CN113872911A - 模型驱动的正交频分复用系统高峰均比抑制方法及系统 - Google Patents

模型驱动的正交频分复用系统高峰均比抑制方法及系统 Download PDF

Info

Publication number
CN113872911A
CN113872911A CN202111204341.7A CN202111204341A CN113872911A CN 113872911 A CN113872911 A CN 113872911A CN 202111204341 A CN202111204341 A CN 202111204341A CN 113872911 A CN113872911 A CN 113872911A
Authority
CN
China
Prior art keywords
network
phase factor
output
optimal phase
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111204341.7A
Other languages
English (en)
Other versions
CN113872911B (zh
Inventor
郑文静
王荣
袁亚微
刘智勇
辛同亮
陈春朝
张志东
李军
高鹤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Zhengchen Polytron Technologies Co ltd
Qilu University of Technology
Original Assignee
Shandong Zhengchen Polytron Technologies Co ltd
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Zhengchen Polytron Technologies Co ltd, Qilu University of Technology filed Critical Shandong Zhengchen Polytron Technologies Co ltd
Priority to CN202111204341.7A priority Critical patent/CN113872911B/zh
Publication of CN113872911A publication Critical patent/CN113872911A/zh
Application granted granted Critical
Publication of CN113872911B publication Critical patent/CN113872911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及一种模型驱动的正交频分复用系统高峰均比抑制方法及系统,其中频时转换采用固定点的傅里叶反变换,所述固定点数目等于系统子载波数目,所述频时转换下方设置相位因子向量生成部分,所述部分包括数个向量生成网络,每个所述网络又包含数个子网络用于每一个子块的向量生成,每个所述子网络包括了数层深度学习网络,每个所述深度学习网络包括了两层的长短期记忆网络和两层的全连接网络,所述改进结构的输出为所述的时域信号与所述最优相位因子向量乘积之和,所述的最优相位因子向量最后会与发射信号随路发射。

Description

模型驱动的正交频分复用系统高峰均比抑制方法及系统
技术领域
本发明涉及智能通信领域,特别在正交频分复用(OFDM)系统中,关于高峰值-平均功率比(简称峰均比)抑制的部分传输技术的优化与改进,具体为模型驱动的正交频分复用系统高峰均比抑制方法及系统。
背景技术
OFDM是一种多载波传输方案,它没有为每个子载波信号使用独立的滤波器和振荡器,同时,为了带宽效率,子载波的频谱相互重叠,因此,OFDM信号可以看作合成信号。在OFDM系统中,经IFFT运算之后所有的子载波相加,所以时域的发射信号会有很高的功率峰值。因此,与单载波系统相比,OFDM系统有很高的峰均比。一般来说,由于放大器的饱和特性(由于输入信号大于放大器的标称值),即使线性放大器也会在输出端产生非线性失真,同时,由于较大输入引起的高功率放大器非线性会引起带外辐射和带内失真。带外辐射会影响相邻频带内的信号,带内失真会使接收信号产生旋转、衰减和位移。事实上,高峰均比既降低了发射机功率放大器的效率,也降低了数/模转换器和模/数转换器的信号量化噪声比,所以它是OFDM系统中最不利的因素之一。功率放大器的效率对于电池功率有限的移动终端来说非常关键,因此上行链路的峰均比问题更加重要。
作为加扰技术的一种,部分传输序列技术对输入的OFDM数据块进行加扰,并发射具有最小峰均比的数据块,从而降低高峰均比出现的概率。如图一中虚线框内的结构所示,输入数据为频域的已调信号,通过串并转换和分割过程,输出等大小的V个子块频域信号,再经过N点傅里叶反变换,得到V个时域信号子块xv。在部分传输序列技术中,每个子块需要乘以对应的最佳相位旋转因子bv=ejφv,其中v=1,2,…,V,随后每个子块信号相加,具有最小PAPR向量的时域信号可以表示为
Figure BDA0003306221790000021
但传统部分传输序列技术具有以下问题:1、在搜索最优向量集合
Figure BDA0003306221790000022
时复杂度较高,特别是当子块数目V增加时。2、随着子载波数目的增加,其频谱效率降低。3、仍可能会出现PAPR较高的情况。
发明内容
针对上述问题,本发明提出一种模型驱动的正交频分复用系统高峰均比抑制方法及系统,降低传统部分传输序列技术的计算复杂度,优化高峰均比抑制性能。
本发明提供如下技术方案:一种模型驱动的正交频分复用系统高峰均比抑制方法,包括如下步骤,
步骤1:收集基于传统部分传输序列技术的通信数据集,数据集是由采用数字调制技术的时域信号与其对应的最优相位因子向量组成;
步骤2:基于步骤1所述的训练网络数据集,将每个所述时域信号分为大小相等的子块,将最优相位因子向量分为数个最佳相位因子分别于每个所述子块对应;
步骤3:基于步骤2产生的子块信号与其对应的最佳相位因子集合,作为最佳相位因子向量生成网络的训练数据与标签;
步骤4:基于步骤3所述的训练数据与标签作为所述最佳相位因子向量生成网络的输入与输出;
步骤5:基于步骤4所述网络,所述网络输入神经元数目等于两倍的子载波数目,所述网络输出神经元数目为2;
步骤6:基于步骤4所述网络,采用两层长短期记忆网络与两层全连接网络,所述网络隐藏层激活函数采用Sigmoid,输出层采用双曲正切函数;
步骤7:基于步骤6所述的网络结构,利用反向传播过程更新网络参数,所述网络损失函数采用平均绝对值误差函数,优化器采用Adam;
步骤8:基于上述步骤所建立的网络模型与数据训练网络,训练过程完成后进行在线部署,包含了M个独立网络,每个独立网络包含了V个网络,每个网络负责每一子块的最优相位因子输出,所述独立网络进行输出对应的相位因子向量,所述M个独立网络的后面为T运算,所述T运算为对M个独立网络生成的相位因子进行组合,对每个所述相位组合进行最后的损失运算,所述损失运算实质是对所述每个相位因子向量组合进行选择,选择出最优的相位因子向量输出,所述最优相位因子向量与时域信号相乘,并与所述最佳相位因子向量共同发射。
步骤1中,无线通信系统采用多载波传输方案,即正交频分复用技术,信号调制方式采用数字调制方法,即采用调幅、调相和调频的方式,最优相位因子向量即使对应时域信号的峰均比最小的相位因子集合。
步骤2中,对数据集进行整理,网络的输入为每个时域信号子块,输出为对应的最佳相位因子。
步骤3中,将组合好的训练数据与标签组合,其中60%作为网络训练数据,剩下的作为测试集。
步骤4中,网络训练方式采用监督学习方式。
步骤5中,所述网络的输入输出神经元个数与通信系统设置有关,输入神经元个数为两倍的子载波个数,这是由于对于网络来说,无法处理复数,因此一般处理方式是将时域离散信号实部与虚部级联,输出神经元个数与相位旋转因子bv=ejφv=cos(φv)+j sin(φv)有关,所述公式中
Figure BDA0003306221790000031
其中W为可选择的相位数目,因此将相位因子的实部与虚部作为网络训练标签,输出神经元个数为二。
步骤6中,所述Sigmoid激活函数表达式为
Figure BDA0003306221790000032
所述Tanh激活函数表达式为
Figure BDA0003306221790000041
其中e为自然常数,其值约为2.71828。
步骤7中,所述平均绝对值误差函数
Figure BDA0003306221790000042
所述公式中h(xi)为第i个实际输出值,yi为第i个期望输出,所述Adam优化器是对随机梯度下降函数的扩展,可以代替经典的随机梯度下降法来更有效地更新网络权重。
步骤8中,所述设计分为线下训练和在线部署,所述线下训练如所述步骤1-7的网络训练数据、网络结构和网络训练参数的选择,所述在线部署即将训练好的网络进行在线应用,损失函数表达式为
Figure BDA0003306221790000043
(其中arg min(·)为使(·)最小的输入,PAPR(·)为计算信号的峰均比函数,M为系统设置的独立网络,V为系统子块数目)。
一种用于上述方法的模型驱动的正交频分复用系统高峰均比抑制系统,包括了频域信号处理部分、频时转换部分、最佳相位因子向量输出以及时域信号输出部分,频域信号处理部分对频域已调信号进行串并转化以及分割操作,频域已调信号为采用数字调制的频域信号,所述数字调制为采用调频、调相以及调幅方式的单个或者联合键控的调制方式;频时转换部分,采用数个傅里叶反变换运算进行频域时域的转换,傅里叶反变换运算点数为OFDM系统子载波数与过采样数的乘积,最佳相位因子向量输出以及时域信号输出部分,用于获得所有相位因子组合中最优的向量,并使每个所述傅里叶反变换运算结果与最佳相位因子向量输出部分输出的相位因子算数相乘,每个所述相乘后的加扰信号进行相加并进行发送。。
本方案中包括了多个部分,频时转换采用固定点的傅里叶反变换,所述固定点数目等于系统子载波数目,所述频时转换下方设置相位因子向量生成部分,所述部分包括数个向量生成网络,每个所述网络又包含数个子网络用于每一个子块的向量生成,每个所述子网络包括了数层深度学习网络,每个所述深度学习网络包括了两层的长短期记忆网络和两层的全连接网络,所述改进结构的输出为所述的时域信号与所述最优相位因子向量乘积之和,所述的最优相位因子向量最后会与发射信号随路发射。
通过上述描述可以看出,本方案基于传统部分传输序列技术结构,将深度学习这一人工智能思想应用到峰均比抑制中,通过涉及模型驱动的结构,优化了传统技术的性能。由于传统部分传输序列技术的局限性,系统复杂度会随着子载波数增加,计算复杂度会随着子块数指数增加。在本发明中,由于采用了深度学习网络设计,利用网络进行每个子块时域信号对应的最优相位因子的自动生成,同时还考虑到监督学习的网络输出与实际值有着一定的误差,因此设计了多个独立网络,对于每个所述的独立网络,其输出的相位因子都会在T运算中排列组合,然后在损失运算中进行最佳相位因子向量的输出。
附图说明
图1为传统部分传输序列技术与所设计网络的系统结构图。
图2为所设计集成网络EPRNet结构图。
图3为系统信噪比与互补累积分布函数关系性能图。
图4为不同峰均比阈值下的互补累积分布函数性能图。
图5为不同放大器输入限制功率下的接收信号的误码率性能图。
具体实施方式
下面将结合本发明具体实施方式中的附图,对本发明具体实施方式中的技术方案进行清楚、完整地描述,显然,所描述的具体实施方式仅仅是本发明一种具体实施方式,而不是全部的具体实施方式。基于本发明中的具体实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他具体实施方式,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
通过附图可以看出,本发明模型驱动的正交频分复用系统高峰均比抑制方法,包括如下步骤,步骤1:收集基于传统部分传输序列技术的通信数据集,数据集是由采用数字调制技术的时域信号与其对应的最优相位因子向量组成;步骤2:基于步骤1所述的训练网络数据集,将每个所述时域信号分为大小相等的子块,将最优相位因子向量分为数个最佳相位因子分别于每个所述子块对应;步骤3:基于步骤2产生的子块信号与其对应的最佳相位因子集合,作为最佳相位因子向量生成网络的训练数据与标签;步骤4:基于步骤3所述的训练数据与标签作为所述最佳相位因子向量生成网络的输入与输出;步骤5:基于步骤4所述网络,所述网络输入神经元数目等于两倍的子载波数目,所述网络输出神经元数目为2;步骤6:基于步骤4所述网络,采用两层LSTM块结构与两层全连接网络,即两层长短期记忆网络和两层全连接网络,所述网络隐藏层激活函数采用Sigmoid,输出层采用双曲正切函数;步骤7:基于步骤6所述的网络结构,利用反向传播过程更新网络参数,所述网络损失函数采用平均绝对值误差函数,优化器采用Adam;步骤8:基于上述步骤所建立的网络模型与数据训练网络,训练过程完成后进行在线部署,包含了M个独立网络,每个独立网络包含了V个网络,每个网络负责每一子块的最优相位因子输出,所述独立网络进行输出对应的相位因子向量,所述M个独立网络的后面为T运算,所述T运算为对M个独立网络生成的相位因子进行组合,对每个所述相位组合进行最后的损失运算,所述损失运算实质是对所述每个相位因子向量组合进行选择,选择出最优的相位因子向量输出,所述最优相位因子向量与时域信号相乘,并与所述最佳相位因子向量共同发射。
步骤1中,无线通信系统采用多载波传输方案,即正交频分复用技术,信号调制方式采用数字调制方法,即采用调幅、调相和调频的方式,最优相位因子向量即使对应时域信号的峰均比最小的相位因子集合。步骤2中,对数据集进行整理,网络的输入为每个时域信号子块,输出为对应的最佳相位因子。步骤3中,将组合好的训练数据与标签组合,其中60%作为网络训练数据,剩下的作为测试集。步骤4中,网络训练方式采用监督学习方式。步骤5中,所述网络的输入输出神经元个数与通信系统设置有关,输入神经元个数为两倍的子载波个数,这是由于对于网络来说,无法处理复数,因此一般处理方式是将时域离散信号实部与虚部级联,输出神经元个数与相位旋转因子bv=ejφv有关,根据欧拉公式,有bv=cos(φv)+j sin(φv),因此将相位因子的实部与虚部作为网络训练标签,输出神经元个数为2。步骤6中,所述Sigmoid激活函数表达式为
Figure BDA0003306221790000071
所述Tanh激活函数表达式为
Figure BDA0003306221790000072
步骤7中,所述平均绝对值误差函数
Figure BDA0003306221790000073
所述Adam优化器是对随机梯度下降函数的扩展,可以代替经典的随机梯度下降法来更有效地更新网络权重。步骤8中,所述设计分为线下训练和在线部署,所述线下训练如所述步骤1-7的网络训练数据、网络结构和网络训练参数的选择,所述在线部署即将训练好的网络进行在线应用,损失函数表达式为
Figure BDA0003306221790000074
本方案中频域信号处理部分对频域已调信号进行串并转化及分割操作,输出为多个子块的频域信号,每个所述频域信号然后经过N点的快速傅里叶反变化,输出对应的N点的时域信号,每个所述的子块时域信号送给所述图2结构最为输入,对于传统部分传输序列技术,最优相位因子向量需要遍历所有可能的向量取值,需要WV次运算,其中W为向量相位可能选取的个数,运算复杂度会随着子块数增加,而对于所述图2结构,利用所述M个独立网络,每个所述独立中包含了V个网络,每个所述网络进行每块对应的相位因子的生成,V个所述网络生成该独立网络的相位因子向量,所述向量的大小为V×1,M个所述独立网络缩小了最优相位因子向量的选择范围,由于所述深度学习网络的输出值与实际值总有误差,因此在所述T运算中对M个独立网络生成的相位因子进行排列组合,然后在所述损失求得最佳相位因子向量,根据所述最佳相位因子向量,将所述每个最佳相位与所述对应的每块时域信号进行相乘,将所述乘积相加组成发射的时域信号,相位因子输出产生的最佳相位因子向量边信息与所述时域信号一同发送,所述边信息作为辅助信息。
所述最佳相位因子向量须作为边信息随时域信号一同发射,在接收端进行原始信号的恢复,发明的评价指标如图3、4和5所示。如所述图3所示,所述坐标轴纵坐标为高峰均比出现的概率,所述横坐标轴为信噪比,如图显示,该发明对于子快数目较多时峰均比抑制性能较传统方法较强,如所述图4所示,在所述横坐标为峰均比阈值时,该发明较传统方法能较快地抑制高峰均比的出现,如所述图5所示,发明的接收端系统误码率较传统技术仅在较高信噪比下有提升,这是由于发明基于传统技术,对所述技术的优化与改进,降低了技术的结构与计算复杂度。
尽管已经示出和描述了本发明的具体实施方式,对于本领域的普通技术人员而言,可以理解在不脱离发明的原理和精神的情况下可以对这些具体实施方式进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于包括如下步骤,
步骤1:收集基于传统部分传输序列技术的通信数据集,数据集是由采用数字调制技术的时域信号与其对应的最优相位因子向量组成;
步骤2:基于步骤1所述的训练网络数据集,将每个所述时域信号分为大小相等的子块,将最优相位因子向量分为数个最佳相位因子分别于每个所述子块对应;
步骤3:基于步骤2产生的子块信号与其对应的最佳相位因子集合,作为最佳相位因子向量生成网络的训练数据与标签;
步骤4:基于步骤3所述的训练数据与标签作为所述最佳相位因子向量生成网络的输入与输出;
步骤5:基于步骤4所述网络,所述网络输入神经元数目等于两倍的子载波数目,所述网络输出神经元数目为2;
步骤6:基于步骤4所述网络,采用两层LSTM块结构与两层全连接网络,所述网络隐藏层激活函数采用Sigmoid,输出层采用双曲正切函数;
步骤7:基于步骤6所述的网络结构,利用反向传播过程更新网络参数,所述网络损失函数采用平均绝对值误差函数,优化器采用Adam;
步骤8:基于上述步骤所建立的网络模型与数据训练网络,训练过程完成后进行在线部署,包含了M个独立网络,每个独立网络包含了V个网络,每个网络负责每一子块的最优相位因子输出,所述独立网络进行输出对应的相位因子向量,所述M个独立网络的后面为T运算,所述T运算为对M个独立网络生成的相位因子进行组合为相位因子向量,对每个所述相位组合进行最后的损失运算,所述损失运算实质是对所述每个相位因子向量组合进行选择,选择出最优的相位因子向量输出,所述最优相位因子向量与时域信号相乘,并与所述最佳相位因子向量共同发射。
2.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤1中,无线通信系统采用多载波传输方案,即正交频分复用技术,信号调制方式采用数字调制方法,即采用调幅、调相和调频的方式,最优相位因子向量即使对应时域信号的峰均比最小的相位因子集合。
3.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤2中,对数据集进行整理,网络的输入为每个时域信号子块,输出为对应的最佳相位因子。
4.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤3中,将组合好的训练数据与标签组合,其中60%作为网络训练数据,剩下的作为测试集。
5.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤4中,网络训练方式采用监督学习方式。
6.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤5中,所述网络的输入输出神经元个数与通信系统设置有关,输入神经元个数为两倍的子载波个数,这是由于对于网络来说,无法处理复数,因此一般处理方式是将时域离散信号实部与虚部级联,输出神经元个数与相位旋转因子bv=ejφv=cos(φv)+jsin(φv)有关,所述公式中
Figure FDA0003306221780000021
i=0,1,···,W-1,其中W为可选择的相位数目,因此将相位因子的实部与虚部作为网络训练标签,输出神经元个数为二。
7.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤6中,所述Sigmoid激活函数表达式为
Figure FDA0003306221780000031
所述Tanh激活函数表达式为
Figure FDA0003306221780000032
其中e为自然常数。
8.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤7中,所述平均绝对值误差函数
Figure FDA0003306221780000033
所述公式中h(xi)为第i个实际输出值,yi为第i个期望输出,所述Adam优化器是对随机梯度下降函数的扩展,可以代替经典的随机梯度下降法来更有效地更新网络权重。
9.根据权利要求1所述的模型驱动的正交频分复用系统高峰均比抑制方法,其特征在于,
步骤8中,所述设计分为线下训练和在线部署,所述线下训练如所述步骤1-7的网络训练数据、网络结构和网络训练参数的选择,所述在线部署即将训练好的网络进行在线应用,损失函数表达式为
Figure FDA0003306221780000034
其中argmin(·)为使(·)最小的输入,PAPR(·)为计算信号的峰均比函数,M为系统设置的独立网络,V为系统子块数目)。
10.一种引用权利要求1-9中任一方法的模型驱动的正交频分复用系统高峰均比抑制系统,其特征在于,
包括了频域信号处理部分、频时转换部分、最佳相位因子向量输出以及时域信号输出部分,
频域信号处理部分对频域已调信号进行串并转化以及分割操作,频域已调信号为采用数字调制的频域信号,所述数字调制为采用调频、调相以及调幅方式的单个或者联合键控的调制方式;
频时转换部分,采用数个傅里叶反变换运算进行频域时域的转换,
最佳相位因子向量输出以及时域信号输出部分,用于获得所有相位因子组合中最优的向量,并使每个所述傅里叶反变换运算结果与最佳相位因子向量输出部分输出的相位因子算数相乘,每个所述相乘后的加扰信号进行相加并进行发送。
CN202111204341.7A 2021-10-15 2021-10-15 模型驱动的正交频分复用系统高峰均比抑制方法及系统 Active CN113872911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111204341.7A CN113872911B (zh) 2021-10-15 2021-10-15 模型驱动的正交频分复用系统高峰均比抑制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111204341.7A CN113872911B (zh) 2021-10-15 2021-10-15 模型驱动的正交频分复用系统高峰均比抑制方法及系统

Publications (2)

Publication Number Publication Date
CN113872911A true CN113872911A (zh) 2021-12-31
CN113872911B CN113872911B (zh) 2023-10-24

Family

ID=78999782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111204341.7A Active CN113872911B (zh) 2021-10-15 2021-10-15 模型驱动的正交频分复用系统高峰均比抑制方法及系统

Country Status (1)

Country Link
CN (1) CN113872911B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540419A (zh) * 2018-03-21 2018-09-14 东南大学 一种基于深度学习的抗子载波间干扰的ofdm检测方法
US20180322388A1 (en) * 2017-05-03 2018-11-08 Virginia Tech Intellectual Properties, Inc. Learning and deployment of adaptive wireless communications
CN109067688A (zh) * 2018-07-09 2018-12-21 东南大学 一种数据模型双驱动的ofdm接收方法
CN109600335A (zh) * 2019-01-17 2019-04-09 山东建筑大学 基于神经网络的aco-ofdm系统综合papr抑制方法及系统
CN110233810A (zh) * 2019-06-25 2019-09-13 电子科技大学 一种混合噪声下基于深度学习的msk信号解调方法
CN111865863A (zh) * 2020-07-20 2020-10-30 山东大学 一种基于rnn神经网络的ofdm信号检测方法
CN112637093A (zh) * 2020-12-09 2021-04-09 齐鲁工业大学 一种基于模型驱动深度学习的信号检测方法
US20210192320A1 (en) * 2017-10-23 2021-06-24 Nokia Technologies Oy End-to-end learning in communication systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180322388A1 (en) * 2017-05-03 2018-11-08 Virginia Tech Intellectual Properties, Inc. Learning and deployment of adaptive wireless communications
US20210192320A1 (en) * 2017-10-23 2021-06-24 Nokia Technologies Oy End-to-end learning in communication systems
CN108540419A (zh) * 2018-03-21 2018-09-14 东南大学 一种基于深度学习的抗子载波间干扰的ofdm检测方法
CN109067688A (zh) * 2018-07-09 2018-12-21 东南大学 一种数据模型双驱动的ofdm接收方法
CN109600335A (zh) * 2019-01-17 2019-04-09 山东建筑大学 基于神经网络的aco-ofdm系统综合papr抑制方法及系统
CN110233810A (zh) * 2019-06-25 2019-09-13 电子科技大学 一种混合噪声下基于深度学习的msk信号解调方法
CN111865863A (zh) * 2020-07-20 2020-10-30 山东大学 一种基于rnn神经网络的ofdm信号检测方法
CN112637093A (zh) * 2020-12-09 2021-04-09 齐鲁工业大学 一种基于模型驱动深度学习的信号检测方法

Also Published As

Publication number Publication date
CN113872911B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN111490737B (zh) 一种用于功率放大器的非线性补偿方法和设备
CN106941470A (zh) 一种降低fbmc系统中信号峰均比的方法
CN114024811A (zh) 基于深度学习的otfs波形papr抑制方法及装置
Pachori et al. An efficient combinational approach for PAPR reduction in MIMO–OFDM system
CN106506428A (zh) 降低ufmc系统papr的低计算复杂度的pts方法
JP4073753B2 (ja) マルチキャリア通信方法及びマルチキャリア通信装置
CN112242969A (zh) 一种基于模型驱动的深度学习的新型单比特ofdm接收机
Li et al. Improved tone reservation method based on deep learning for PAPR reduction in OFDM system
Ali et al. Automatic modulation recognition of DVB-S2X standard-specific with an APSK-based neural network classifier
Li et al. Low-complexity tone reservation scheme using pre-generated peak-canceling signals
Liu et al. A deep neural network method for automatic modulation recognition in OFDM with index modulation
Nguyen et al. Novel PAPR reduction algorithms for OFDM signals
CN110958204A (zh) 非对称复数深度神经网络的非正交多载波水下通信系统
Abdullah et al. Deep learning based asymmetrical autoencoder for PAPR reduction of CP-OFDM systems
CN109951412A (zh) 深度神经网络抑制信号立方度量的方法
Al Ahsan et al. Artificial neural network (ANN) based classification of high and low PAPR OFDM signals
CN113872911B (zh) 模型驱动的正交频分复用系统高峰均比抑制方法及系统
Lekouaghet et al. Improved SLM technique with a new phase factor for PAPR reduction over OFDM signals
Baro et al. PAPR reduction in wavelet packet modulation using tree pruning
CN105049128A (zh) 一种音频播放中嵌入多载波声波通信的方法
CN108737315B (zh) 降低ofdm系统峰均功率比的加性扰码方法及其发射系统
Liu et al. A hybrid algorithm for reducing PAPR of CO-OFDM system based on fast Hadamard transformation cascading SLM
Ali et al. Reduction of PAPR by Convolutional Neural Network with Soft Feed-back in an Underwater Acoustic OFDM Communication
Krishnama Raju et al. An efficient deep neural networks-based channel estimation and signal detection in ofdm systems
Nayak et al. A review on PAPR reduction techniques in OFDM system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee after: Qilu University of Technology (Shandong Academy of Sciences)

Country or region after: China

Patentee after: SHANDONG ZHENGCHEN POLYTRON TECHNOLOGIES Co.,Ltd.

Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee before: Qilu University of Technology

Country or region before: China

Patentee before: SHANDONG ZHENGCHEN POLYTRON TECHNOLOGIES Co.,Ltd.