CN113867374A - 基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法 - Google Patents

基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法 Download PDF

Info

Publication number
CN113867374A
CN113867374A CN202110841286.6A CN202110841286A CN113867374A CN 113867374 A CN113867374 A CN 113867374A CN 202110841286 A CN202110841286 A CN 202110841286A CN 113867374 A CN113867374 A CN 113867374A
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
quad
rotor unmanned
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110841286.6A
Other languages
English (en)
Other versions
CN113867374B (zh
Inventor
李东方
黄捷
陈宇韬
田国庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110841286.6A priority Critical patent/CN113867374B/zh
Publication of CN113867374A publication Critical patent/CN113867374A/zh
Application granted granted Critical
Publication of CN113867374B publication Critical patent/CN113867374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0833Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using limited authority control

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提出一种基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法,基于四旋翼无人机的非线性力学模型,根据四旋翼无人机轨迹跟踪的姿态角目标和飞行位置目标,其利用滑模变结构控制方法得到系统的姿态控制输入函数,同时,对系统进行预测,并用预测值代替实际值来提前给予自适应控制补偿;利用滑模变结构控制方法得到系统的位置控制输入函数,同时,对系统进行预测,并用预测值代替实际值来提前给予自适应控制补偿;根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入。有效提高了无人机的轨迹跟踪效率和跟踪精度,确保了自适应轨迹跟踪控制器的稳定性。

Description

基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹 跟踪控制器及其设计方法
技术领域
本发明属于无人飞行器运动控制技术领域,尤其涉及一种基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法。
背景技术
随着科学技术的不断发展,飞行器的研究领域不断扩大,飞行器的种类不断丰富,其中四旋翼无人机的研究备受人们的关注。四旋翼无人机是一种通过遥控或机载程序实现飞行任务的无人驾驶设备。这种无人机凭借机动灵活、成本低、结构简单的优点可以在电力巡检、农业植保、环境监测领域广泛使用。而在四旋翼无人机的结构中,控制器是无人机能否实现预期效果的重要组成部分。
在四旋翼无人机的研究领域中,无人机的轨迹跟踪控制是一个十分热门的研究领域。四旋翼无人机具有复杂的动力学模型,同时四旋翼无人机的飞行环境复杂多变,所以控制四旋翼无人机在轨迹跟踪过程中保持稳定的姿态与位置是十分有研究意义的。研究四旋翼无人机的轨迹跟踪运动可以为四旋翼无人机的其他运动控制奠定良好的理论帮助。
发明内容
有鉴于此,为了弥补现有技术的空白和不足,本发明的目的在于提供一种基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法,其所要解决的技术问题是:实现四旋翼无人机的姿态和运动位置的稳定控制。
其设计的控制器主要包括以下方案:
基于四旋翼无人机的非线性力学模型,根据四旋翼无人机轨迹跟踪的姿态角目标和飞行位置目标,所述姿态角目标用于使无人机的翻滚角、俯仰角和偏航角误差收敛且稳定;所述飞行位置目标用于使无人机切向、法向和垂向位置误差收敛且稳定;对于四旋翼无人机的姿态虚拟控制输入,其利用滑模变结构控制方法得到系统的姿态控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;对于四旋翼无人机的位置虚拟控制输入,其利用滑模变结构控制方法得到系统的位置控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入。
该控制器的设计方法主要包括以下步骤:
步骤S1:分析四旋翼无人机的运动机理,建立四旋翼无人机的非线性力学模型;
步骤S2:制定四旋翼无人机轨迹跟踪的姿态角目标和飞行位置目标,所述姿态角目标用于使无人机的翻滚角、俯仰角和偏航角误差收敛且稳定;所述飞行位置目标用于使无人机切向、法向和垂向位置误差收敛且稳定;
步骤S3:设计四旋翼无人机的姿态虚拟控制输入,利用滑模变结构控制方法得到系统的姿态控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;
步骤S4:设计四旋翼无人机的位置虚拟控制输入,利用滑模变结构控制方法得到系统的位置控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;
步骤S5:根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入。
以及,步骤S6:构造Lyapunov函数,验证步骤S3中的四旋翼无人机姿态、预测值和步骤S4中的四旋翼无人机位置、预测值的渐进稳定性。
步骤S7:通过MATLAB仿真实验,验证基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器的有效性。
与现有技术相比,本发明及其优选方案具有以下有益效果:
1、通过对四旋翼无人机系统的不确定状态参数进行预测,来提前给予自适应控制补偿,有效提高了无人机的轨迹跟踪效率和跟踪精度,确保了自适应轨迹跟踪控制器的稳定性。
2、通过预测四旋翼无人机所受的外界扰动,来提前对系统的控制输入进行补偿,降低了气流、风阻和执行器故障对无人机轨迹跟踪控制的消极影响,提高无人机的抗扰动能力,消除了飞行过程中的抖振现象,提高了系统对环境的自适应适应力。
附图说明
下面结合附图和具体实施方式对本发明进一步详细的说明:
图1是本发明实施例四旋翼无人机模型示意图;
图2是本发明实施例控制系统流程示意图;
图3是本发明实施例无人机飞行轨迹示意图;
图4是本发明实施例无人机飞行轨迹分量示意图;
图5是本发明实施例无人机飞行位置误差示意图;
图6是本发明实施例无人机飞行轨迹及位置误差放大图示意图;
图7是本发明实施例无人机飞行速度误差分量示意图;
图8是本发明实施例无人机飞行速度示意图;
图9是本发明实施例无人机飞行姿态角分量示意图;
图10是本发明实施例无人机飞行姿态角误差示意图;
图11是本发明实施例无人机飞行姿态角及姿态角误差放大图示意图;
图12是本发明实施例无人机飞行姿态角速度误差示意图;
图13是本发明实施例系统的参数变量预测值示意图;
图14是本发明实施例虚拟控制函数的参数变量预测值示意图;
图15是本发明实施例姿态扰动变量预测值示意图;
图16是本发明实施例位置扰动变量预测值示意图;
图17是本发明实施例系统的控制输入示意图;
图18是本发明实施例无人机飞行位置控制输入示意图。
具体实施方式
为让本专利的特征和优点能更明显易懂,下文特举实施例,作详细说明如下:
本实施例从四旋翼无人机的需求出发,结合四旋翼无人机的运动特点,设计一种基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器:其基于四旋翼无人机的非线性力学模型,根据四旋翼无人机轨迹跟踪的姿态角目标和飞行位置目标,所述姿态角目标用于使无人机的翻滚角、俯仰角和偏航角误差收敛且稳定;所述飞行位置目标用于使无人机切向、法向和垂向位置误差收敛且稳定;对于四旋翼无人机的姿态虚拟控制输入,其利用滑模变结构控制方法得到系统的姿态控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;对于四旋翼无人机的位置虚拟控制输入,其利用滑模变结构控制方法得到系统的位置控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入。
以下结合其设计和验证过程进行进一步的解释和阐述:
步骤一:在四旋翼无人机建模的过程中,使用两套独立的空间坐标系,分别为惯性坐标系OXYZ和无人机坐标系Oxyz。无人机在惯性坐标系下的位置为 [x,y,z]T,翻滚角为φ,俯仰角为θ,偏航角为ψ,如图1所示。四旋翼无人机系统的四个控制输入为ui,i=1,...4。其中,u1控制无人机的垂直起降通道,u2控制无人机的翻滚通道,u3控制无人机的俯仰通道,u4控制无人机的偏航通道。系统包括六个输出,分别是沿三个坐标轴的平移运动(垂直运动、前后运动、侧向运动)以及围绕三个坐标轴的转动运动(翻滚、俯仰、偏航)。于是,可以得到四旋翼无人机的非线性力学模型。
Figure RE-GDA0003397923200000041
其中,kφ,kθ和kψ分别为四旋翼无人机在三个转动方向上的气动阻力系数,气动阻力系数作为电机陀螺效应对欧拉角的影响因子。kx,ky和kz分别为无人机在三个坐标方向上的空气阻力系数。Ir=Ω1234为螺旋桨角速度的综合残差。Ωi为第i=1,...,4个电机的转速。Ix,Iy和Iz分别为四旋翼无人机围绕机体坐标系的转动惯量。l为无人机旋翼中心至机体坐标系原点的距离。
不妨设化简参数为:
Figure RE-GDA0003397923200000051
同时,设计无人机在x方向,y方向和z方向上的控制输入为:
Figure RE-GDA0003397923200000052
设置fi,i=1,2,3为四旋翼无人机在转动角度上所受的故障项。σi,i=1,2,3为无人机在转动角度上所受的扰动项。四旋翼无人机的转动角度故障项和扰动项之和为biΔi=fii,i=1,2,3。设置hi,i=1,2,3为四旋翼无人机在运动位置方向上所受的故障项。δi,i=1,2,3为无人机在运动位置方向上所受的扰动项。无人机的运动位置故障项和扰动项之和为Δi=hii,i=4,5,6。因此,考虑扰动以及执行器偏差故障的四旋翼无人机控制模型为:
Figure RE-GDA0003397923200000053
步骤二:四旋翼无人机在轨迹跟踪的过程中,需要完成两项控制任务,分别是姿态角目标和飞行位置目标。其中,姿态角目标的实现可以使无人机的翻滚角、俯仰角和偏航角误差收敛且稳定。飞行位置目标的实现可以使无人机的切向、法向和垂向位置误差收敛且稳定。
姿态角目标:四旋翼无人机的实际翻滚角、俯仰角和偏航角分别为φ,θ和ψ。设置无人机的理想翻滚角、俯仰角和偏航角分别为
Figure RE-GDA0003397923200000061
目的是使四旋翼无人机的姿态子系统在扰动发生的情况下保持稳定。换句话说,系统的姿态角度误差eφ,eθ和eψ可以收敛到零。当t→∞时,存在
Figure RE-GDA0003397923200000062
Figure RE-GDA0003397923200000063
飞行位置目标:四旋翼无人机的实际飞行位置为[x,y,z]T,设置无人机的理想飞行位置为
Figure RE-GDA0003397923200000064
目的是使四旋翼无人机的位置子系统在扰动发生的情况下保持稳定。换句话说,系统的飞行位置误差ex,ey和ez能收敛到零。当t→∞时,存在
Figure RE-GDA0003397923200000065
Figure RE-GDA0003397923200000066
步骤三:根据步骤二制定的姿态角目标,设计四旋翼无人机的姿态控制器,实现四旋翼无人机的姿态控制。
四旋翼无人机的翻滚角速度和翻滚角加速度分别为:
Figure RE-GDA0003397923200000067
俯仰角速度和俯仰角加速度分别为:
Figure RE-GDA0003397923200000068
偏航角速度和偏航角加速度分别为:
Figure RE-GDA0003397923200000069
设计四旋翼无人机的翻滚角滑模误差为eφ,俯仰角滑模误差为eθ,偏航角滑模误差为eψ
Figure RE-GDA00033979232000000610
其中,翻滚角的滑模面为
Figure RE-GDA0003397923200000071
Figure RE-GDA0003397923200000072
俯仰角的滑模面为
Figure RE-GDA0003397923200000073
Figure RE-GDA0003397923200000074
偏航角的滑模面为
Figure RE-GDA0003397923200000075
Figure RE-GDA0003397923200000076
同时,λθ>0,λφ>0和λψ>0为正的常数增益。
对四旋翼无人机的翻滚角误差,俯仰角误差和偏航角误差进行为微分得到:
Figure RE-GDA0003397923200000077
不妨设
Figure RE-GDA0003397923200000078
Figure RE-GDA0003397923200000079
分别为
Figure RE-GDA00033979232000000710
Figure RE-GDA00033979232000000711
的预测值,设
Figure RE-GDA00033979232000000712
Figure RE-GDA00033979232000000713
分别为
Figure RE-GDA00033979232000000714
Figure RE-GDA00033979232000000715
的预测值,设
Figure RE-GDA00033979232000000716
Figure RE-GDA00033979232000000717
分别为
Figure RE-GDA00033979232000000718
Figure RE-GDA00033979232000000719
的预测值。同时,设置
Figure RE-GDA00033979232000000720
Figure RE-GDA00033979232000000721
分别为Δ1,Δ2和Δ3的预测值。系统的预测值
Figure RE-GDA00033979232000000722
是有界的,姿态扰动误差的预测值
Figure RE-GDA00033979232000000723
Figure RE-GDA00033979232000000724
是有界的。
根据自适应控制方法设计系统的控制输入u2,u3和u4
Figure RE-GDA00033979232000000725
其中,cφ>0,cθ>0和cψ>0为正常数增益。
误差微分
Figure RE-GDA00033979232000000726
Figure RE-GDA00033979232000000727
的另一种形式可以被得到:
Figure RE-GDA0003397923200000081
设计预测值
Figure RE-GDA0003397923200000082
Figure RE-GDA0003397923200000083
的微分为:
Figure RE-GDA0003397923200000084
设计预测值
Figure RE-GDA0003397923200000085
Figure RE-GDA0003397923200000086
的微分为:
Figure RE-GDA0003397923200000087
步骤四:根据步骤二制定的飞行位置目标,设计四旋翼无人机的位置控制器,实现四旋翼无人机的飞行位置控制。四旋翼无人机的垂向运动速度和垂向运动加速度分别为:
Figure RE-GDA0003397923200000091
设置无人机的垂向位置误差和垂向速度误差分别为:
Figure RE-GDA0003397923200000092
Figure RE-GDA0003397923200000093
设置虚拟控制项为:
Figure RE-GDA0003397923200000094
其中,μz>0为正常数增益。
Figure RE-GDA0003397923200000095
为μz的预测值。
设置系统的控制输入u1
Figure RE-GDA0003397923200000096
其中,cz>0为正常数增益。
Figure RE-GDA0003397923200000097
为a11的预测值,
Figure RE-GDA0003397923200000098
为Δ6的预测值。
设计预测值
Figure RE-GDA0003397923200000099
Figure RE-GDA00033979232000000910
的微分为:
Figure RE-GDA00033979232000000911
根据四旋翼无人机的垂向位置控制和所涉及的控制输入u1。需要对无人机的虚拟切向位置控制输入ux和法向位置控制输入uy进行设计。四旋翼无人机的切向运动速度和切向运动加速度分别为:
Figure RE-GDA00033979232000000912
无人机的法向运动速度和法向运动加速度分别为:
Figure RE-GDA0003397923200000101
四旋翼无人机的切向位置误差和切向速度误差为:
Figure RE-GDA0003397923200000102
无人机的法向位置误差和法向速度误差为:
Figure RE-GDA0003397923200000103
无人机的切向误差和法向误差的微分分别为:
Figure RE-GDA0003397923200000104
以及,
Figure RE-GDA0003397923200000105
设置虚拟控制项为:
Figure RE-GDA0003397923200000106
其中,μx>0和μy>0为正的常数增益。
Figure RE-GDA0003397923200000107
为μx的预测值,
Figure RE-GDA0003397923200000108
为μy的预测值。
不妨设
Figure RE-GDA0003397923200000109
Figure RE-GDA00033979232000001010
分别为a9和a10的预测值,
Figure RE-GDA00033979232000001011
Figure RE-GDA00033979232000001012
的预测值。设置系统的位置控制输入ux和uy
Figure RE-GDA00033979232000001013
其中,cx>0和cy>0为正的常数增益。
设计预测值
Figure RE-GDA00033979232000001014
Figure RE-GDA00033979232000001015
的微分为:
Figure RE-GDA0003397923200000111
步骤五:根据期望偏航角
Figure RE-GDA0003397923200000112
和中的控制输入ux和uy,可以反解出四旋翼无人机系统的理想翻滚角
Figure RE-GDA0003397923200000113
和俯仰角
Figure RE-GDA0003397923200000114
Figure RE-GDA0003397923200000115
作为内环回路的参考输入,从而设计获得无人机系统的姿态控制器:
Figure RE-GDA0003397923200000116
Figure RE-GDA0003397923200000117
步骤六:构造Lyapunov函数,验证步骤三中的四旋翼无人机姿态、预测值和步骤四中的四旋翼无人机位置、预测值的渐进稳定性。
首先设计Lyapunov候选函数L1,L2和L3
Figure RE-GDA0003397923200000118
其中,γi>0,i=1,...,11为正常数增益,β1,β2和β3为正常数增益。
对L1,L2和L3进行微分可以得到:
Figure RE-GDA0003397923200000121
将估计值的更新代入后,
Figure RE-GDA0003397923200000122
的另一种形式为:
Figure RE-GDA0003397923200000123
因此,四旋翼无人机的姿态控制的Lyapunov函数为L=L1+L2+L3
Figure RE-GDA0003397923200000124
很明显,
Figure RE-GDA0003397923200000125
是负半定的。同时,系统的预测值
Figure RE-GDA0003397923200000126
和扰动误差的预测值
Figure RE-GDA0003397923200000127
是有界的。因此,四旋翼无人机系统的姿态角度是稳定的。
设置Lyapunov候选函数V1
Figure RE-GDA0003397923200000128
Figure RE-GDA0003397923200000131
其中,η1>0,η2>0和η3>0为正的常数增益。
将估计值更新律代入,则
Figure RE-GDA0003397923200000132
的另一种形式可以被得到:
Figure RE-GDA0003397923200000133
设置Lyapunov候选函数V2和V3
Figure RE-GDA0003397923200000134
Figure RE-GDA0003397923200000135
其中,η4>0,η5>0,η6>0,η7>0,η8>0和η9>0为正的常数增益。
将位置控制输入方程代入,Lyapunov函数
Figure RE-GDA0003397923200000136
的另一种形式可以被得到:
Figure RE-GDA0003397923200000141
设四旋翼无人机的位置误差的Lyapunov函数为V=V1+V2+V3
Figure RE-GDA0003397923200000142
很明显,
Figure RE-GDA0003397923200000143
是负半定的。四旋翼无人机系统的位置控制误差ex,ey和ez可以收敛到零,同时,无人机系统的速度误差ev,x,ev,y和ev,z可以收敛到零。同时,系统的预测值
Figure RE-GDA0003397923200000144
是有界的,位置扰动误差的预测值
Figure RE-GDA0003397923200000145
是有界的,虚拟控制输入的参数预测值
Figure RE-GDA0003397923200000146
是有界的。因此,证明了系统的位置控制是稳定的。
步骤七:通过MATLAB对基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器进行仿真实验。无人机飞行轨迹如图3所示。无人机飞行轨迹分量如图4所示。无人机飞行位置误差如图5所示。无人机飞行轨迹及位置误差放大图如图6所示。无人机飞行速度误差分量如图7所示。无人机飞行速度如图8所示。无人机飞行姿态角分量如图9所示。无人机飞行姿态角误差如图10 所示。无人机飞行姿态角及姿态角误差放大图如图11所示。无人机飞行姿态角速度误差如图12所示。系统的参数变量预测值如图13所示。虚拟控制函数的参数变量预测值如图14所示。姿态扰动变量预测值如图15所示。位置扰动变量预测值如图16所示。系统的控制输入如图17所示。无人机飞行位置控制输入如图 18所示。根据仿真结果可以发现所提出的控制器有效的提高四旋翼无人机的轨迹跟踪效率,加快跟踪性能误差的收敛速度,而且减小跟踪误差的波动峰值,提高系统的稳定性,该结果与预期结果一致。
本专利不局限于上述最佳实施方式,任何人在本专利的启示下都可以得出其它各种形式的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本专利的涵盖范围。

Claims (10)

1.一种基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:基于四旋翼无人机的非线性力学模型,根据四旋翼无人机轨迹跟踪的姿态角目标和飞行位置目标,所述姿态角目标用于使无人机的翻滚角、俯仰角和偏航角误差收敛且稳定;所述飞行位置目标用于使无人机切向、法向和垂向位置误差收敛且稳定;对于四旋翼无人机的姿态虚拟控制输入,其利用滑模变结构控制方法得到系统的姿态控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;对于四旋翼无人机的位置虚拟控制输入,其利用滑模变结构控制方法得到系统的位置控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入。
2.根据权利要求1所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:
所述四旋翼无人机的非线性力学模型使用两套独立的空间坐标系,分别为惯性坐标系OXYZ和无人机坐标系Oxyz;无人机在惯性坐标系下的位置为[x,y,z]T,翻滚角为φ,俯仰角为θ,偏航角为ψ;四旋翼无人机系统的四个控制输入为ui,i=1,...4;其中,u1控制无人机的垂直起降通道,u2控制无人机的翻滚通道,u3控制无人机的俯仰通道,u4控制无人机的偏航通道;系统包括六个输出,分别是沿三个坐标轴的平移运动,包括:垂直运动、前后运动、侧向运动,以及围绕三个坐标轴的转动运动,包括:翻滚、俯仰、偏航;得到四旋翼无人机的非线性力学模型:
Figure FDA0003178279390000021
其中,kφ,kθ和kψ分别为四旋翼无人机在三个转动方向上的气动阻力系数,气动阻力系数作为电机陀螺效应对欧拉角的影响因子;kx,ky和kz分别为无人机在三个坐标方向上的空气阻力系数;Ir=Ω1234为螺旋桨角速度的综合残差;Ωi为第i=1,...,4个电机的转速;Ix,Iy和Iz分别为四旋翼无人机围绕机体坐标系的转动惯量;l为无人机旋翼中心至机体坐标系原点的距离。
3.根据权利要求2所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:
设化简参数为:
Figure FDA0003178279390000022
无人机在x方向,y方向和z方向上的控制输入为:
Figure FDA0003178279390000023
设置fi,i=1,2,3为四旋翼无人机在转动角度上所受的故障项,σi,i=1,2,3为无人机在转动角度上所受的扰动项,四旋翼无人机的转动角度故障项和扰动项之和为biΔi=fii,i=1,2,3,设置hi,i=1,2,3为四旋翼无人机在运动位置方向上所受的故障项,δi,i=1,2,3为无人机在运动位置方向上所受的扰动项,无人机的运动位置故障项和扰动项之和为Δi=hii,i=4,5,6,则获得考虑扰动以及执行器偏差故障的四旋翼无人机控制模型为:
Figure FDA0003178279390000031
4.根据权利要求1所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:
所述姿态角目标具体为:设四旋翼无人机的实际翻滚角、俯仰角和偏航角分别为φ,θ和ψ,设置无人机的理想翻滚角、俯仰角和偏航角分别为
Figure FDA0003178279390000032
Figure FDA0003178279390000033
系统的姿态角度误差eφ,eθ和eψ能收敛到零,即,当t→∞时,存在
Figure FDA0003178279390000034
Figure FDA0003178279390000035
Figure FDA0003178279390000036
所述飞行位置目标具体为:设四旋翼无人机的实际飞行位置为[x,y,z]T,设置无人机的理想飞行位置为
Figure FDA0003178279390000037
系统的飞行位置误差ex,ey和ez能收敛到零,即,当t→∞时,存在
Figure FDA0003178279390000038
Figure FDA0003178279390000039
Figure FDA00031782793900000310
5.根据权利要求3所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:对于四旋翼无人机的姿态虚拟控制输入,其具体为:
四旋翼无人机的翻滚角速度和翻滚角加速度分别为:
Figure FDA0003178279390000041
俯仰角速度和俯仰角加速度分别为:
Figure FDA0003178279390000042
偏航角速度和偏航角加速度分别为:
Figure FDA0003178279390000043
四旋翼无人机的翻滚角滑模误差为eφ,俯仰角滑模误差为eθ,偏航角滑模误差为eψ
Figure FDA0003178279390000044
其中,翻滚角的滑模面为
Figure FDA0003178279390000045
Figure FDA0003178279390000046
俯仰角的滑模面为
Figure FDA0003178279390000047
Figure FDA0003178279390000048
偏航角的滑模面为
Figure FDA0003178279390000049
Figure FDA00031782793900000410
同时,λθ>0,λφ>0和λψ>0为正的常数增益;
对四旋翼无人机的翻滚角误差,俯仰角误差和偏航角误差进行为微分得到:
Figure FDA00031782793900000411
Figure FDA00031782793900000412
Figure FDA00031782793900000413
分别为
Figure FDA00031782793900000414
Figure FDA00031782793900000415
的预测值,设
Figure FDA00031782793900000416
Figure FDA00031782793900000417
分别为
Figure FDA00031782793900000418
Figure FDA00031782793900000419
的预测值,设
Figure FDA00031782793900000420
Figure FDA00031782793900000421
分别为
Figure FDA00031782793900000422
Figure FDA00031782793900000423
的预测值;同时,设置
Figure FDA0003178279390000051
Figure FDA0003178279390000052
分别为Δ1,Δ2和Δ3的预测值;系统的预测值
Figure FDA0003178279390000053
是有界的,姿态扰动误差的预测值
Figure FDA0003178279390000054
Figure FDA0003178279390000055
是有界的;
根据自适应控制方法设计系统的控制输入u2,u3和u4
Figure FDA0003178279390000056
其中,cφ>0,cθ>0和cψ>0为正常数增益;
误差微分
Figure FDA0003178279390000057
Figure FDA0003178279390000058
的另一种形式为:
Figure 1
预测值
Figure FDA00031782793900000510
Figure FDA00031782793900000511
的微分为:
Figure FDA00031782793900000512
预测值
Figure FDA00031782793900000513
Figure FDA00031782793900000514
的微分为:
Figure FDA0003178279390000061
6.根据权利要求3所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:对于四旋翼无人机的位置虚拟控制输入,其具体为:
四旋翼无人机的垂向运动速度和垂向运动加速度分别为:
Figure FDA0003178279390000062
设置无人机的垂向位置误差和垂向速度误差分别为:
Figure FDA0003178279390000063
以及,
Figure FDA0003178279390000064
设置虚拟控制项为:
Figure FDA0003178279390000065
其中,μz>0为正常数增益,
Figure FDA0003178279390000066
为μz的预测值;
设置系统的控制输入u1
Figure FDA0003178279390000067
其中,cz>0为正常数增益,
Figure FDA0003178279390000068
为a11的预测值,
Figure FDA0003178279390000069
为Δ6的预测值;
预测值
Figure FDA00031782793900000610
Figure FDA00031782793900000611
的微分为:
Figure FDA00031782793900000612
根据四旋翼无人机的垂向位置控制和所涉及的控制输入u1,无人机的虚拟切向位置控制输入ux和法向位置控制输入uy;四旋翼无人机的切向运动速度和切向运动加速度分别为:
Figure FDA0003178279390000071
无人机的法向运动速度和法向运动加速度分别为:
Figure FDA0003178279390000072
四旋翼无人机的切向位置误差和切向速度误差为:
Figure FDA0003178279390000073
无人机的法向位置误差和法向速度误差为:
Figure FDA0003178279390000074
无人机的切向误差和法向误差的微分分别为
Figure FDA0003178279390000075
Figure FDA0003178279390000076
设置虚拟控制项为:
Figure FDA0003178279390000077
其中,μx>0和μy>0为正的常数增益,
Figure FDA0003178279390000078
为μx的预测值,
Figure FDA0003178279390000079
为μy的预测值;
Figure FDA00031782793900000710
Figure FDA00031782793900000711
分别为a9和a10的预测值,
Figure FDA00031782793900000712
Figure FDA00031782793900000713
为Δ4和Δ5的预测值,设置系统的位置控制输入ux和uy
Figure FDA00031782793900000714
其中,cx>0和cy>0为正的常数增益;
预测值
Figure FDA00031782793900000715
Figure FDA00031782793900000716
Figure FDA00031782793900000717
的微分为:
Figure FDA0003178279390000081
7.根据权利要求6所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器,其特征在于:根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入,具体为:
根据期望偏航角
Figure FDA0003178279390000082
无人机的虚拟切向位置控制输入ux、法向位置控制输入uy和初始设定值uz,反解出四旋翼无人机系统的理想翻滚角
Figure FDA0003178279390000083
和俯仰角
Figure FDA0003178279390000084
Figure FDA0003178279390000085
Figure FDA0003178279390000086
作为内环回路的参考输入:
Figure FDA0003178279390000087
8.根据权利要求1-7其中任一所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器的设计方法,其特征在于,包括以下步骤:
步骤S1:分析四旋翼无人机的运动机理,建立四旋翼无人机的非线性力学模型;
步骤S2:制定四旋翼无人机轨迹跟踪的姿态角目标和飞行位置目标,所述姿态角目标用于使无人机的翻滚角、俯仰角和偏航角误差收敛且稳定;所述飞行位置目标用于使无人机切向、法向和垂向位置误差收敛且稳定;
步骤S3:设计四旋翼无人机的姿态虚拟控制输入,利用滑模变结构控制方法得到系统的姿态控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;
步骤S4:设计四旋翼无人机的位置虚拟控制输入,利用滑模变结构控制方法得到系统的位置控制输入函数,同时,对系统的不确定状态参数和外界扰动进行预测,并用预测值代替实际值来提前给予自适应控制补偿;
步骤S5:根据期望的偏航角和虚拟控制输入反解四旋翼无人机滚动角和俯仰角的期望值作为内环回路的参考输入。
9.根据权利要求8所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器的设计方法,其特征在于:还包括步骤S6:构造Lyapunov函数,验证步骤S3中的四旋翼无人机姿态、预测值和步骤S4中的四旋翼无人机位置、预测值的渐进稳定性。
10.根据权利要求9所述的基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器的设计方法,其特征在于:还包括步骤S7:通过MATLAB仿真实验,验证基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器的有效性。
CN202110841286.6A 2021-07-23 2021-07-23 基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法 Active CN113867374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110841286.6A CN113867374B (zh) 2021-07-23 2021-07-23 基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110841286.6A CN113867374B (zh) 2021-07-23 2021-07-23 基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法

Publications (2)

Publication Number Publication Date
CN113867374A true CN113867374A (zh) 2021-12-31
CN113867374B CN113867374B (zh) 2023-12-01

Family

ID=78990245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110841286.6A Active CN113867374B (zh) 2021-07-23 2021-07-23 基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法

Country Status (1)

Country Link
CN (1) CN113867374B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114564033A (zh) * 2022-02-28 2022-05-31 中国人民解放军国防科技大学 一种多旋翼无人机角度控制方法及其多旋翼无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676641A (zh) * 2016-01-25 2016-06-15 南京航空航天大学 针对四旋翼无人机非线性模型的基于反步和滑模控制技术的非线性鲁棒控制器的设计方法
CN109062052A (zh) * 2018-08-31 2018-12-21 湖北工业大学 基于扩张状态观测器的四旋翼无人机积分滑模控制方法
CN109884895A (zh) * 2019-03-11 2019-06-14 南京邮电大学 基于饱和受限情况下的无人机自适应跟踪控制算法
CN110456816A (zh) * 2019-07-05 2019-11-15 哈尔滨工程大学 一种基于连续终端滑模的四旋翼轨迹跟踪控制方法
CN112034872A (zh) * 2020-08-31 2020-12-04 东南大学 一种四旋翼无人机积分补偿确定性策略梯度控制方法
CN112987567A (zh) * 2021-02-09 2021-06-18 河北科技大学 非线性系统的固定时间自适应神经网络滑模控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676641A (zh) * 2016-01-25 2016-06-15 南京航空航天大学 针对四旋翼无人机非线性模型的基于反步和滑模控制技术的非线性鲁棒控制器的设计方法
CN109062052A (zh) * 2018-08-31 2018-12-21 湖北工业大学 基于扩张状态观测器的四旋翼无人机积分滑模控制方法
CN109884895A (zh) * 2019-03-11 2019-06-14 南京邮电大学 基于饱和受限情况下的无人机自适应跟踪控制算法
CN110456816A (zh) * 2019-07-05 2019-11-15 哈尔滨工程大学 一种基于连续终端滑模的四旋翼轨迹跟踪控制方法
CN112034872A (zh) * 2020-08-31 2020-12-04 东南大学 一种四旋翼无人机积分补偿确定性策略梯度控制方法
CN112987567A (zh) * 2021-02-09 2021-06-18 河北科技大学 非线性系统的固定时间自适应神经网络滑模控制方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
刘凯悦: "四旋翼无人飞行器自适应容错控制系统研究", 工程科技Ⅱ辑, no. 08 *
刘凯悦;冷建伟;: "关于四旋翼无人机目标轨迹跟踪控制的研究", 计算机仿真, no. 05 *
刘凯悦;冷建伟;: "基于滑模控制的四旋翼无人机的轨迹跟踪控制", 天津理工大学学报, no. 02 *
刘凯悦;冷建伟;: "基于滑模控制的四旋翼无人机自适应跟踪控制", 飞行力学, vol. 33, no. 01 *
刘锦涛;吴文海;李静;周思羽;张源原;: "无速度测量的四旋翼无人机移动目标跟踪控制", 系统工程与电子技术, vol. 39, no. 02 *
刘锦涛;吴文海;李静;周思羽;高丽;: "四旋翼无人机风场扰动轨迹控制器设计", 飞行力学, vol. 34, no. 02 *
吴梅;涂彪;罗瑜;: "基于反步滑模法的四旋翼飞行器轨迹跟踪控制", 飞行力学, no. 03 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114564033A (zh) * 2022-02-28 2022-05-31 中国人民解放军国防科技大学 一种多旋翼无人机角度控制方法及其多旋翼无人机

Also Published As

Publication number Publication date
CN113867374B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Ritz et al. A global controller for flying wing tailsitter vehicles
Colorado et al. Mini-quadrotor attitude control based on Hybrid Backstepping & Frenet-Serret theory
Madani et al. Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle
CN109062042B (zh) 一种旋翼飞行器的有限时间航迹跟踪控制方法
CN112346470A (zh) 一种基于改进自抗扰控制的四旋翼姿态控制方法
CN111538255B (zh) 一种反蜂群无人机的飞行器控制方法及系统
CN111273688B (zh) 基于事件触发的四旋翼无人机一致性编队控制方法
CN110673623B (zh) 一种基于双环pd控制算法控制的四旋翼无人机着陆方法
CN111459188B (zh) 一种基于四元数的多旋翼非线性飞行控制方法
CN113359472B (zh) 一种四旋翼无人机自适应鲁棒轨迹跟踪控制方法
CN114138010B (zh) 一种基于加权偏差的多智能体高阶滑模编队控制方法
Bulka et al. Autonomous control of agile fixed-wing UAVs performing aerobatic maneuvers
CN115793453A (zh) 融合ai深度学习的旋翼飞行器轨迹跟踪自适应控制方法
Lv et al. Extended state observer based MPC for a quadrotor helicopter subject to wind disturbances
CN107678442B (zh) 一种基于双模型下的四旋翼自主着船控制方法
Qingtong et al. Backstepping-based attitude control for a quadrotor UAV using nonlinear disturbance observer
Willis et al. Nonlinear trajectory tracking control for winged eVTOL UAVs
BOUZID et al. Generic dynamic modeling for multirotor VTOL UAVs and robust Sliding Mode based Model-Free Control for 3D navigation
CN113867374A (zh) 基于滑模控制的四旋翼无人机参数预测和扰动的自适应轨迹跟踪控制器及其设计方法
CN111897219B (zh) 基于在线逼近器的倾转四旋翼无人机过渡飞行模式最优鲁棒控制方法
CN108459611A (zh) 一种近空间飞行器的姿态跟踪控制方法
Zou et al. Adaptive tracking control for a model helicopter with disturbances
dos Santos et al. Nonlinear tracking and aggressive maneuver controllers for quad-rotor robots using learning automata
CN116430828A (zh) 一种基于观测器的四旋翼故障容灾降级控制方法
CN116203840A (zh) 可重复使用运载器自适应增益调度控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant