CN113874324A - 氧化锌纳米颗粒的制备方法、由该方法获得的氧化锌纳米颗粒及其用途 - Google Patents

氧化锌纳米颗粒的制备方法、由该方法获得的氧化锌纳米颗粒及其用途 Download PDF

Info

Publication number
CN113874324A
CN113874324A CN202080035512.5A CN202080035512A CN113874324A CN 113874324 A CN113874324 A CN 113874324A CN 202080035512 A CN202080035512 A CN 202080035512A CN 113874324 A CN113874324 A CN 113874324A
Authority
CN
China
Prior art keywords
zno
zinc oxide
oxide nanoparticles
organic
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080035512.5A
Other languages
English (en)
Inventor
贾努斯·兹比格涅夫·莱温斯基
马戈尔扎塔·沃尔斯卡-皮特基维茨
玛丽亚·杰德泽耶夫斯卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nike Cable Co ltd
Original Assignee
Nike Cable Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike Cable Co ltd filed Critical Nike Cable Co ltd
Publication of CN113874324A publication Critical patent/CN113874324A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明的主题在于制备氧化锌纳米颗粒的方法,其中使非质子有机溶剂中的有机锌前体经受氧化剂。使用式[R2ZnLn]m的化合物作为所述有机锌前体,其中R是直链或支链C1‑C5烷基、苄基、苯基、均三甲苯基、环己基,L是含有一种式1或式2或式3的路易斯碱中心的低分子量有机化合物,其中R1、R2和R3是直链或支链C1‑C5烷基、苯基、苄基、甲苯基、均三甲苯基或乙烯基,其中任何氢原子可以被氟、氯、溴或碘原子取代,n是0、1或2,m是1至10的自然数。此外,本发明的主题还在于通过所述方法获得的氧化锌纳米颗粒。此外,本发明的主题还在于公开的氧化锌纳米颗粒在传感器中或作为用于构建太阳能电池的ETL层、或作为UV过滤器、或作为用于电子设备或催化的材料的用途。

Description

氧化锌纳米颗粒的制备方法、由该方法获得的氧化锌纳米颗 粒及其用途
本发明的主题在于被中性短链有机供体配体稳定化的氧化锌纳米颗粒(ZnO NP)的制备方法、通过所述方法获得的氧化锌纳米颗粒及其用途。所述类型的配体的使用旨在产生稳定的无机-有机杂化体系,其特征在于ZnO NP表面上的尽可能最薄的有机涂层和/或尽可能最小含量的稳定层。
纳米晶体ZnO属于II-VI半导体族的半导体,并且是当前最深入研究以及具有广泛适用性的纳米材料之一。这是由于这种材料独特的物理化学性质,例如:高机械强度、导电性以及令人感兴趣的压电性质和发光性质。[1]纳米晶体氧化锌的整体特征由许多因素决定,例如:(i)所获得材料的纯度和化学组成,(ii)无机核的晶体结构、尺寸和形状,和(iii)附加稳定层(有机或无机)的存在、表面覆盖度和物理化学性质。然而,所述参数主要通过应用适当的合成方法来确定。
存在几种当前通常已知并使用的合成ZnO NP的化学方法,我们将其可以区分为湿化学方法和干(即机械化学)方法。由于前体的性质,化学方法可以被分成使用无机前体和有机金属前体的方法。传统的、最简单且当前最常用的用于制备ZnO NP的无机化学方法是基于无机盐的水解分解的溶胶-凝胶方法,所述无机盐可溶于水和极性体系,含有Zn2+离子以及相对简单的阴离子,例如硝酸根或乙酸根。[2]反应在碱性环境(例如ROH/LiOH体系)中并且通常在另外的表面活性剂的存在下进行,并且水解和缩合过程几乎并行地发生。最终,最终产物的物理化学性质严格取决于工艺参数,例如温度、时间、应用的溶剂的量和类型,以及所得溶液的pH。[3]该方法的缺点反而是合成方法的可重复性和再现性低。此外,非常快速的成核以及对ZnO NP的初始生长不能充分控制显著影响纳米颗粒的结构和表面覆盖度以及有机层的均匀性和稳定性。
经典无机合成的替代方案似乎是有机金属途径。特别重要的是由Chaudret的小组开发的方法[4],其中在有机环境中稳定的尺寸和形状可控的ZnO纳米颗粒可以通过Zn(c-C6H11)2在室温下和在暴露于潮湿空气条件下的分解来获得(US 2006/0245998)。此外,在所述方法中,(通常大大过量的)同时充当表面稳定剂和ZnO NP生长和溶解度的调节剂的表面活性剂的存在是不可或缺的。根据发明US 2006/0245998,具有包含6至20个碳的烷基基团的有机分子,即胺(特别是伯胺)、羧酸、硫醇、含磷化合物、醚可用作配体,并且无水有机溶剂如THF、甲苯、苯甲醚、庚烷可用作溶剂。根据该发明的作者,ZnO NP的形状和尺寸由合成进行的条件控制,所述条件为:使用的有机金属前体的性质、配体的特性、溶剂的类型和反应时间。然而,根据专利US 2006/0245998的方法,由于二烷基锌前体在有机溶剂中的溶液的直接暴露而不允许以受控的方式获得ZnO NP。
在2012年,描述了被单阴离子羧酸根或次膦酸根配体稳定化的ZnO纳米结构的制备的另一种有机金属方法。为此目的,作者使用含有适当化学计量比的Et2Zn以及选择的二羧酸锌或二有机次膦酸锌的反应体系,其允许避免稳定剂在溶液中的过量。在甲苯中在室温下通过添加水在丙酮中的溶液或通过水从受控的湿度环境扩散进行水解。[5]在上述反应中,获得了具有纤锌矿结构和3nm至4nm的核尺寸的高纯度ZnO NP。
由于Lewiński的小组进行的研究,开发了制备具有良好保护的表面并被单阴离子有机配体稳定化的ZnO NP的通用方法。[6,7]开发的方法的主要假设是在ZnO NP的合成中,使用有机锌[RZn-X]-型复合物(其中X—单阴离子有机配体,例如RCO2 ˉ、RCONHˉ、R2PO2 ˉ、ROˉ)作为有机金属前体,其同时构成:Zn源和有机配体两者。所用的RZn-X前体在其结构中包含(i)对氧气和水(作为氧源)具有反应性的Zn-R部分和(ii)与Zn原子结合的去质子化的辅助配体,其共价连接到纳米颗粒的表面执行稳定功能。由于前体溶液直接、受控地暴露于空气条件,在室温下发生向ZnO NP的转化。这导致催化中心的缓慢氧化和水解以及自组装过程,从而导致被单阴离子形式的母体前配体稳定化的ZnO NP的形成。所开发的OSSOM方法(ang.一锅法自支撑有机金属方法)允许合成表现出发光性质的稳定的、非金属掺杂的晶体结构,并且允许制备具有特定形态、形状和尺寸的纳米颗粒。[6,7]
纳米晶体ZnO具有相对活性的表面,并且表现出聚集和/或附聚的趋势。因此,需要ZnO NP表面的有效钝化和/或稳定。为此目的,使用NP表面改性和形成由疏水性、亲水性或两亲性化合物组成的所谓保护涂层[8]或产生核-壳结构,即用另一种无机化合物(例如ZnS、[9]TiO2或SiO2[10])的薄层涂覆NP核。存在许多能够稳定ZnO纳米颗粒的表面的有机化合物的实例,包括聚合物、[11,12]液晶体系、[13]表面活性剂、[4]脂肪酸[14]和长链烷基胺、[4,15]烷基硫醇[16]以及氧化膦(例如三辛基氧化膦,TOPO)。[16,17]尽管有显著的区别,但所有上述基团均可以在化学吸附的基础上同时执行与ZnO NP表面相互作用的中性供体L型配体的功能(或同时L型和阴离子X型配体的混合功能,这取决于分子存在的形式)。这些化合物的特征还在于结构中长链烷基基团(C6-C20)的存在,其显著影响表面稳定性和通过配体分子和/或溶剂分子之间的相互作用调节纳米材料溶解度的能力。然而,由于ZnO NP的相对低的表面覆盖度,使用L-型配体不允许获得足够的稳定性。[18]此外,为了ZnO NP在传感器中或作为用于构建太阳能电池的电子传输层(ETL)、或作为UV过滤器、或作为用于电子设备或催化的材料的用途,相对高的有机含量不是期望的特征。另一方面,核-壳结构的产生引起体系在各种溶剂中的溶解度的显著降低。因此,开发具有尽可能最小含量的有机稳定层的超小(1nm至10nm)、稳定且分散在溶液中的杂化体系的合成方法受到极大关注。
本发明的目的在于开发无机-有机杂化体系的制备方法,所述无机-有机杂化体系的特征在于在ZnO NP表面上降低的有机稳定化含量。通过使用具有溶剂化和/或配位性质的简单有机化合物作为有效的L-型稳定配体已经实现了了该目的。迄今为止还没有考虑使用这种配体。
根据本发明的氧化锌纳米颗粒的制备方法的特征在于以下事实:将在非质子有机溶剂中的有机锌前体暴露于氧化剂,其中式[R2ZnLn]m的化合物用作有机锌前体,其中R是直链或支链C1-C5烷基、苄基、苯基、均三甲苯基、环己基,L是含有一种式1或式2或式3的路易斯碱中心的低分子量有机化合物,
Figure BDA0003350963070000041
其中R1、R2和R3是直链或支链C1-C5烷基、苯基、苄基、甲苯基、均三甲苯基或乙烯基,其中任何氢原子可以被氟、氯、溴或碘原子取代,n是0、1或2,m是1至10的自然数。
优选使用具有溶剂化和/或配位性质的非质子有机溶剂作为溶剂:二甲基亚砜、二丁基亚砜、四氢呋喃、二氯甲烷、二噁烷、乙腈、氯仿、甲苯、苯、己烷、丙酮以及前体可良好溶于其中的在结构中没有羟基的其它有机溶剂,以及这些溶剂的混合物。
优选地,当将液体化合物用作L时,它具有有机锌前体的L-型配体和非质子溶剂的功能。
在本发明的方法中,可以使用无水有机溶剂或添加有水的溶剂。优选地,水在溶剂中的浓度不应超过0.5%w/w。向有机溶剂中添加水对ZnO NP的形成速率和所得ZnO NP及其分散体的光致发光性质具有积极的影响。
优选使用氧气、水、大气空气或其混合物作为氧化剂。
优选地,反应在0℃至100℃,更优选10℃至60℃,最优选15℃至35℃的温度下进行。
优选地,反应在前体在有机溶剂中的0.01mol/L至0.4mol/L的摩尔浓度下进行。
优选地,反应进行24小时至336小时。
优选地,为了获得高质量的ZnO NP,使用洗涤过量有机配体的方法。
优选使用甲苯、苯、二甲苯、四氢呋喃、二噁烷、乙醚、己烷、二氯甲烷、甲醇、乙醇或其混合物作为用于洗涤过量有机配体的溶剂。
本发明的主题还在于通过所述方法获得的氧化锌纳米颗粒。
优选地,氧化锌纳米颗粒被中性短链有机供体配体稳定化,其中中性短链有机供体配体是式1或式2或式3的化合物,
Figure BDA0003350963070000051
其中R1、R2和R3是直链或支链C1-C5烷基、苯基、苄基、甲苯基、均三甲苯基或乙烯基,其中任何氢原子可以被氟、氯、溴或碘原子取代,优选地,中性短链有机供体配体是亚砜,最优选二甲基亚砜。
优选地,氧化锌纳米颗粒的直径小于或等于15nm,并且其特征在于窄的尺寸分布。
优选地,纳米颗粒具有纤锌矿核结构。
本发明还涉及以上公开的氧化锌纳米颗粒或通过以上公开的方法获得的氧化锌纳米颗粒在传感器中或作为用于构建太阳能电池的ETL层、或作为UV过滤器、或作为用于电子设备或催化的材料的用途。
在根据本发明的方法中,使用二烷基锌化合物R2Zn或R2ZnLn-型的有机金属化合物,这些化合物可以以单体或聚集的[R2ZnLn]m-型形式存在。应用的R2ZnLn-型前体在其结构中含有二烷基锌部分R2Zn,其被结构相对简单且低分子量的中性非质子配体稳定化。使用这种含有一种路易斯碱性中心的低分子量有机化合物允许形成无机-有机杂化体系,其特征在于用尽可能最低含量的有机层稳定ZnO NP的表面。此外,以液态存在并且特征在于溶剂化和/或配位性质的上述化合物可以具有双重功能:它们既是使用R2Zn化合物的反应的反应介质,又是有效钝化所获得的ZnO NP的表面的L-型有机配体。同时,通过使用具有配位性质的溶剂/配体,省略了添加例如长链表面活性剂形式的外部稳定剂。由于前体与水和氧气的反应,可以获得被短链有机配体稳定化的ZnO NP,其在溶液和在固态中均表现出发光性质。在有机金属方法中使用低分子量配体是具有表面活性和稳定性质的长链有机化合物的替代方案。使用各种分析技术进行测量证实了具有几个纳米(2nm至10nm)内的核尺寸的纳米尺寸物体的存在,其特征在于(在一些情况下)在溶液中聚集的趋势。与表面活性剂(例如烷基胺)相比,低分子量中性供体配体对ZnO NP的表面表现出更高的亲和力,这导致体系稳定性随时间的增加,同时保持它们的完整的光物理性质。取决于反应条件:浓度、时间、反应温度、所用溶剂的类型、氧气和水浓度等,可以获得各种形式的纳米晶体氧化锌。根据本发明的方法允许反应体系的显著简化,并且在功能性ZnO类材料的设计和合成中开辟了新的可能性。
附图说明
图1—ZnO·L1 NP的SE(a-c)和HR TEM(d-f)图像以及(g)所获得的纳米颗粒的尺寸分布(实施例1)。
图2—ZnO·L1 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例1)。
图3—a)ZnO·L1 NP的归一化吸收和发射光谱;b)ZnO·L1 NP的稳定胶体溶液的UV(366nm)和可见光图像(实施例1)。
图4—ZnO·L2 NP的归一化吸收和发射光谱(实施例3)。
图5—ZnO·L2 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例3)。
图6—ZnO·L2 NP的IR光谱(实施例3)。
图7—ZnO·L3 NP的归一化吸收和发射光谱(实施例4)。
图8—ZnO·L3 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例4)。
图9—ZnO·L4 NP的归一化吸收和发射光谱(实施例5)。
图10—ZnO·L4 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例5)。
图11—ZnO·L4 NP的IR光谱(实施例5)。
图12—ZnO·L5 NP的归一化吸收和发射光谱(实施例6)。
图13—ZnO·L5 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例6)。
图14—ZnO·L5 NP的IR光谱(实施例6)。
图15—ZnO·L6 NP的归一化吸收和发射光谱(实施例7)。
图16—ZnO·L6 NP的粉末X射线衍射图以及参考块体ZnO图(实施例7)。
图17—ZnO·L6 NP的IR光谱(实施例7)。
图18—ZnO·L7 NP的归一化吸收和发射光谱(实施例9)。
图19—ZnO·L7 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图案(实施例9)。
图20—ZnO·L7 NP的IR光谱(实施例9)。
图21—ZnO·L8 NP的归一化吸收和发射光谱(实施例10)。
图22—ZnO·L8 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例10)。
图23—ZnO·L8 NP的IR光谱(实施例10)。
图24—ZnO·L9 NP的归一化吸收和发射光谱(实施例11)。
图25—ZnO·L9的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例11)。
图26—ZnO·L9 NP的IR光谱(实施例11)。
图27—ZnO·L10 NP的归一化吸收和发射光谱(实施例12)。
图28—ZnO·L10 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例12)。
图29—ZnO·L10 NP的IR光谱(实施例12)。
图30—ZnO·L11 NP的SE(a-b)和HR TEM(c-f)图像(实施例14)。
图31—ZnO·L12 NP的SE(a-b)和HR TEM(c-f)图像(实施例15)。
图32—ZnO·L13 NP的IR光谱(实施例16)。
图33—ZnO·L13 NP的粉末X射线衍射图以及参考块体ZnO的粉末X射线衍射图(实施例16)。
在以下实施例中更详细地呈现本发明的主题。
实施例1.
通过将Et2Zn在二甲基亚砜(DMSO)中的溶液直接暴露于大气空气制备ZnO NP。
在室温下,将1mL的2M Et2Zn(在己烷中的溶液)逐滴添加到置于配备有磁力搅拌棒的50mL圆底烧瓶中的20mL的二甲基亚砜中。使反应混合物在环境温度下受控暴露于大气空气24小时至48小时。此后,获得在UV激发下显示强黄色荧光的悬浮液。通过离心(15分钟,12500rpm)分离沉淀并获得稳定的胶体溶液。也可以用丙酮从反应后的混合物中通过沉淀方法纯化ZnO纳米颗粒,并且进一步将所得沉淀用少量丙酮洗涤3次。通过受控转化获得的纳米晶体ZnO(下文称为ZnO·L1 NP)通过大量分析技术进行表征,例如:高分辨率扫描透射电子显微镜(STEM)、粉末X射线衍射(PXRD)、动态光散射(DLS)、红外光谱(FTIR)、UV-Vis分光光度法和荧光分光光度法(PL)。
在记录二次电子(SE)的信号并允许纳米颗粒的形态学研究的浸渍模式下以及在允许以原子尺度(HR TEM)同时表征结构和化学组成及无机ZnO·L1 NP核的尺寸分布的模式下拍摄的所得ZnO纳米颗粒的STEM图像显示在图1中。这些显微照片显示了由几个纳米(2nm至7nm)的尺寸的单个准球形纳米晶体组成的纳米晶体ZnO聚集体,这表明所得ZnO·L1NP的窄尺寸分布。DLS分析已经显示,存在于DMSO溶液中的ZnO·L1 NP聚集体的平均尺寸为约103nm,并且相对低的多分散性指数(PdI=0.28)表明所获得的纳米结构的高相似性、几乎一致的形状和流体动力学直径的窄尺寸分布。除了尺寸之外,NP的非常重要的特征是它们的化学组成和核的晶体结构。PXRD分析(图2)证实了纳米晶体(即NP直径<15nm),ZnO·L1NP的纤锌矿型结构。FTIR分析允许测定L-型配体(此处为DMSO)与ZnO NP的表面的配位模式。在1017cm-1处的强带的存在是S=O键的弯曲振动的特征,并且表明DMSO经由氧原子配位到无机ZnO核的表面。另外,在3404cm-1处的带是O-H键的拉伸振动的特征。Zn(OH)2中的氢氧根带的位置非常相似,即3384cm-1。因此,在无机核的表面上不仅存在配位的DMSO分子,还存在通过二烷基锌化合物与空气中存在的水之间的反应得到的Zn-OH。基于OH基团的带的位置和形状,可以推断体系中的Zn-OH基团与DMSO分子之间存在氢键。ZnO·L1 NP在固态和在溶液中均显示出光致发光性质(图3)。ZnO·L1 NP在DMSO中的胶体溶液的吸收和发射光谱显示在图3a中。在290nm至370nm的区域中,最大值位于330nm处的宽吸收带是可见的。相比之下,相对宽的发射带(半峰全宽(FWHM)为约135nm)在绿光区域(λem=531nm)(图3a)。ZnO·L1NP在DMSO中的胶体溶液随时间推移是稳定的,并且即使在储存9个月后也没有观察到变化(例如在容器的底部处出现沉淀物)。
实施例2.
通过将Me2Zn在DMSO中的溶液直接暴露于大气空气制备ZnO NP。
在室温下,将1mL的2M Me2Zn(在己烷中的溶液)逐滴添加到置于配备有磁力搅拌棒的50mL圆底烧瓶中的20mL的二甲基亚砜中。然后,使反应混合物在环境温度下受控暴露于大气空气7天。所制备的ZnO纳米颗粒表现出与ZnO L1 NP所观察到的那些类似的物理化学性质。
实施例3.
通过将iPr2Zn在DMSO中的溶液直接暴露于大气空气制备ZnO NP。
将1mL的1M iPr2Zn(在甲苯中的溶液)逐滴添加到置于配备有磁力搅拌棒的50mL圆底烧瓶中的20mL的二甲基亚砜中。然后,使反应混合物在环境温度下受控暴露于大气空气5天。ZnO·L2纳米颗粒在溶液中和在固态下均表现出光致发光性质。分散在DMSO中的ZnO·L2NP的吸收和发射光谱显示在图4中。所获得的体系的特征为最大值在345nm处的明确定义的吸收带以及最大值在531nm处的相对宽的发射带(图4)。基于PXRD分析(图5),证实了ZnO·L2 NP的纳米晶体、纤锌矿型结构。通过FTIR测量证实钝化、配位到ZnO核的表面的DMSO部分的存在(图6)。
实施例4.
通过将Et2Zn在二丁基亚砜中的溶液直接暴露于大气空气制备ZnO NP。
在室温下,将1mL的2M Et2Zn(在己烷中的溶液)逐滴添加到置于配备有磁力搅拌棒的50mL圆底烧瓶中的20mL的二丁基亚砜中。然后,使反应混合物在环境温度下受控暴露于大气空气5天。所获得的ZnO·L3 NP在溶液中和在固态下均显示出光致发光性质。ZnO·L3NP的吸收和发射光谱显示在图7中。所获得的体系的特征为最大值在343nm处的明确定义的吸收带。最大值在515nm处的相对宽的发射带造成ZnO·L3 NP的绿色荧光(图7)。基于PXRD分析(图8),证实了ZnO-L3NP的纳米晶体、纤锌矿型结构。
实施例5.
制备被DMSO配体稳定化的ZnO NP。
将在10mL的THF中的156mg(2mmol)(CH3)2SO置于配备有磁力搅拌棒的施兰克(Schlenk)容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气5天。纳米颗粒ZnO·L4 NP在溶液中和固态下均表现出发光性质。ZnO·L3 NP分散体的吸收和发射光谱显示在图9中。基于PXRD分析(图10),证实了ZnO·L4 NP的纳米晶体、纤锌矿型结构。与ZnO·L1 NP和ZnO·L2 NP的情况类似,FTIR分析证实在纳米晶体ZnO的表面上存在由DMSO分子组成的有机层(图11)。
实施例6.
使用iPr2Zn作为有机金属前体制备被DMSO配体稳定化的ZnO NP。
将在10mL的THF中的78mg(1mmol)(CH3)2SO置于配备有磁力搅拌棒的施兰克容器中。然后,在惰性气氛中,经由注射器逐滴添加1mL的1M(2mmol)iPr2Zn(在甲苯中的溶液)。反应在室温下进行并搅拌24小时。此后,使反应混合物在环境温度下受控暴露于大气空气5天。纳米颗粒ZnO·L5 NP在溶液中和在固态下均表现出发光性质。ZnO·L5 NP分散体的吸收和发射光谱显示在图12中。基于PXRD分析(图13),证实了ZnO·L5 NP的纳米晶体、纤锌矿型结构。在粉末X射线衍射图上没有额外的反射表明高度的样品纯度。与ZnO·L1 NP和ZnO·L3 NP的情况类似,FTIR分析证实了在纳米晶体ZnO的表面上存在由DMSO分子组成的有机层(图14)。
实施例7.
制备被CH3(CH2)3)2SO配体稳定化的ZnO NP。
将在10mL的THF中的324mg(1mmol)(CH3(CH2)3)2SO置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加0.5mL的2M(1mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气5天。纳米颗粒ZnO·L6 NP在溶液中和在固态下均显示出发光性质。ZnO·L6 NP分散体的吸收和发射光谱显示在图15中。基于PXRD分析(图16),证实了ZnO·L6 NP的纳米晶体、纤锌矿型结构,而FTIR分析证实了在纳米晶体ZnO的表面上存在由二丁基亚砜分子组成的有机层(图17)。在IR光谱中(CH3(CH2)3)2SO的特征谱带的强度和位移的变化表明亚砜配体配位到ZnO NP的表面。
实施例8.
使用tBu2Zn作为有机金属前体制备被(CH3(CH2)3)2SO配体稳定化的ZnO NP。
将在10mL的THF中的324mg(1mmol)(CH3(CH2)3)2SO置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的1M(1mmol)tBu2Zn(在甲苯中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气8天。所制备的ZnO纳米颗粒表现出与ZnO·L6 NP所观察到的那些类似的物理化学性质。
实施例9.
制备被二苯基亚砜配体稳定化的ZnO NP。
将在10mL的THF中的404mg(2mmol)(C6H5)2SO置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气5天。获得呈粉末状的ZnO·L7 NP,其在UV激发下显示黄色荧光。ZnO·L7 NP分散体的吸收和发射光谱显示在图18中。在倾析之后,ZnO纳米颗粒通过PXRD表征(图19)。粉末X射线衍射图分析证实ZnO·L7 NP的结晶纤锌矿结构。额外的反射表明在样品中存在配体相,这也通过FTIR分析证实(图20)。
实施例10.
制备被CH3SOC6H5配体稳定化的ZnO NP。
将在10mL的THF中的280mg(2mmol)CH3SOC6H5置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气5天。获得呈粉末状的ZnO·L8纳米颗粒,其显示出发射的最大值位于525nm处的黄色荧光。ZnO·L8NP分散体的吸收和发射光谱显示在图21中。PXRD分析(图22)证实了ZnO·L8 NP的纳米晶体、纤锌矿型结构,而基于FTIR分析,证实了NP有机稳定层的存在(图23)。
实施例11.
制备被C6H5SOCH=CH2配体稳定化的ZnO NP。
将在10mL的THF中的304mg(2mmol)C6H5SOCH=CH2置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气5天。ZnO·L9纳米颗粒具有发光性质。ZnO·L9 NP分散体的吸收和发射光谱显示在图24中。PXRD分析表明样品的纳米结晶性质(图25),而FTIR分析证实在纳米晶体ZnO的表面上存在由亚砜分子组成的有机层(图26)。
实施例12.
制备被三苯基膦稳定化的ZnO NP。
将在10mL的THF中的524mg(2mmol)P(C6H5)3置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气4天。ZnO·L10纳米颗粒具有发光性质(图27)。基于PXRD分析(图28),证实了ZnO·L10 NP的纳米晶体、纤锌矿型结构,而FTIR分析证实了在纳米晶体ZnO的表面上存在由三苯基膦分子组成的有机层(图29)。
实施例13.
使用Me2Zn作为有机金属前体制备被三苯基膦稳定化的ZnO NP。
将在10mL的THF中的648mg(2mmol)(CH3(CH2)3)2SO置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Me2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气9天。所制备的ZnO纳米颗粒表现出与ZnO·L10 NP所观察到的那些类似的物理化学性质。
实施例14.
通过将Et2Zn在THF中的溶液直接暴露于大气空气制备ZnO NP。
在室温下,将1mL的2M Et2Zn(在己烷中的溶液)逐滴添加到配备有磁力搅拌棒的50mL圆底烧瓶中的20mL的THF中。使反应混合物在环境温度下受控暴露于大气空气2天。ZnO·L11纳米颗粒在溶液中和在固态下均显示出荧光。显微测量显示存在假球形形成且尺寸为1nm至7nm的ZnO NP,并且特征在于相对窄的尺寸分布(图30)。
实施例15.
通过将Et2Zn在丙酮中的溶液直接暴露于大气空气制备ZnO NP。
在室温下,将1mL的2M Et2Zn(在己烷中的溶液)逐滴添加到置于配备有磁力搅拌棒的50mL圆底烧瓶中的20mL的丙酮中。使所制备的反应混合物在环境温度下受控暴露于空气3天,然后表征所获得的发光ZnO·L12 NP。显微测量显示存在核直径为2nm至10nm的纳米晶体ZnO(图31)。
实施例16.
制备被(CH3C6H4)2SO配体稳定化的ZnO NP。
将在10mL的THF中的460.6mg(2mmol)(CH3C6H4)2SO置于配备有磁力搅拌棒的施兰克容器中。将其在异丙醇浴中冷却至-78℃。然后,在惰性气体气氛中,经由注射器逐滴添加1mL的2M(2mmol)Et2Zn(在己烷中的溶液)。反应最初在降低的温度下进行,然后逐渐温热至室温,并在该温度下放置24小时。然后,使反应混合物在环境温度下受控暴露于大气空气5天。ZnO·L13纳米颗粒表现出发光性质。FTIR分析证实在纳米晶体ZnO的表面上存在由亚砜分子组成的有机层(图32)。基于PXRD分析(图33),证实了ZnO·L13 NP的纳米晶体、纤锌矿型结构。在衍射图上没有额外的反射表明高度的样品纯度。
文献
[1]
Figure BDA0003350963070000151
H.;
Figure BDA0003350963070000152
U.Zinc Oxide:Fundamentals,Materials and DeviceTechnology,Willey-VCH,Weinheim,2009.
[2]Spanhel,L.;Anderson,M.A.,Semiconductor Clusters in the Sol-GelProcess:Quantized Aggregation,Gelation,and Crystal Growth in Concentrated ZnOColloids.J.Am.Chem.Soc.1991,113,2826-2833.
[3]Meulenkamp,E.A.,Synthesis and Growth of ZnONanoparticles.J.Phys.Chem.B 1998,102,5566-5572.
[4]a)Monge,M.;Kahn,M.L.;Maisonnat,A.;Chaudret,B.,Room-TemperatureOrganometallic Synthesis of Soluble and Crystalline ZnO Nanoparticles ofControlled Size and Shape.Angew.Chem.Int.Ed.2003,42,5321-5324;b)Kahn,M.L.;Monge,M.;Maisonnat,A.;Chaudret,B.French Patent CNRS,Fr03-042825,2004;c)PatentUS 2006/0245998,2006.
[5]Orchard K.L.;Shaffer M.S.P.;Williams C.K.,Organometallic Route toSurface-Modified ZnO Nanoparticles Suitable for In Situ NanocompositeSynthesis:Bound Carboxylate Stoichiometry Controls Particle Size or SurfaceCoverage.Chem.Mater.2012,24,2443-2448.
[6]a)Lewiński,J.;Bojarski,E.;Bury,W.;
Figure BDA0003350963070000161
M.,P-383356,2007;b)Lewiński,J.;Bury,W.;
Figure BDA0003350963070000162
M.;Bojarski,E.,P-383357,2007;c)Lewiński,J.;
Figure BDA0003350963070000163
K.;Kubisiak,M.,P-385938,2008;d)Lewiński,J.;
Figure BDA0003350963070000164
K.,P-386289,2008;e)Lewiński,J.;
Figure BDA0003350963070000165
K.;Leszczyński,M.;Zelga K.,P-393834,2011;f)Krupiński,P.;Kornowicz,A.;Lewiński,J.,P-402624,2013.
[7]a)Paczesny,J.;Wolska-Pietkiewicz,M.;Binkiewicz,I.;Wróbel,Z.;Wadowska,M.;
Figure BDA0003350963070000166
K.;
Figure BDA0003350963070000167
I.;Pociecha,D.;Smalc-Koziorowska,J.;Lewiński,J.;
Figure BDA0003350963070000168
R.,Towards Organized Hybrid Nanomaterials at the air/waterInterface Based on Liquid Crystal-ZnO Nanocrystals.Chem.Eur.J.2015,21,16941-16947;b)Paczesny,J.;Wolska-Pietkiewicz,M.;Binkiewicz,I.;Wadowska,M.;Wróbel,Z.;
Figure BDA0003350963070000169
K.;Nogala,W.;Lewiński,J.;
Figure BDA00033509630700001610
R.,Photoactive Langmuir-Blodgett,Freely Suspended and Free Standing Films of Carboxylate Ligand-Coated ZnONanocrystals.ACS Appl.Mater.Interfaces,2016,8,13532-13541;c)Grala,A.;Wolska-Pietkiewicz,M.;Danowski,W.;Wróbel,Z.;Grzonka,J.;Lewiński,J.,‘Clickable’ZnOnanocrystals:the superiority of a novel organometallic approach over theinorganic sol–gel procedure.Chem.Commun.2016,52,7340-7343;d)Wolska-Pietkiewicz,M.;Grala,A.;Justyniak,I.;Hryciuk,D.;
Figure BDA00033509630700001611
M.;Grzonka,J.;
Figure BDA00033509630700001612
K.J.,Lewiński,J.,From well-defined alkylzinc phosphinates toquantum-sized ZnO nanocrystals.Chem.Eur.J.2017,49,11856–11865;e)Chwojnowska,E.;Wolska-Pietkiewicz,M.;Grzonka,J.;Lewiński J.,An Organometallic Route toChiroptically Active ZnO Nanocrystals.Nanoscale,2017,9,14782–14786;f)Wolska-Pietkiewicz,M.;Tokarska,K.;Grala,A.;Wojewódzka,A.;Chwojnowska,E.;Grzonka,J.;Cywiński,P.;
Figure BDA00033509630700001613
K.;Sojka,Z.;Chudy,M.;Lewiński,J.,‘Safe-by-design’ligandcoated-ZnO nanocrystals engineered by an organometallic approach:uniquephysicochemical properties and low toxicity toward lungcells.Chem.Eur.J.2018,24,4033-4042.
[8]Chang,J.;Waclawik,E.R.,Colloidal Semiconductor Nanocrystals:Controlled Synthesis and Surface Chemistry in Organic Media.RSC Adv.2014,4,23505-23527.
[9]Sookhakian,M.;Amin,Y.M.;Basirun,W.J.;Tajabadi,M.T.;Kamarulzaman,N.,Synthesis,Structural,and Optical Properties of Type-II ZnO-ZnS Core-ShellNanostructure.JOL 2014,145,244-252.
[10]Tang,X.;Choo,E.S.G.;Li,L.;Ding,J.;Xue,J.,Synthesis of ZnONanoparticles with Tunable Emission Colors and Their Cell LabelingApplications.Chem.Mater.2010,22,3383-3388.
[11]a)Xiong,H.-M.;Xu,Y.;Ren,Q.-G.;Xia,Y.-Y.,Stable Aqueous ZnO@polymer Core-Shell Nanoparticles with Tunable Photoluminescence and TheirApplication in Cell Imaging.J.Am.Chem.Soc.2008,130,7522-7523;b)Xiong,H.-M.,ZnO Nanoparticles Applied to Bioimaging and Drug Delivery.Adv.Mater.2013,25,5329-5335.
[12]a)Guo,L.;Yang,S.H.;Yang,C.L.;Yu,P.;Wang,J.N.;Ge,W.K.;Wong,G.K.L.,Synthesis and Characterization of Poly(vinylpyrrolidone)-Modified Zinc OxideNanoparticles.Chem.Mater.2000,12,2268-2274;b)Xiong,H.M.;Wang,Z.D.;Liu,D.P.;Chen,J.S.;Wang,Y.G.;Xia,Y.Y.,Bonding Polyether onto ZnO Nanoparticles:anEffective Method for Preparing Polymer Nanocomposites with TunableLuminescence and Stable Conductivity.Adv.Funct.Mater.2005,15,1751-1756;c)Xiong,H.M.;Wang,Z.D.;Xia,Y.Y.,Polymerization Initiated by Inherent FreeRadicals on Nanoparticle Surfaces:a Simple Method of Obtaining Ultrastable(ZnO)Polymer Core-Shell Nanoparticles with Strong BlueFluorescence.Adv.Mater.2006,18,748-751;(d)Xiong,H.-M.;Xie,D.-P.;Guan,X.-Y.;Tan,Y.-J.;Xia,Y.-Y.,Water-Stable Blue-Emitting ZnO@polymer Core-ShellMicrospheres.J.Mater.Chem.2007,17,2490-2496.
[13]a)Li,F.;Li,Q.;Chen,Y.,Observations of Energy Transfer andAnisotropic Behavior in ZnO Nanoparticles Surface-Modified by Liquid-Crystalline Ligands.JOL 2012,132,2114-2121;b)Neaime,C.;Prevot,M.;Amela-Cortes,M.;Circu,V.;Grasset,F.;Folliot,H.;Molard,Y.,Voltage-DrivenPhotoluminescence Modulation of Liquid-Crystalline Hybridized ZnONanoparticles.Chem.Eur.J.2014,20,13770-13776.
[14]a)Fu,Y.-S.;Du,X.-W.;Kulinich,S.A.;Qiu,J.-S.;Qin,W.-J.;Li,R.;Sun,J.;Liu,J.,Stable Aqueous Dispersion of ZnO Quantum Dots with Strong BlueEmission via Simple Solution Route.J.Am.Chem.Soc.2007,129,16029-16033;(b)Rubio-Garcia,J.;Dazzazi,A.;Coppel,Y.;Mascalchi,P.;Salome,L.;Bouhaouss,A.;Kahn,M.L.;Gauffre,F.,Transfer of Hydrophobic ZnO Nanocrystals to Water:anInvestigation of the Transfer Mechanism and LuminescentProperties.J.Mater.Chem.2012,22,14538-14545.
[15]a)Fu,Y.-S.;Du,X.-W.;Kulinich,S.A.;Qiu,J.-S.;Qin,W.-J.;Li,R.;Sun,J.;Liu,J.,Stable Aqueous Dispersion of ZnO Quantum Dots with Strong BlueEmission via Simple Solution Route.J.Am.Chem.Soc.2007,129,16029-16033;b)Rubio-Garcia,J.;Dazzazi,A.;Coppel,Y.;Mascalchi,P.;Salome,L.;Bouhaouss,A.;Kahn,M.L.;Gauffre,F.,Transfer of Hydrophobic ZnO Nanocrystals to Water:anInvestigation of the Transfer Mechanism and LuminescentProperties.J.Mater.Chem.2012,22,14538-14545.
[16]Chang,J.;Waclawik,E.R.,Experimental and Theoretical Investigationof Ligand Effects on the Synthesis of ZnO Nanoparticles.J.Nanopart.Res.2012,14:1012.
[17]Shim,M.;Guyot-Sionnest,P.,Organic-Capped ZnO Nanocrystals:Synthesis and n-Type Character.J.Am.Chem.Soc.2001,123,11651-11654.
[18]Valdez,C.N.;Schimpf,A.M.;Gamelin,D.R.;Mayer,J.M.,Low CappingGroup Surface Density on Zinc Oxide Nanocrystals.ACS Nano 2014,8,9463-9470。

Claims (15)

1.制备氧化锌纳米颗粒的方法,其中使非质子有机溶剂中的有机锌前体经受氧化剂,其特征在于,使用式[R2ZnLn]m的化合物作为所述有机锌前体,其中R是直链或支链C1-C5烷基、苄基、苯基、均三甲苯基、环己基,L是含有一种式1或式2或式3的路易斯碱中心的低分子量有机化合物,
Figure FDA0003350963060000011
其中R1、R2和R3是直链或支链C1-C5烷基、苯基、苄基、甲苯基、均三甲苯基或乙烯基,其中任何氢原子可以被氟、氯、溴或碘原子取代,n是0、1或2,m是1至10的自然数。
2.根据权利要求1所述的方法,其特征在于,使用具有溶剂化和/或配位性质的溶剂作为所述溶剂。
3.根据权利要求1或2所述的方法,其特征在于,使用二甲基亚砜、二丁基亚砜、四氢呋喃、二氯甲烷、二噁烷、乙腈、氯仿、甲苯、苯、己烷、丙酮或其混合物作为所述溶剂。
4.根据权利要求1或2或3所述的方法,其特征在于,当将液体化合物用作L时,它具有所述有机锌前体的L-型配体和非质子溶剂两者的功能。
5.根据权利要求1所述的方法,其特征在于,使用添加有水的溶剂。
6.根据权利要求5所述的方法,其特征在于,水在所述溶剂中的浓度不超过0.5%w/w。
7.根据权利要求1所述的方法,其特征在于,使用氧气、水、大气空气或其混合物作为所述氧化剂。
8.根据权利要求1所述的方法,其特征在于,所述反应在0℃至100℃、更优选10℃至60℃、最优选15℃至35℃的温度下进行。
9.根据权利要求1所述的方法,其特征在于,所述反应在所述前体在有机溶剂中的0.01mol/L至0.4mol/L的摩尔浓度下进行。
10.根据权利要求1所述的方法,其特征在于,所述反应进行24小时至336小时。
11.通过根据权利要求1至10中任一项所述的方法获得的氧化锌纳米颗粒。
12.根据权利要求11所述的氧化锌纳米颗粒,其特征在于,所述氧化锌纳米颗粒被中性短链供体有机配体稳定化,其中中性短链有机供体配体是式1或式2或式3的化合物,
Figure FDA0003350963060000021
Figure FDA0003350963060000031
其中R1、R2和R3是直链或支链C1-C5烷基、苯基、苄基、甲苯基、均三甲苯基或乙烯基,其中任何氢原子可以被氟、氯、溴或碘原子取代,更优选地,中性短链供体有机配体是亚砜,最优选是二甲基亚砜。
13.根据权利要求11至12中任一项所述的纳米颗粒,其特征在于,所述氧化锌纳米颗粒的直径小于或等于15nm,并且其特征为窄的尺寸分布。
14.根据权利要求11至13中任一项所述的纳米颗粒,其特征在于,纳米颗粒具有纤锌矿核结构。
15.权利要求11至14中任一项所述的氧化锌纳米颗粒或通过权利要求1至10中任一项所述的方法制备的氧化锌纳米颗粒在传感器中或作为用于构建太阳能电池的ETL层、或作为UV过滤器、或作为用于电子设备或催化的材料的用途。
CN202080035512.5A 2019-05-15 2020-05-15 氧化锌纳米颗粒的制备方法、由该方法获得的氧化锌纳米颗粒及其用途 Pending CN113874324A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PL429943A PL238480B1 (pl) 2019-05-15 2019-05-15 Sposób wytwarzania nanocząstek tlenku cynku
PLP.429943 2019-05-15
PCT/PL2020/000046 WO2020231280A1 (en) 2019-05-15 2020-05-15 Method of preparation of zinc oxide nanoparticles, zinc oxide nanoparticles obtained by this method and their use

Publications (1)

Publication Number Publication Date
CN113874324A true CN113874324A (zh) 2021-12-31

Family

ID=71787015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080035512.5A Pending CN113874324A (zh) 2019-05-15 2020-05-15 氧化锌纳米颗粒的制备方法、由该方法获得的氧化锌纳米颗粒及其用途

Country Status (7)

Country Link
US (1) US20220135420A1 (zh)
EP (1) EP3969421A1 (zh)
KR (1) KR20220009439A (zh)
CN (1) CN113874324A (zh)
CA (1) CA3138262A1 (zh)
PL (1) PL238480B1 (zh)
WO (1) WO2020231280A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL434715A1 (pl) * 2020-07-17 2022-01-24 Nanoxo Spółka Z Ograniczoną Odpowiedzialnością Sposób wytwarzania nanocząstek tlenowo-cynkowych, nanocząstki nadtlenku cynku otrzymane tym sposobem oraz ich zastosowanie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182483A (ja) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp 酸化亜鉛超微粒子の製造方法
WO2009116062A2 (en) * 2008-03-10 2009-09-24 Tata Chemicals Limited A process for the preparation of nano zinc oxide particles
PL213271B1 (pl) * 2008-08-22 2013-02-28 Politechnika Warszawska Prekursory nanocząstek tlenku cynku i sposób wytwarzania prekursorów nanocząstek tlenku cynku

Also Published As

Publication number Publication date
KR20220009439A (ko) 2022-01-24
US20220135420A1 (en) 2022-05-05
PL429943A1 (pl) 2020-11-16
EP3969421A1 (en) 2022-03-23
CA3138262A1 (en) 2020-11-19
WO2020231280A1 (en) 2020-11-19
PL238480B1 (pl) 2021-08-30

Similar Documents

Publication Publication Date Title
Hung et al. Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly (hydroxyethyl methacrylate) nanohybrid films
JP5383043B2 (ja) ナノサイズの金属酸化物粒子を調製するための方法
Cozzoli et al. Colloidal synthesis of organic-capped ZnO nanocrystals via a sequential reduction− oxidation reaction
Zheng et al. Luminescent zinc oxide nanoparticles: from stabilization to slow digestion depending on the nature of polymer coating
Guo et al. Controllable synthesis of ZnS/PMMA nanocomposite hybrids generated from functionalized ZnS quantum dots nanocrystals
Lesnyak et al. One-pot aqueous synthesis of high quality near infrared emitting Cd 1− x Hg x Te nanocrystals
Long et al. Photochemical synthesis of submicron-and nano-scale Cu2O particles
Mamiyev et al. CuS nanoparticles synthesized by a facile chemical route under different pH conditions
Taghvaei et al. Hydrothermal and template-free preparation and characterization of nanocrystalline ZnS in presence of a low-cost ionic liquid and photocatalytic activity
Zhong et al. Morphology-controlled large-scale synthesis of ZnO nanocrystals from bulk ZnO
Cang et al. Immobilized CdS quantum dots in spherical polyelectrolyte brushes: Fabrication, characterization and optical properties
Pizarro et al. Size, morphology and optical properties of ZnO nanoparticles prepared under the influence of honeycomb-porous poly [(2-hydroxyethylmethacrylate) m-block-poly (N-phenyl maleimide) n] copolymer films
Wolska-Pietkiewicz et al. Towards bio-safe and easily redispersible bare ZnO quantum dots engineered via organometallic wet-chemical processing
US20220135420A1 (en) Method of preparation of zinc oxide nanoparticles, zinc oxide nanoparticles obtained by this method and their use
Green et al. On the synthesis and manipulation of InAs quantum dots
Jędrzejewska et al. Organometallic one-pot synthesis of ZnO quantum dots coated by sulfoxides as L-type ligands
Khan CdS nanoparticles with a thermoresponsive polymer: synthesis and properties
Choi et al. Air-stable CuInSe 2 nanoparticles formed through partial cation exchange in methanol at room temperature
Borah et al. Effect of pH on ZnS nanocrystalline thin film embedded in a polyvinyl alcohol matrix
Tatarchuk et al. Synthesis of ZnO nanoparticles and a composite with polyacrylamide in acrylamide solutions
Sriramulu et al. Synthesis, characterization and application of luminescent silica nanomaterials
Passos et al. Silica nanostructures synthesis and CdTe quantum dots immobilization for photocatalytical applications
US20120161076A1 (en) Method for preparing a water-compatible composition of metal oxide nanocrystals and the water-compatible composition obtained
Tiwari et al. Synthesis, surface characterization and optical properties of 3-thiopropionic acid capped ZnS: Cu nanocrystals
Liu et al. Fabrication of CdS nanocrystals embedded in copolymer matrix by an in situ simultaneous copolymerization-sulfidation technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination