executes the operation specified by the recognition operation command.
在步骤S12,振动判定部12取得辨识用数据。具体地说,数据取得部16从驱动控制部15取得控制信号,从工作机械2的传感器取得运转状态信号,生成将两者的时间偏差补偿后的辨识用数据,向振动判定部12及辨识部13输出。In step S12, the vibration determination unit 12 acquires identification data. Specifically, the data acquisition unit 16 acquires the control signal from the drive control unit 15 and the operating state signal from the sensor of the machine tool 2 , generates identification data in which the time difference between the two is compensated, and supplies the data to the vibration determination unit 12 and the identification unit. 13 output.
在步骤S13,振动判定部12基于辨识用数据对振动的状态进行判别。具体地说,振动判定部12基于辨识用数据的运转状态信号对是否发生了振动进行判定,在判定为没有发生的情况下,判别为振动的状态是稳定加工。另外,振动判定部12在判定为发生了振动的情况下,基于振动的频率对是强制振动、颤振中的哪一者进行判别。振动判定部12将振动的状态的判别结果作为振动判定结果向辨识部13输出。In step S13, the vibration determination unit 12 determines the state of vibration based on the identification data. Specifically, the vibration determination unit 12 determines whether vibration has occurred based on the operating state signal of the identification data. If it is determined that vibration has not occurred, it determines that the state of vibration is stable processing. In addition, when the vibration determination unit 12 determines that vibration has occurred, it determines whether it is a forced vibration or a flutter vibration based on the frequency of the vibration. The vibration determination unit 12 outputs the determination result of the vibration state to the identification unit 13 as the vibration determination result.
在步骤S14,辨识部13基于辨识用数据和振动判定结果,对能够辨识的参数进行选择。具体地说,辨识部13与振动判定结果相应地从动态特性参数和加工特性参数中对能够辨识的参数进行选择。In step S14, the identification unit 13 selects parameters that can be identified based on the identification data and the vibration determination results. Specifically, the identification unit 13 selects parameters that can be identified from dynamic characteristic parameters and machining characteristic parameters in accordance with the vibration determination result.
在步骤S15,辨识部13使用辨识用数据,对通过步骤S14选择出的能够辨识的参数进行辨识。在步骤S16,数控装置1在直至步骤S15为止的辨识动作结束后,即,在通常的加工动作中,基于辨识结果对工作机械2的运转进行校正。具体地说,校正部11基于由辨识部13计算出的辨识结果,生成用于对工作机械2的运转进行校正的校正信号,向驱动控制部15输出。驱动控制部15基于加工路径和该加工路径中的基准主轴转速及基准进给速度和校正信号,生成控制信号,向工作机械2输出。In step S15, the identification unit 13 uses the identification data to identify the identifiable parameters selected in step S14. In step S16, the numerical control device 1 corrects the operation of the machine tool 2 based on the identification result after the identification operation up to step S15 is completed, that is, during the normal machining operation. Specifically, the correction unit 11 generates a correction signal for correcting the operation of the machine tool 2 based on the identification result calculated by the identification unit 13 and outputs it to the drive control unit 15 . The drive control unit 15 generates a control signal based on the machining path, the reference spindle rotation speed and the reference feed speed in the machining path, and the correction signal, and outputs the control signal to the machine tool 2 .
数控装置1在加工中时时刻刻执行从步骤S11至步骤S15为止的一系列处理,由此能够进行参数辨识。并且,在辨识动作后,通过步骤S16的处理,使用辨识结果能够改善加工的状态。The numerical control device 1 executes a series of processes from step S11 to step S15 at all times during machining, thereby enabling parameter identification. Moreover, after the recognition operation, through the processing of step S16, the recognition results can be used to improve the processing status.
接下来,对数控装置1的硬件结构进行说明。图1所示的数控装置1的各部是通过处理电路实现的。处理电路可以是具有处理器的电路,也可以是专用硬件。Next, the hardware structure of the numerical control device 1 will be described. Each part of the numerical control device 1 shown in Fig. 1 is realized by a processing circuit. The processing circuit may be a circuit having a processor, or it may be dedicated hardware.
在处理电路是具有处理器的电路的情况下,处理电路例如是图12所示的结构的处理电路。图12是表示实施方式1的处理电路的结构例的图。处理电路200具有处理器201及存储器202。在数控装置1的各部通过图12所示的处理电路200实现的情况下,处理器201将在存储器202中储存的程序读出而执行,由此将它们实现。即,在数控装置1的各部通过图12所示的处理电路200实现的情况下,它们的功能是使用软件即程序而实现的。存储器202还作为处理器201的作业区域被使用。处理器201是CPU(Central Processing Unit)等。存储器202例如是RAM(Random Access Memory)、ROM(Read Only Memory)、闪存等非易失性或易失性的半导体存储器、磁盘等。When the processing circuit is a circuit including a processor, the processing circuit is, for example, a processing circuit having a structure shown in FIG. 12 . FIG. 12 is a diagram showing a structural example of the processing circuit according to Embodiment 1. The processing circuit 200 includes a processor 201 and a memory 202 . When each part of the numerical control device 1 is realized by the processing circuit 200 shown in FIG. 12 , the processor 201 reads and executes the program stored in the memory 202 to realize them. That is, when each part of the numerical control device 1 is implemented by the processing circuit 200 shown in FIG. 12 , their functions are implemented using software, that is, a program. The memory 202 is also used as a working area of the processor 201 . The processor 201 is a CPU (Central Processing Unit) or the like. The memory 202 is, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory, a magnetic disk, or the like.
在将数控装置1的各部实现的处理电路为专用硬件的情况下,处理电路例如是FPGA(Field Programmable Gate Array)、ASIC(Application Specific IntegratedCircuit)。此外,数控装置1的各部也可以将具有处理器的处理电路及专用硬件组合而实现。数控装置1的各部可以通过多个处理电路而实现。When the processing circuit implemented in each part of the numerical control device 1 is dedicated hardware, the processing circuit is, for example, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). In addition, each part of the numerical control device 1 can also be implemented by combining a processing circuit including a processor and dedicated hardware. Each component of the numerical control device 1 can be realized by a plurality of processing circuits.
如以上说明所述,实施方式1的数控装置1针对主轴和进给轴而生成速度连续地变化的指令,将该指令独立地赋予给主轴和进给轴,由此使工作机械执行辨识动作。而且,实施方式1的数控装置1根据通过辨识动作而收集的辨识用数据对工作机械2的振动的状态进行判别,与其判别结果相应地对能够辨识的加工特性参数进行辨识。如上所述,实施方式1的数控装置1能够有效地以短时间对加工特性参数进行辨识。并且,实施方式1的数控装置1也能够对能够与判别结果相应地对振动的状态进行辨识的动态特性参数进行辨识。另外,实施方式1的数控装置1能够针对工作机械2在一次的辨识动作中再现多个种类的振动状态,因此作业者不每次变更加工条件,也能够以短时间有效地进行辨识。并且,通过对颤振状态进行再现,从而能够同时推定动态特性参数和加工特性参数。其结果,实施方式1的数控装置1能够基于辨识结果而校正针对工作机械的控制信号,因此不使加工不良发生而能够继续加工。另外,如果使主轴转速以台阶状阶段性地变化而进行辨识,则只能够离散地探索成为固有振动频率的候选的峰值。与此相对,在本实施方式中,如上所述,针对主轴和进给轴而生成速度连续地变化的指令,因此与使主轴转速以台阶状阶段性地变化的情况相比,能够高精度地对动态特性参数和加工特性参数进行辨识。As described above, the numerical control device 1 of Embodiment 1 generates a command for the spindle and the feed axis to continuously change the speed, and independently gives the command to the spindle and the feed axis, thereby causing the machine tool to perform the identification operation. Furthermore, the numerical control device 1 of Embodiment 1 determines the vibration state of the machine tool 2 based on the identification data collected through the identification operation, and identifies the machining characteristic parameters that can be identified in accordance with the determination result. As described above, the numerical control device 1 according to Embodiment 1 can effectively identify the machining characteristic parameters in a short time. Furthermore, the numerical control device 1 according to Embodiment 1 can also identify dynamic characteristic parameters that can identify the state of vibration according to the determination result. In addition, the numerical control device 1 of Embodiment 1 can reproduce a plurality of types of vibration states for the machine tool 2 in one identification operation. Therefore, the operator can effectively perform identification in a short time without changing the processing conditions every time. Furthermore, by reproducing the chatter state, dynamic characteristic parameters and machining characteristic parameters can be estimated simultaneously. As a result, the numerical control device 1 according to Embodiment 1 can correct the control signal for the machine tool based on the recognition result, so that machining can be continued without causing machining defects. In addition, if the spindle rotation speed is changed stepwise for identification, only the peak value that is a candidate for the natural vibration frequency can be discretely searched. On the other hand, in this embodiment, as described above, commands are generated for the spindle and the feed axis to continuously change the speed. Therefore, compared with the case where the spindle rotation speed is changed stepwise in a step-like manner, it is possible to achieve high-precision operation. Identify dynamic characteristic parameters and machining characteristic parameters.
此外,动力学模型及加工工艺模型并不限定于上述式(1)及(2),能够根据机械构造及加工方法而适当变更。因此,动态特性参数并不限定于等价质量、衰减系数和固有振动频率,同样地,加工特性参数并不限定于相对切削阻力、边缘力和刀具偏心量。动态特性参数和加工特性参数可以与动力学模型及加工工艺模型相应地适当变更,具有与本实施方式1同等的效果。In addition, the dynamic model and the processing process model are not limited to the above-mentioned formulas (1) and (2), and can be appropriately changed according to the mechanical structure and processing method. Therefore, the dynamic characteristic parameters are not limited to equivalent mass, attenuation coefficient and natural vibration frequency. Similarly, the machining characteristic parameters are not limited to relative cutting resistance, edge force and tool eccentricity. The dynamic characteristic parameters and the machining characteristic parameters can be appropriately changed according to the dynamic model and the machining process model, and have the same effect as the first embodiment.
在实施方式1中,说明了将1个工作机械2通过1个数控装置1控制的结构,但也可以在数控装置1连接大于或等于2个工作机械。例如,针对第1工作机械而生成使主轴转速变化的指令,针对第2工作机械而生成使进给速度变化的指令,对各个工作机械同时地赋予动作指令,由此具有与通过1个工作机械进行动作相比能够以短时间完成辨识的效果。此外,在实施方式1中,说明了通过刀具的旋转进行铣削加工的工作机械2,但本发明也能够应用于通过工件的旋转进行车削加工的工作机械。In Embodiment 1, the structure in which one machine tool 2 is controlled by one numerical control device 1 has been described. However, two or more machine machines may be connected to the numerical control device 1 . For example, a command for changing the spindle rotation speed is generated for the first machine tool, a command for changing the feed speed is generated for the second machine machine, and operation commands are given to each machine machine at the same time. Compared with performing actions, the recognition effect can be completed in a shorter time. Moreover, in Embodiment 1, the machine tool 2 which performs milling processing by the rotation of a tool was demonstrated, but this invention can also be applied to the machine tool 2 which performs turning processing by the rotation of a workpiece.
此外,在本实施方式1中,设为通过力传感器直接检测力的结构,但使用其他传感器间接地推定力也能够具有与本实施方式1相同的效果。例如,使用电动机电流指令即参照电动机电流和通过线性编码器检测出的位置,数据取得部16或者辨识部13能够通过下式(7)对力进行计算。In addition, in this Embodiment 1, the force is directly detected by a force sensor. However, the same effect as that in Embodiment 1 can be obtained by indirectly estimating the force using another sensor. For example, the data acquisition unit 16 or the identification unit 13 can calculate the force according to the following equation (7) using the motor current command, that is, the reference motor current, and the position detected by the linear encoder.
式7Formula 7
fest=KTIref-Mü…(7)f est =K T I ref -Mü…(7)
fest:伺服轴干扰力,KT:扭矩常数,f est : servo axis interference force, K T : torque constant,
Iref:参照电动机电流,M:进给轴等价质量,u:线性编码器检测位置I ref : reference motor current, M: equivalent mass of the feed axis, u: linear encoder detection position
作为其他例,使用加速度传感器也能够同样地对力进行计算。在该情况下,使用由加速度传感器检测出的加速度,数据取得部16或者辨识部13能够通过下式(8)对力进行计算。As another example, force can be calculated similarly using an acceleration sensor. In this case, the data acquisition unit 16 or the recognition unit 13 can calculate the force using the following equation (8) using the acceleration detected by the acceleration sensor.
式8Formula 8
fest=KTIref-Mα…(8)f est =K T I ref -Mα…(8)
α:加速度传感检测量α: Acceleration sensing detection amount
式(7)及式(8)是将进给轴视作1个惯性体时的力的计算式,但也可以与进给轴的构造相应地适当使用视作多惯性体的计算式。并且,可以追加对摩擦力进行补偿的项。Equations (7) and (8) are calculation equations for forces when the feed axis is regarded as one inertia body. However, calculation equations that treat multiple inertia bodies may be appropriately used depending on the structure of the feed axis. Furthermore, an item for compensating friction force can be added.
实施方式2.Embodiment 2.
图13是表示本发明的实施方式2所涉及的数控装置的结构例的框图。在实施方式1中,说明了根据将辨识动作执行一次的期间的控制信号和运转状态信号而进行辨识处理的例子。在实施方式1中,在一次的辨识动作中没有发生颤振的情况下,存在动态特性参数和加工特性参数之中的无法辨识的参数。本实施方式2中,说明在执行辨识动作时没有发生颤振的情况下对辨识动作进行修正的例子。此后,关于具有与实施方式1相同功能的结构要素,使用同一标号而省略重复说明。下面,以与实施方式1的不同点为中心进行说明。FIG. 13 is a block diagram showing a structural example of a numerical control device according to Embodiment 2 of the present invention. In Embodiment 1, the example in which the identification process is performed based on the control signal and the operating state signal during which the identification operation is performed once has been described. In Embodiment 1, when chatter does not occur in one identification operation, there are parameters that cannot be identified among the dynamic characteristic parameters and the machining characteristic parameters. This Embodiment 2 explains an example in which the recognition operation is corrected when chattering does not occur when the recognition operation is performed. Hereinafter, the same reference numerals will be used for structural elements having the same functions as those in Embodiment 1, and repeated descriptions will be omitted. The following description will focus on differences from Embodiment 1.
数控装置1a如图13所示,除了取代实施方式1的辨识部13及辨识动作生成部14而具有辨识部13a及辨识动作生成部14a以外,与实施方式1相同。辨识部13a及辨识动作生成部14a与实施方式1的辨识部13及辨识动作生成部14同样地通过处理电路而实现。As shown in FIG. 13 , the numerical control device 1 a is the same as the first embodiment except that it has an identification unit 13 a and an identification operation generation unit 14 a instead of the identification unit 13 and the identification operation generation unit 14 of the first embodiment. The recognition unit 13a and the recognition operation generation unit 14a are realized by a processing circuit in the same manner as the recognition unit 13 and the recognition operation generation unit 14 of Embodiment 1.
辨识部13a与实施方式1的辨识部13同样地,使用从振动判定部12输入的振动判定结果,在动态特性参数和加工特性参数内,对能够辨识的参数进行选择。另外,辨识部13a与实施方式1的辨识部13同样地,基于从数据取得部16输入的辨识用数据,执行用于对选择出的能够辨识的参数进行辨识的辨识处理,将辨识处理的结果向校正部11输出。辨识处理使用辨识用数据和加工条件信息,通过与实施方式1的辨识部13相同的方法而执行。Like the identification unit 13 of Embodiment 1, the identification unit 13a selects parameters that can be identified among the dynamic characteristic parameters and the machining characteristic parameters using the vibration determination result input from the vibration determination unit 12. In addition, like the identification unit 13 of Embodiment 1, the identification unit 13a executes identification processing for identifying the selected identifiable parameters based on the identification data input from the data acquisition unit 16, and obtains the result of the identification processing. output to the correction unit 11. The identification process is executed by the same method as the identification unit 13 in Embodiment 1 using identification data and processing condition information.
并且,在辨识部13a,将动态特性参数和加工特性参数之中的至少1个作为辨识对象的参数而预先设定。辨识部13a在进行大于或等于一次的辨识处理后,在存在辨识对象的参数之中的未辨识的参数的情况下,向后面记述的辨识动作生成部14a输出辨识动作修正信号。辨识动作修正信号是表示存在未辨识的动态特性参数或者加工特性参数的信号。Furthermore, in the identification unit 13a, at least one of the dynamic characteristic parameter and the machining characteristic parameter is set in advance as a parameter to be identified. After performing the recognition process once or more, the recognition unit 13a outputs a recognition operation correction signal to the recognition operation generation unit 14a described later, if there is an unrecognized parameter among the parameters to be recognized. The identification action correction signal is a signal indicating the existence of unrecognized dynamic characteristic parameters or machining characteristic parameters.
辨识动作生成部14a与实施方式1的辨识动作生成部14同样地,生成对工作机械的主轴转速和进给速度进行变更的辨识动作指令,向驱动控制部15输出辨识动作指令。Like the recognition operation generation unit 14 of Embodiment 1, the recognition operation generation unit 14 a generates a recognition operation command that changes the main shaft rotation speed and the feed speed of the machine tool, and outputs the recognition operation command to the drive control unit 15 .
并且,辨识动作生成部14a基于从辨识部13a输出的辨识动作修正信号,对辨识动作的指令模式进行修正。与辨识部13同样地,辨识部13a能够在工作机械发生了颤振的情况下对最多种类的参数进行辨识。因此,辨识动作生成部14a对使主轴转速或者进给速度变化的范围进行变更,由此以在辨识动作的过程发生颤振的方式对辨识动作进行修正。具体地说,辨识动作生成部14a生成将前述的主轴转速的最大值S1、最小值S2、进给速度的最大值F1及最小值F2之中的至少1个以预先确定的比例变更后的辨识动作指令模式。具体地说,例如,关于主轴转速及进给速度之中的至少1个,以通过前一次辨识动作所设定的变化的范围成为不同的范围的方式,对主轴转速的最大值S1、最小值S2、进给速度的最大值F1及最小值F2之中的至少1个进行变更。Furthermore, the recognition operation generating unit 14a corrects the command pattern of the recognition operation based on the recognition operation correction signal output from the recognition unit 13a. Like the identification unit 13 , the identification unit 13 a can identify the widest variety of parameters when chattering occurs in the machine tool. Therefore, the identification operation generating unit 14a changes the range in which the spindle rotation speed or the feed speed is changed, thereby correcting the identification operation so that chatter occurs during the identification operation. Specifically, the identification operation generating unit 14a generates an identification in which at least one of the aforementioned maximum value S1 and minimum value S2 of the spindle rotation speed and the maximum value F1 and the minimum value F2 of the feed speed is changed by a predetermined ratio. Action command mode. Specifically, for example, for at least one of the spindle rotation speed and the feed speed, the maximum value S1 and the minimum value of the spindle rotation speed are calculated so that the range of change set by the previous identification operation becomes a different range. S2, at least one of the maximum value F1 and the minimum value F2 of the feed speed is changed.
使用图14对以上所述的实施方式2的数控装置1a的动作的例子进行说明。图14是表示实施方式2的数控装置1a的动作的一个例子的流程图。在步骤S21,数控装置1a开始辨识动作。在初次的步骤S21中,辨识动作生成部14a生成初次的辨识动作指令,驱动控制部15针对工作机械,将控制信号输出至工作机械以使得工作机械执行通过辨识动作指令所指定出的动作。An example of the operation of the numerical control device 1a according to the second embodiment described above will be described using FIG. 14 . FIG. 14 is a flowchart showing an example of the operation of the numerical control device 1a according to the second embodiment. In step S21, the numerical control device 1a starts the identification operation. In the first step S21, the recognition operation generation unit 14a generates the first recognition operation command, and the drive control unit 15 outputs a control signal to the machine tool so that the machine machine executes the operation specified by the recognition operation command.
在步骤S22~S25,进行与在实施方式1中说明的图11的步骤S12~S15相同的处理。在步骤S26,辨识部13a对是否辨识到预先确定的辨识对象的参数进行判定,如果辨识完成(步骤S26 Yes),则向步骤S28进入。如果存在预先确定的辨识对象的参数之中的没有辨识的参数(步骤S26 No),则数控装置1a在步骤S27对辨识动作指令进行修正,重复从步骤S21起的处理。具体地说,在步骤S27,辨识部13a将辨识动作修正信号向辨识动作生成部14a输出,以辨识动作生成部14a对主轴转速及进给速度之中的至少1个变化的范围进行变更的方式对辨识动作指令进行修正,将修正后的辨识动作指令向驱动控制部15输出。在第2次及其以后的步骤S21中,基于由驱动控制部15修正后的辨识动作指令,针对工作机械2而生成控制信号,输出至工作机械2。In steps S22 to S25, the same processing as steps S12 to S15 in FIG. 11 described in Embodiment 1 is performed. In step S26, the recognition unit 13a determines whether the parameter of the predetermined recognition target has been recognized. If the recognition is completed (step S26 Yes), the process proceeds to step S28. If there is an unidentified parameter among the parameters of the predetermined identification target (step S26 No), the numerical control device 1a corrects the identification operation command in step S27 and repeats the process from step S21. Specifically, in step S27, the recognition unit 13a outputs the recognition operation correction signal to the recognition operation generation unit 14a, so that the recognition operation generation unit 14a changes the range in which at least one of the spindle rotation speed and the feed speed changes. The recognition operation command is corrected, and the corrected recognition operation command is output to the drive control unit 15 . In the second and subsequent steps S21 , a control signal is generated for the machine tool 2 based on the recognized operation command corrected by the drive control unit 15 , and is output to the machine machine 2 .
在步骤S28,数控装置1a基于辨识结果对工作机械2的运转进行校正。具体地说,校正部11与实施方式1的校正部11同样地,在辨识动作结束后,基于由辨识部13a计算出的辨识结果,生成校正信号而输出至驱动控制部15。驱动控制部15基于加工路径、该加工路径中的基准主轴转速及基准进给速度和校正信号,生成控制信号而向工作机械2输出。In step S28, the numerical control device 1a corrects the operation of the machine tool 2 based on the identification result. Specifically, like the correction unit 11 of Embodiment 1, after the identification operation is completed, the correction unit 11 generates a correction signal based on the identification result calculated by the identification unit 13 a and outputs it to the drive control unit 15 . The drive control unit 15 generates a control signal based on the machining path, the reference spindle rotation speed and the reference feed speed in the machining path, and the correction signal, and outputs the control signal to the machine tool 2 .
数控装置1a在加工中重复执行从步骤S21至步骤S27为止的一系列的处理。即,辨识部13a在使用与辨识动作指令相对应的期间的辨识用数据进行辨识后,在存在作为辨识对象而设定的参数即辨识对象参数之中的辨识未完成的参数的情况下,生成对辨识动作的变更进行指示的辨识动作修正信号而输出至辨识动作生成部14a。而且,辨识动作生成部14a如果接收到辨识动作修正信号,则对辨识动作指令进行变更,数据取得部16使基于变更后的辨识动作指令而生成的控制信号和表示基于该控制信号而动作的工作机械2的运转状态的运转状态信号同步而作为辨识用数据向振动判定部12及辨识部13a输出。而且,直至作为辨识对象而设定的全部参数的辨识完成为止重复这些动作。由此,能够进行作为辨识对象所设定的全部动态特性参数和加工特性参数的辨识。并且,通过步骤S28的处理,能够使用辨识结果而改善加工的状态。此外,在这里,说明了在一次的辨识动作完成后对辨识动作指令进行修正的情况下的处理流程,但也可以是在辨识动作的中途对辨识动作进行修正的处理流程。The numerical control device 1a repeatedly executes a series of processes from step S21 to step S27 during processing. That is, the recognition unit 13a performs recognition using the recognition data for the period corresponding to the recognition operation command, and when there is a parameter for which recognition has not been completed among the parameters set as the recognition target, that is, the recognition target parameter, the recognition unit 13a generates The recognition operation correction signal instructing the change of the recognition operation is output to the recognition operation generating unit 14a. Furthermore, when the recognition operation correction signal is received, the recognition operation generation unit 14a changes the recognition operation command, and the data acquisition unit 16 uses the control signal generated based on the changed recognition operation command and the operation indicating the operation based on the control signal. The operating state signal of the operating state of the machine 2 is synchronized and output as identification data to the vibration determination unit 12 and the identification unit 13a. Furthermore, these operations are repeated until identification of all parameters set as identification targets is completed. This enables identification of all dynamic characteristic parameters and machining characteristic parameters set as identification targets. Furthermore, through the processing of step S28, the recognition results can be used to improve the processing status. In addition, here, the processing flow in the case where the recognition operation command is corrected after one recognition operation is completed has been described. However, the processing flow may also be a processing flow in which the recognition operation is corrected in the middle of the recognition operation.
如以上说明所述,实施方式2的数控装置1a在存在预先确定的辨识对象的参数之中的辨识未完的参数的情况下,对辨识动作进行修正而再次实施辨识动作。因此,实施方式2的数控装置1a在初次的辨识动作的指令模式中存在无法辨识的参数的情况下,对辨识动作进行修正而使颤振发生,由此具有也能够对预先指定出的辨识对象的参数之中的全部参数进行辨识的效果。As described above, the numerical control device 1a according to Embodiment 2 corrects the identification operation and performs the identification operation again when there is an unidentified parameter among the parameters of the predetermined identification target. Therefore, the numerical control device 1a according to Embodiment 2 corrects the identification operation to generate chatter when there is a parameter that cannot be identified in the command pattern of the first identification operation, thereby having the ability to also detect a predetermined identification target. All the parameters among the parameters are used to identify the effect.
实施方式3.Embodiment 3.
图15是表示本发明的实施方式3所涉及的数控装置的结构例的框图。在实施方式2中,直至预先在内部设定的辨识对象的参数的全部辨识完成为止重复辨识动作。在本实施方式3中,对能够从外部对辨识对象的参数进行设定的例子进行说明。此后,关于具有与实施方式2相同功能的结构要素,使用同一标号而省略重复说明。下面,以与实施方式2的不同点为中心进行说明。FIG. 15 is a block diagram showing a structural example of a numerical control device according to Embodiment 3 of the present invention. In Embodiment 2, the recognition operation is repeated until all the parameters of the recognition target set in advance are recognized. In Embodiment 3, an example will be described in which the parameters of the recognition target can be set externally. Hereinafter, the same reference numerals will be used for structural elements having the same functions as those in Embodiment 2, and repeated descriptions will be omitted. The following description will focus on differences from Embodiment 2.
如图15所示,实施方式3的数控装置1b在实施方式2的数控装置1a中追加有输入部17。输入部17能够从外部接受辨识对象的参数的输入。输入部17例如能够从外部设备、作业者等,作为辨识对象的参数而接受动态特性参数和加工特性参数之中的至少1个输入。输入部17可以是与外部设备进行通信的通信电路,也可以是从外部介质读取数据的外部介质的接口电路,也可以是键盘、鼠标等输入单元。另外,输入部17在接受来自作业者的输入的情况下,显示器、监视器等显示单元还作为输入部17使用。辨识对象的参数可以作为数控程序而输入至输入部17,也可以由作业者通过对话形式而输入至输入部17。另外,输入部17可以通过对话式编程的形式而接受辨识对象的参数的输入。输入部17将接受到的辨识对象的参数向辨识部13a输出。作为辨识对象的参数由作业者或者从外部进行指定的情形,例如设想到“希望将已经通过其他单元等辨识完成的参数从辨识对象去除的情况”(第1情形)、“希望仅对优先级高的辨识对象进行辨识而削减辨识所花费的时间的情况”(第2情形)这样的情形。因此,如果设想到第1情形,则例如在菜单一览中,关于辨识完成参数以通过过去的辨识得到的值被预先输入等而能够对辨识完成的参数进行区分的方式进行显示,由此未辨识的参数的判别变得容易。另外,如果设想到第2情形,则设为能够将辨识对象的参数通过选择框等进行选择,设置在每次向选择框输入勾选时辨识预想时间变化这样的显示窗,由此作业者能够在辨识时间处于辨识容许时间内的范围对最多的参数进行选择。对话式编程的形式并不限定于这些例子,可以是任意的方式,但如上述所示对作业者为了进行选择而要考虑的信息进行显示,由此作业者能够容易地对辨识对象的参数进行选择。As shown in FIG. 15 , the numerical control device 1 b according to the third embodiment has an input unit 17 added to the numerical control device 1 a according to the second embodiment. The input unit 17 can accept input of parameters of the recognition target from the outside. The input unit 17 can receive input of at least one of a dynamic characteristic parameter and a machining characteristic parameter as a parameter to be recognized, for example, from an external device, an operator, or the like. The input unit 17 may be a communication circuit that communicates with an external device, an interface circuit of an external medium that reads data from an external medium, or an input unit such as a keyboard or a mouse. In addition, when the input unit 17 accepts input from the operator, a display unit such as a display or a monitor is also used as the input unit 17 . The parameters of the identification target may be input to the input unit 17 as a numerical control program, or may be input to the input unit 17 by an operator through a conversation. In addition, the input unit 17 may accept input of parameters of the recognition object in the form of interactive programming. The input unit 17 outputs the received parameter of the identification target to the identification unit 13a. When the parameters to be identified are designated by the operator or from outside, for example, it is assumed that "it is desired to remove parameters that have been identified by other units etc. from the identification targets" (first case), "it is desired to exclude only the priority level" This is a case where high recognition targets are recognized and the time required for recognition is reduced" (second case). Therefore, assuming the first case, for example, in the menu list, the recognized parameters are displayed in such a manner that the recognized parameters can be distinguished by inputting values obtained through past recognition in advance, so that the recognized parameters are not recognized. Parameter identification becomes easy. In addition, if the second case is assumed, the parameter of the recognition target can be selected using a selection box or the like, and a display window can be provided that recognizes changes in the estimated time of recognition each time a check is input to the selection box, so that the operator can Select the most parameters when the identification time is within the identification allowable time range. The form of conversational programming is not limited to these examples and may be any form. However, by displaying the information that the operator must consider in order to make a selection as described above, the operator can easily adjust the parameters of the identification object. choose.
辨识部13a与实施方式2的辨识部13a同样地,取代预先所设定的辨识对象的参数而使用从输入部17输入的辨识对象的参数,进行与实施方式2相同的动作。此外,辨识部13a可以能够执行使用预先所设定的辨识对象的参数的动作和使用从输入部17输入的辨识对象的参数的动作这两者。辨识部13a将辨识处理的结果向校正部11输出。校正部11的动作与实施方式1相同。此外,按照数控程序,对辨识对象的参数进行指定的情况下的校正部11的动作如下所述。在数控程序中,通常记述有加工路径、主轴转速、进给速度、刀具编号等信息。在作业者从数控程序对辨识对象的参数进行指定的情况下,在数控程序中对进行辨识动作的加工路径和辨识对象的参数进行指定。在辨识部13a的辨识完成的情况下,例如,校正部11从刀具编号被变更的定时至对设定有其他辨识动作的加工路径进行加工的定时为止,持续生成刀具刃尖的振动振幅小于或等于规定值这样的校正信号。以上所述以外的实施方式3的数控装置1b的动作与实施方式2的数控装置1a的动作相同。Like the recognition unit 13a in Embodiment 2, the recognition unit 13a uses the parameters of the recognition target input from the input unit 17 instead of the parameters of the recognition target set in advance, and performs the same operation as in Embodiment 2. In addition, the recognition unit 13 a may be able to perform both an operation using parameters of the recognition target set in advance and an operation using parameters of the recognition target input from the input unit 17 . The recognition unit 13a outputs the result of the recognition process to the correction unit 11. The operation of the correction unit 11 is the same as that in Embodiment 1. In addition, the operation of the correction unit 11 when specifying the parameters of the identification target according to the numerical control program is as follows. In CNC programs, information such as machining path, spindle speed, feed speed, tool number, etc. are usually described. When the operator specifies the parameters of the identification target from the numerical control program, the machining path for performing the identification operation and the parameters of the identification target are specified in the numerical control program. When the identification by the identification unit 13a is completed, for example, the correction unit 11 continues to generate a vibration amplitude of the tool edge that is less than or equal to A correction signal equal to a specified value. The operation of the numerical control device 1b according to the third embodiment other than the above is the same as the operation of the numerical control device 1a according to the second embodiment.
如以上说明所述,实施方式3的数控装置1b在通过来自外部的输入所设定的辨识对象的参数之中的辨识未完的参数存在的情况下,对辨识动作进行修正而再次实施辨识动作。因此,具有与实施方式2相同的效果,并且能够与作业者的希望等相应地对辨识对象的参数进行变更。As described above, the numerical control device 1b of Embodiment 3 corrects the identification operation and performs the identification operation again when there are parameters for which identification has not been completed among the parameters of the identification target set by input from the outside. Therefore, the same effect as that of Embodiment 2 is achieved, and the parameters of the identification target can be changed according to the operator's wishes.
实施方式4.Embodiment 4.
图16是表示本发明的实施方式4所涉及的数控装置的结构例的框图。在实施方式3中,叙述了能够从外部对辨识对象的参数进行设定的结构。在本实施方式4中,进一步对能够通过来自外部的输入对辨识动作的指令模式进行设定的结构进行说明。此后,关于具有与实施方式3相同功能的结构要素,使用同一标号而省略重复说明。下面,以与实施方式3的不同点为中心进行说明。FIG. 16 is a block diagram showing a structural example of a numerical control device according to Embodiment 4 of the present invention. In Embodiment 3, a structure is described in which the parameters of the recognition target can be set from the outside. In Embodiment 4, a structure in which the command mode of the recognition operation can be set by input from the outside will be further described. Hereinafter, the same reference numerals will be used for structural elements having the same functions as those in Embodiment 3, and repeated descriptions will be omitted. The following description will focus on differences from Embodiment 3.
数控装置1c如图16所示,除了取代辨识动作生成部14a及输入部17而具有辨识动作生成部14b及输入部17a以外,与实施方式3的数控装置1b相同。As shown in FIG. 16 , the numerical control device 1 c is the same as the numerical control device 1 b of Embodiment 3 except that it has a recognition action generating part 14 b and an input part 17 a instead of the recognition action generating part 14 a and the input part 17 .
输入部17a与实施方式3的输入部17同样地,能够从外部接受辨识对象的参数,将接受到的辨识对象的参数向辨识部13a输出。并且,输入部17a能够从外部接受用于决定辨识动作的指令模式的指令模式信息的输入。输入部17a将接受到的指令模式信息向辨识动作生成部14b输出。指令模式信息例如是表示图2~图4中的主轴转速S0、S1、进给速度F0、F1、时间常数T1、T2的信息。即,指令模式信息是表示与通过辨识动作指令使主轴转速和进给速度变化时的主轴转速及进给速度的时间对应的波形的信息。指令模式信息例如作为数控程序或者通过对话式输入至输入部17a。另外,指令模式信息也可以通过对话式编程的形式输入。在指令模式信息,可以构成为在图2~图4所示的波形或者表示波形的信息的基础上,还能够从外部对波形进行设定。Like the input unit 17 of Embodiment 3, the input unit 17a can receive the parameters of the identification target from the outside and output the received parameters of the identification target to the identification unit 13a. In addition, the input unit 17a can accept input of command pattern information for determining the command pattern of the recognition operation from the outside. The input unit 17a outputs the received command pattern information to the recognition action generation unit 14b. The command pattern information is, for example, information indicating the spindle rotation speeds S0 and S1, the feed speeds F0 and F1, and the time constants T1 and T2 in FIGS. 2 to 4 . That is, the command pattern information is information indicating a waveform corresponding to the time of the spindle rotation speed and the feed speed when the spindle rotation speed and the feed speed are changed by the recognition operation command. The command mode information is input to the input unit 17a as a numerical control program or interactively, for example. In addition, command mode information can also be input through conversational programming. The command mode information may be configured such that the waveform can be set externally based on the waveforms shown in FIGS. 2 to 4 or information representing the waveforms.
输入部17a与输入部17同样地,可以是与外部设备进行通信的通信电路,也可以是从外部介质读取数据的外部介质的接口电路,也可以是键盘、鼠标等输入单元。另外,输入部17a在接收来自作业者的输入的情况下,显示器、监视器等显示单元还作为输入部17a使用。辨识对象的参数及指令模式信息可以通过数控程序的形式从外部设备输入至输入部17a,也可以由作业者通过对话形式输入至输入部17a。另外,输入部17a可以通过对话式编程的形式创建程序,通过该程序对辨识对象的参数及指令模式信息进行指定。输入部17a将接受到的辨识对象的参数向辨识部13a输出,将接受到的指令模式信息向辨识动作生成部14b输出。辨识部13a及校正部11的动作与实施方式3相同。Like the input unit 17 , the input unit 17 a may be a communication circuit for communicating with an external device, an interface circuit for an external medium that reads data from an external medium, or an input unit such as a keyboard or a mouse. In addition, when the input unit 17a receives input from the operator, a display unit such as a display or a monitor is also used as the input unit 17a. The parameters and command mode information of the identification object may be input to the input unit 17a from an external device in the form of a numerical control program, or may be input to the input unit 17a by an operator in the form of a conversation. In addition, the input unit 17a can create a program in the form of interactive programming, and use the program to specify parameters and command mode information of the recognition target. The input unit 17a outputs the received parameters of the recognition target to the recognition unit 13a, and outputs the received command pattern information to the recognition operation generation unit 14b. The operations of the identification unit 13a and the correction unit 11 are the same as those in the third embodiment.
辨识动作生成部14b基于由输入部17a接受到的辨识动作的指令模式信息,生成辨识动作的指令模式,对驱动控制部15输出辨识动作指令。并且,辨识动作生成部14b与实施方式2的辨识动作生成部14a同样地,基于从辨识部13a输出的辨识动作修正信号,对辨识动作的指令模式进行修正。以上所述以外的本实施方式的数控装置1c的动作与实施方式3的数控装置1b相同。The recognition operation generating unit 14 b generates a command pattern of the recognition operation based on the command pattern information of the recognition operation received from the input unit 17 a, and outputs the recognition operation command to the drive control unit 15 . Furthermore, like the recognition operation generation unit 14a of Embodiment 2, the recognition operation generation unit 14b corrects the command pattern of the recognition operation based on the recognition operation correction signal output from the recognition unit 13a. The operation of the numerical control device 1 c of this embodiment other than the above is the same as that of the numerical control device 1 b of the third embodiment.
如以上说明所述,实施方式4的数控装置1c在实施方式3所述的辨识对象的参数的基础上,关于辨识动作的指令模式还能够通过来自外部的输入进行设定。因此,实施方式4的数控装置1c具有下述效果,即,能够相对于通过来自外部的输入所指定出的参数的组合而优先地对辨识结果进行计算。As described above, in the numerical control device 1 c according to the fourth embodiment, in addition to the parameters of the recognition target described in the third embodiment, the command mode for the recognition operation can be set by input from the outside. Therefore, the numerical control device 1 c according to Embodiment 4 has the effect of being able to calculate the identification result with priority to a combination of parameters specified by input from the outside.
以上的实施方式所示的结构,表示本发明的内容的一个例子,也能够与其他公知技术进行组合,在不脱离本发明的主旨的范围,也能够对结构的一部分进行省略、变更。The structure shown in the above embodiment represents an example of the content of the present invention, and may be combined with other known techniques, and part of the structure may be omitted or changed without departing from the scope of the present invention.
标号的说明Explanation of labels
1、1a、1b、1c数控装置,2工作机械,11校正部,12振动判定部,13辨识部,14辨识动作生成部,15驱动控制部,16数据取得部,17、17a输入部。1. 1a, 1b, 1c numerical control device, 2 working machine, 11 correction part, 12 vibration determination part, 13 identification part, 14 identification action generation part, 15 drive control part, 16 data acquisition part, 17, 17a input part.
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/020548 WO2020235106A1 (en) | 2019-05-23 | 2019-05-23 | Numerical control device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113874798A CN113874798A (en) | 2021-12-31 |
CN113874798B true CN113874798B (en) | 2023-12-05 |
Family
ID=73459380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980096558.5A Active CN113874798B (en) | 2019-05-23 | 2019-05-23 | CNC device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7101883B2 (en) |
CN (1) | CN113874798B (en) |
DE (1) | DE112019007355T5 (en) |
WO (1) | WO2020235106A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2708153C (en) | 2007-12-04 | 2017-09-26 | Alnylam Pharmaceuticals, Inc. | Carbohydrate conjugates as delivery agents for oligonucleotides |
CN114815740B (en) * | 2022-04-20 | 2024-11-26 | 硕橙(厦门)科技有限公司 | A method, device, equipment and medium for monitoring the health of ultra-precision fly-cutting machine tools |
KR20240165614A (en) * | 2023-05-16 | 2024-11-25 | 주식회사 디엔솔루션즈 | Active vibration reduction device of machine tool and method thereof |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10228304A (en) * | 1997-02-13 | 1998-08-25 | Mitsubishi Electric Corp | Machining device |
JP2000280140A (en) * | 1999-03-31 | 2000-10-10 | Mori Seiki Co Ltd | Tool drop prevention device and machine tool provided with the same |
JP2003108206A (en) * | 2001-10-02 | 2003-04-11 | Mori Seiki Co Ltd | Correction device for NC machine tools |
CN102528556A (en) * | 2010-10-27 | 2012-07-04 | 大隈株式会社 | machine tool |
JP2012187685A (en) * | 2011-03-11 | 2012-10-04 | Okuma Corp | Method and device for controlling rotational shaft of machine tool |
CN103345200A (en) * | 2013-06-28 | 2013-10-09 | 华中科技大学 | Cutting flutter identification method based on generalized interval |
JP2014115888A (en) * | 2012-12-11 | 2014-06-26 | Mitsubishi Electric Corp | Numerical control device |
CN104898565A (en) * | 2014-03-05 | 2015-09-09 | 麦克隆·阿杰·查米莱斯股份公司 | Improved database for chatter predictions |
CN105629920A (en) * | 2014-09-22 | 2016-06-01 | 财团法人工业技术研究院 | Processing monitoring system and method |
JP2016163918A (en) * | 2015-03-06 | 2016-09-08 | 国立大学法人 東京大学 | Machine tool and processing method of workpiece |
JP2016190276A (en) * | 2015-03-31 | 2016-11-10 | ブラザー工業株式会社 | Numerical control device and control method |
JP2017045300A (en) * | 2015-08-27 | 2017-03-02 | ファナック株式会社 | Numerical controller with machining condition adjustment function which reduces chatter or tool wear/breakage occurrence |
CN106802971A (en) * | 2015-11-26 | 2017-06-06 | Dmg森精机株式会社 | The intrinsic vibration number guiding device of stability limit curve plotting method and cutting element |
CN107505914A (en) * | 2017-07-20 | 2017-12-22 | 西安交通大学 | A kind of high-precision movement control method for considering Ball-screw Drive Systems high-order dynamic characteristic |
WO2019003340A1 (en) * | 2017-06-28 | 2019-01-03 | 三菱電機エンジニアリング株式会社 | Position detection system |
WO2019043852A1 (en) * | 2017-08-30 | 2019-03-07 | 三菱電機株式会社 | Numerical control system and motor controller |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160297044A1 (en) | 2015-04-10 | 2016-10-13 | Rolls-Royce Corporation | Machining parameter control based on acoustic monitoring |
-
2019
- 2019-05-23 WO PCT/JP2019/020548 patent/WO2020235106A1/en active Application Filing
- 2019-05-23 DE DE112019007355.9T patent/DE112019007355T5/en active Pending
- 2019-05-23 CN CN201980096558.5A patent/CN113874798B/en active Active
- 2019-05-23 JP JP2021520028A patent/JP7101883B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10228304A (en) * | 1997-02-13 | 1998-08-25 | Mitsubishi Electric Corp | Machining device |
JP2000280140A (en) * | 1999-03-31 | 2000-10-10 | Mori Seiki Co Ltd | Tool drop prevention device and machine tool provided with the same |
JP2003108206A (en) * | 2001-10-02 | 2003-04-11 | Mori Seiki Co Ltd | Correction device for NC machine tools |
CN102528556A (en) * | 2010-10-27 | 2012-07-04 | 大隈株式会社 | machine tool |
JP2012187685A (en) * | 2011-03-11 | 2012-10-04 | Okuma Corp | Method and device for controlling rotational shaft of machine tool |
JP2014115888A (en) * | 2012-12-11 | 2014-06-26 | Mitsubishi Electric Corp | Numerical control device |
CN103345200A (en) * | 2013-06-28 | 2013-10-09 | 华中科技大学 | Cutting flutter identification method based on generalized interval |
CN104898565A (en) * | 2014-03-05 | 2015-09-09 | 麦克隆·阿杰·查米莱斯股份公司 | Improved database for chatter predictions |
CN105629920A (en) * | 2014-09-22 | 2016-06-01 | 财团法人工业技术研究院 | Processing monitoring system and method |
JP2016163918A (en) * | 2015-03-06 | 2016-09-08 | 国立大学法人 東京大学 | Machine tool and processing method of workpiece |
JP2016190276A (en) * | 2015-03-31 | 2016-11-10 | ブラザー工業株式会社 | Numerical control device and control method |
JP2017045300A (en) * | 2015-08-27 | 2017-03-02 | ファナック株式会社 | Numerical controller with machining condition adjustment function which reduces chatter or tool wear/breakage occurrence |
CN106802971A (en) * | 2015-11-26 | 2017-06-06 | Dmg森精机株式会社 | The intrinsic vibration number guiding device of stability limit curve plotting method and cutting element |
WO2019003340A1 (en) * | 2017-06-28 | 2019-01-03 | 三菱電機エンジニアリング株式会社 | Position detection system |
CN107505914A (en) * | 2017-07-20 | 2017-12-22 | 西安交通大学 | A kind of high-precision movement control method for considering Ball-screw Drive Systems high-order dynamic characteristic |
WO2019043852A1 (en) * | 2017-08-30 | 2019-03-07 | 三菱電機株式会社 | Numerical control system and motor controller |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020235106A1 (en) | 2021-10-14 |
CN113874798A (en) | 2021-12-31 |
DE112019007355T5 (en) | 2022-02-17 |
WO2020235106A1 (en) | 2020-11-26 |
JP7101883B2 (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11733673B2 (en) | Numerical control system and motor drive controller | |
JP5793200B2 (en) | Machine tool cutting force detection device, cutting force detection method, machining abnormality detection method, and machining condition control system | |
US9846428B2 (en) | Controller for spindle motor | |
US9417619B2 (en) | Numerical controller having function of re-machining thread cutting cycle | |
CN113874798B (en) | CNC device | |
CN111687652B (en) | Grip force adjusting device and grip force adjusting system | |
JP6140130B2 (en) | Numerical control device for protecting tools and workpieces | |
US20140123740A1 (en) | Working Abnormality Detecting Device and Working Abnormality Detecting Method for Machine Tool | |
WO2002003155A1 (en) | Apparatus and method for machining simulation for nc machining | |
JP2012213830A (en) | Machine tool and machining control device of the same | |
US9651936B2 (en) | Machining method | |
JP2012213830A5 (en) | ||
JP6450732B2 (en) | Numerical controller | |
JP6740199B2 (en) | Numerical control device, CNC machine tool, numerical control method, and numerical control program | |
JP4112436B2 (en) | Numerical control device for machine tool and numerical control method for machine tool | |
JP3926739B2 (en) | Threading control method and apparatus | |
JP6893792B2 (en) | Machine tools and vibration suppression methods | |
JP2012183596A (en) | Method and device for suppressing vibration in machine tool | |
US20230037816A1 (en) | Control device for machine tool | |
KR100548874B1 (en) | Numerical control device with tool pull-out detection | |
JP5832382B2 (en) | Numerical controller | |
US10248100B2 (en) | Numerical controller | |
JP5494378B2 (en) | Thread cutting control method and apparatus | |
JP2007179314A (en) | Machine tool and program conversion method therefor | |
JP6611319B2 (en) | Cutting load prediction method, cutting load prediction system, cutting load prediction program, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |