CN113862283B - Application of TGS1 gene in regulation and control of rice grain size and yield - Google Patents

Application of TGS1 gene in regulation and control of rice grain size and yield Download PDF

Info

Publication number
CN113862283B
CN113862283B CN202111139974.4A CN202111139974A CN113862283B CN 113862283 B CN113862283 B CN 113862283B CN 202111139974 A CN202111139974 A CN 202111139974A CN 113862283 B CN113862283 B CN 113862283B
Authority
CN
China
Prior art keywords
gene
rice
tgs1
ala
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111139974.4A
Other languages
Chinese (zh)
Other versions
CN113862283A (en
Inventor
高清松
赵祥祥
周海英
李伟
张雯霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Normal University
Original Assignee
Huaiyin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Normal University filed Critical Huaiyin Normal University
Priority to CN202111139974.4A priority Critical patent/CN113862283B/en
Publication of CN113862283A publication Critical patent/CN113862283A/en
Application granted granted Critical
Publication of CN113862283B publication Critical patent/CN113862283B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses application of a TGS1 gene in regulation and control of rice grain size and yield, and belongs to the technical field of molecular biology and genetic engineering. According to the invention, a target site is knocked out by designing a coding region of a gene TGS1, a gene knockout mutant is constructed by using a CRISPR/Cas9 technology, and a TGS1 gene in rice is knocked out. Through progeny segregation and detection, homozygous mutants without transgene insertion are obtained. Compared with a control, the grain length, the grain width, the grain thickness and the single plant yield of different mutant grains are obviously increased. In addition, the aspect ratio of the mutant grain was significantly greater than the control, and thus had better appearance quality. Therefore, the application of the TGS1 gene provided by the invention in regulation and control of rice grain size and yield has important application value and can generate good economic benefit.

Description

Application of TGS1 gene in regulation and control of rice grain size and yield
Technical Field
The invention belongs to the technical field of molecular biology and genetic engineering, and relates to application of TGS1 gene in regulation and control of rice grain size and yield.
Background
Rice is one of the most important food crops in the world, and rice is taken as staple food in nearly half of the global population. The method has the advantages of improving the rice yield, meeting the continuously increasing population demand in the world and ensuring the food safety, and has important significance. Rice yield consists of three major elements: the number of ears per plant, the number of grains per ear and the grain weight. Wherein, the grain weight is positively correlated with the grain size, so the grain size is one of the important agronomic traits determining the rice yield. In recent years, a great deal of research carried out by positioning and cloning Quantitative Trait Loci (QTLs) and utilizing a reverse genetics method shows that ubiquitination-mediated signal pathways such as proteasome degradation, phytohormones, G protein signal transduction, MAPK signal transduction and the like, and various transcription regulatory factors participate in the regulation and control of rice grain size (Li N, Xu R, Duan PG, Li Y H.control of grain size in rice plant Reproduction, 2018, 31: 237-.
The transcription regulating factor plays an important role in the growth and development process of plants. GLW7 is a major QTL for controlling rice grain length and grain weight, and encodes a plant-specific transcription factor OsSPL 13. The gene can increase the grain length and the yield of rice by positively regulating the size of glume cells. Meanwhile, the gene also participates in the regulation and control of the development of rice ears. GW8 encodes the SBP family transcription factor OsSPL16, positively regulating cell proliferation. The gene has high expression, promotes glume cell division and grain filling, and further increases grain width and yield. However, the deletion of the 10-bp gene promoter region enables the rice to form a slender seed and a better appearance quality. Interestingly, OsSPL16 can bind to the promoter region of GW7/GL7/SLG7, inhibiting the gene expression. GW7/GL7/SLG7 encodes arabidopsis thaliana LONGIFOLIA homologous protein, and the expression level of the Arabidopsis thaliana LONGIFOLIA homologous protein is up-regulated, so that grains become slender and the appearance quality is improved. Therefore, the OsSPL16-GW7/GL7/SLG7 pathway is adjusted, and the rice yield and quality are expected to be synchronously improved. In addition, GS2/GL2/GLW2/PT2 encodes a GRF family transcription factor OsGRF4, and the expression of the transcription factor OsGRF4 is regulated and controlled by microRNA OsmiR 396. The microRNA target sequence mutation of the gene causes the increase of expression quantity, thereby causing the enlargement of grains and the increase of yield. OsGRF4 can interact with brassinolide signal pathway regulatory factor GSK2, and thus can regulate grain size by influencing brassinolide signal transduction. In addition, OsGRF4 also interacts with the co-activators OsGIF1, 2 and 3. The seeds of the plants over-expressing OsGIF1 become bigger and the grain weight is increased. Although a plurality of molecular pathways and key regulatory factors involved in rice grain size regulation are identified at present, the knowledge of the whole regulatory network is still limited, and new genes are still to be identified.
The CRISPR/Cas9(Clustered regulated short linked genomic templates/CRISPR-associated protein 9) system is a genome-oriented editing system mediated by guide RNA, and is widely applied to genome editing of various organisms.
Disclosure of Invention
Aiming at the problems in the prior art, the technical problem to be solved by the invention is to provide the application of the TGS1 gene in the regulation of the size and the yield of rice grains, namely a method for knocking out the TGS1 gene in rice to increase the size and the yield of the rice grains.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows:
the application of the TGS1 gene in regulating and controlling the size and yield of rice grains is as follows: the TGS1 gene in rice is knocked out to increase the size or yield of rice grains, wherein the TGS1 gene codes a trihelix family transcription factor, and the nucleotide sequence of the transcription factor is shown as SEQ ID No. 1.
Preferably, the specific method for knocking out the TGS1 gene in rice comprises the following steps: the TGS1 gene in rice is subjected to targeted mutation by using a CRISPR/Cas9 technology.
Preferably, the application comprises the following specific steps:
1) selecting a target fragment from a coding region of a rice grain size control gene TGS 1;
2) synthesizing a linker primer with a cohesive end according to the sequence information of the target fragment, and constructing a CRISPR/Cas9 recombinant vector for TGS1 gene targeting; the recombinant vector comprises an sgRNA expression cassette having the target sequence and a Cas9 nuclease expression cassette capable of being expressed in rice cells;
3) transferring the recombinant vector into an agrobacterium tumefaciens engineering strain, and transforming a conventional rice variety by using an agrobacterium-mediated method to obtain a transgenic rice plant;
4) amplifying and sequencing the genome DNA of the transgenic plant by using the genome primer covering the target site, thereby carrying out T0Carrying out genotype identification on the generation transgenic plant to obtain homozygous or double allelic mutant;
5) for the above-mentioned T0Generation of homozygous or biallelic mutants at T1Planting generation by generation, and using primer pair T1HPT, sgRNA and Cas9 transformation in progeny plantsThe gene is subjected to PCR detection, and the rice without transgene insertion, with obviously enlarged grains and increased yield can be obtained.
Preferably, in step 1), the target fragment sequence is shown as SEQ ID No. 5.
Preferably, in step 2), the nucleotide sequence of the sgRNA expression cassette is shown in SEQ ID No. 3.
Preferably, in step 2), the nucleotide sequence of the Cas9 nuclease expression cassette is shown as Seq ID No. 4.
Preferably, in step 5), the primer sequences for transgenic amplification of hpt (hygromycin phosphotransferase), sgRNA and Cas9 are:
HPTF:5’-GGGTGTCACGTTGCAAGACC-3’,
HPTR:5’-ATGCCTCCGCTCGAAGTAGC-3’,
sgRNAF:5’-TCCCAGTCACGACGTTGTAA-3’,
sgRNAR:5’-GGCCATTTGTCTGCAGAAT-3’,
Cas9F:5’-CACCATCTACCACCTGAGAA-3’,
Cas9R:5’-CGAAGTTGCTCTTGAAGTTG-3’。
has the advantages that: compared with the prior art, the invention has the advantages that:
the invention provides application of TGS1 gene in regulation of rice grain size and yield, and relates to a method for obtaining transgene-free insertion mutant by targeted mutation of TGS1 gene by using CRISPR/Cas9 technology, wherein T is the gene in the T1Three pairs of primers are used for detection instead, so that a mutant without transgene insertion can be obtained and is equivalent to a naturally occurring mutant, and the safety risk possibly brought by transgene is avoided. The obtained rice material grains are obviously larger, the aspect ratio is increased, the yield is higher, the appearance quality is better, and the commercial value is higher. The method can be used for quickly and directionally improving the existing rice varieties, thereby greatly shortening the breeding period and saving the time and the cost. Because the targeted mutation is carried out on the target gene, the genetic background of the edited material is not changed, and the original favorable characters of the receptor variety are not changed.
Drawings
FIG. 1 shows the results of sequencing and identification of different mutants in example 1;
FIG. 2 shows T in example 11Detecting the result of the generation-free transgene insertion mutant; wherein 1 to 10 each represent a randomly selected T1The generation plant, WT represents wild type, VC represents vector control, and M represents DNA molecular weight marker;
FIG. 3 shows kernels and brown rice of mutant and Wild Type (WT) plants of example 1 at a scale of 5 mm;
FIG. 4 is the relative expression levels of the TGS1 gene of over-expressed (OE) plants of example 2, P < 0.05;
fig. 5 shows kernels from Wild Type (WT) and over-expressed (OE) plants of example 2 at a scale of 5 mm.
Detailed Description
The invention is further described with reference to specific examples. These examples are intended to illustrate the invention and are not intended to limit the scope of the invention. In the following examples, unless otherwise specified, all experimental procedures were carried out according to conventional methods.
Example 1: method for increasing rice grain size and yield by knocking out TGS1 gene based on CRISPR/Cas9 technology
The sequence of the gene TGS1 is shown in SEQ ID No. 1. Sequence analysis shows that the gene comprises 3 exons, namely the 1 st to 287 th exons (the 1 st exons), the 988 th and 2512 nd exons (the 2 nd exons) and the 2647 th and 3012 nd exons (the 3 rd exons) of the sequence of SEQ ID No. 1.
(1) Construction of recombinant expression vector for TGS1 Gene knockout
A CRISPR/Cas9 gene knockout target site is designed in a TGS1 gene coding region, an antisense chain of a No. 2 exon is targeted, and a target sequence is shown as SEQ ID No. 5. Target sequence primers based on the CRISPR/Cas9 system were synthesized with the following sequences:
TGS1-P1:5’-TGTGGGCGCCGCCGGCCACCCCTG-3’,
TGS1-P2:5’-AAACCAGGGGTGGCCGGCGGCGCC-3’,
wherein the underlined section is the sticky end used for vector ligation and the non-underlined section is the target sequence or its complement.
The maize ZmUBI promoter is connected with hSpCas9 gene (Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F.multiple gene engineering using CRISPR/Cas system science 2013, 339 (6121): 819 and 823), and is inserted into pCAMBIA1300 binary vector to obtain an intermediate vector. The original BsaI cleavage site of the pCAMBIA1300 vector was removed using a point mutation kit (TransGen Biotech). Then, a fragment containing OsU6 promoter, ccdB negative selection marker gene flanked by BsaI cleavage sites, and sgRNA backbone was inserted into the intermediate vector to construct a CRISPR/Cas9 binary vector. The binary vector was stored in E.coli strain DB 3.1.
The annealing procedure was performed on TGS1-P1 and TGS1-P2 to form double stranded DNA with sticky ends as an insert for constructing CRISPR/Cas9 knockout vectors. The above CRISPR/Cas9 binary vector was cleaved with BsaI restriction endonuclease (NEB) at 37 ℃ to obtain a vector backbone fragment. The insert and the vector backbone are ligated with T4 ligase (NEB) to yield a recombinant expression vector targeting the target site. The recombinant expression vector is transferred into escherichia coli for amplification, and the extracted vector plasmid is transferred into agrobacterium tumefaciens strain EHA105 for agrobacterium-mediated rice genetic transformation after being verified to be correct by sequencing (Shanghai Bioengineering Co., Ltd.).
(2) Obtaining and identifying TGS1 gene knockout rice
Referring to the method of Nishimura et al (Nishimura A, Aichi I, Matsuoka M.A protocol for Agrobacterium-mediated transformation in nature Protocols, 2006, 1 (6): 2796-0Transgenic rice plants are generated.
Extraction of T0The DNA of a transgenic rice plant is generated, KOD DNA polymerase (TOYOBO) and a genome primer are utilized to amplify a DNA segment containing a target site, and the sequence of an amplification product is determined by Shanghai biological engineering GmbH. The primer sequence is as follows:
TGS1F:5’-TCCGTGTCCGACCCCGACGAGAA-3’,
TGS1R:5’-ACAAGAGGAGCGCCAAGAAGTGC-3’,
sequencing results show that 10 transgenic plants carry target mutations, wherein 2 homozygous mutants and 8 biallelic mutants are obtained.
(3) Acquisition and phenotypic analysis of transgene-free homozygous mutants
Selecting two homozygous T0The generation mutants were subjected to subsequent analysis. One of the mutants carries a 1bp deletion, designated tgs1-1, and the other mutant carries a 28bp deletion, designated tgs 1-2. The results of mutant sequencing are shown in FIG. 1.
T of the mutant by using HPT, sgRNA and Cas9 primers1The plant genome DNA is amplified, and T of two mutants1Mutants without transgene insertion were identified in the generation individual plants (FIG. 2), which shows that the number of T-DNA insertion sites of the transgenic plants obtained by the method is small, and the transgenic plants are easy to be inserted at T1Mutants without transgene insertion were obtained.
For homozygous mutants without transgene insertion at T2Planting the plants in generation. The kernel of the mutant plants was significantly larger than the wild type (fig. 3). Wherein, the grain length is respectively increased by 11.3 percent and 9.2 percent, the grain width is respectively increased by 2.2 percent and 1.8 percent, and the grain thickness is respectively increased by 4.8 percent and 2.2 percent (Table 1-1). The thousand seed weight of the mutant is respectively increased by 18.3 percent and 15.2 percent compared with the wild type, and the yield of a single plant is increased by 19.5 percent and 15.8 percent (tables 1-2). The method provided by the invention can obviously increase the grain size and yield of the rice. In addition, the length-width ratio of the mutant kernel was increased by 8.8% and 7.5% respectively (tables 1-2) compared to the wild type, and thus had better appearance quality. The rice material with increased grain size and yield obtained by the invention does not contain transgenic components, avoids the safety risk possibly brought by transgenosis, only changes one gene, and does not affect other agronomic characters of rice varieties.
TABLE 1-1 tgs1 mutant and wild type plant grain phenotypes
Grain length (mm) Grain width (mm) Particle thickness (mm)
Wild type 7.37±0.16 3.25±0.089 2.28±0.054
tgs1-1 8.20±0.19*** 3.32±0.12*** 2.39±0.067***
tgs1-2 8.05±0.17*** 3.31±0.074*** 2.33±0.059***
Note: the grain length, grain width and grain thickness are the average values of 50 seeds.***:P<0.001。
TABLE 1-2 tgs1 mutant and wild type plant grain phenotypes
Aspect ratio Thousand Kernel weight (g) Yield per plant (g)
Wild type 2.27±0.078 25.53±0.46 34.71±4.97
tgs1-1 2.47±0.075*** 30.21±0.55*** 41.47±6.73**
tgs1-2 2.44±0.057*** 29.41±0.79*** 40.18±4.67**
Note: the aspect ratio is the average of 50 seeds; thousand kernel weight and individual plant yield were the average of 10 individual plants.
**:P<0.01;***:P<0.001。
Example 2: construction of TGS1 overexpression lines
In order to further verify the function of the gene in regulating the size of rice grains, an over-expression strain of the gene is constructed. The complete coding sequence of TGS1 was amplified using a pair of PCR primers, digested with restriction enzyme Bsa I (NEB), and ligated into the ZmUBI promoter downstream of pEGOEPubi-H vector carrying the hygromycin resistance gene to construct pEGOEPubi-H-TGS1 overexpression transgene vector. The sequence of the pEGOEPubi-H-TGS1 overexpression transgenic vector is shown in SEQ ID NO. 12. The PCR primer sequences are as follows:
TGS1OE-F:
5’-ACTAGGGTCTCGCACCATGCCGCCATTCTCGGCAGCCG-3’,
TGS1OE-R:
5’-ACTAGGGTCTCTACCGTCACTGGACGCAGGCCAAGAATGA-3’,
wherein the underlined part is the recognition site for Bsa I.
With reference to the method of Nishimura et al (Nishimura A, Aichi I, Matsuoka M.A protocol for Agrobacterium-mediated transformation in nature Protocols, 2006, 1 (6): 2796-0Transgenic rice plants are generated. Will T050mg L for generation of transgenic plant seeds-1Hygromycin is screened to obtain transgenic positive plants, and the transgenic positive plants are transplanted into a field.
Quantitative analysis of the expression level of TGS1 in transgenic lines using a pair of PCR primers revealed a significantly over-expressed strain of TGS 1. The expression of TGS1 was up-regulated by about 4.3 fold in this strain compared to the control (FIG. 4). The heading stage of the over-expression strain was significantly delayed, and the grains were significantly smaller compared to the control (fig. 5). These results demonstrate that TGS1 negatively regulates rice kernel size. The PCR primer sequence for detecting the expression quantity of TGS1 is as follows:
TGS1RT-F:5’-GCAAGGAGAAGTGGGAGAAC-3’,
TGS1RT-R:5’-TCGAGCTGGTGGTAGTAGGG-3’。
sequence listing
<110> Huaiyin college of learning professions
Application of <120> TGS1 gene in regulation and control of rice grain size and yield
<130> 100
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3012
<212> DNA
<213> Oryza sativa
<400> 1
atgccgccat tctcggcagc cggcggcgag ggggcgccgt cgccgatcag cagccggccg 60
ccgccgccgg agcaggcggc ggcggcggcg gcggaggagc agctcaacgg gagctcactg 120
gagcacgacg gggtgctggg cggcgaggag ggcgaccggg gcgggtcgtc ggcgggcaac 180
cggtggccgc ggcaggagac gctggcgctg ctcaagatcc ggtcggagat ggacgccgcc 240
ttccgggaag ccgccctcaa gggccccctc tgggaggaag tctccaggtt agctagctac 300
ctaattaact tcttcttaat cccaagaatt aattactcat aatccatctg atgagcatga 360
gcatggccag catggtcaaa attcgagctc aattttggtt agatttgcat gatatatcgg 420
agaattaagc ttgctcggcg cgcggcaata aggtactagc agcttaattg cggcgacgac 480
gagacgagca cagtgaattt cccaattaaa aatgacacac atatcgctct ccctcctccg 540
cttttcggtt cccttttgcc ctttgcgtca cttcatgtat ccagcgccac actgctgatg 600
atgctgttcg tatcagtaat taccctttag cattatataa atatatacat gcttcttcag 660
atccgatgta attaagcatg cagcatcaat cccaagtcca acaattccaa aggggtaaat 720
tatctttcgc tctctaccac ccacatgcag taaaaaaatt ctgtgcaaat ggatatgata 780
tagggtaatt aagtgctaga taaatagatt gttcttttca gtgagagcaa catgcatgta 840
gatgtagcta ggtagtagta gaatgttact agcttagatg catgcatgtg tcgtcgttgc 900
tgcgaacaag ttgtgatggc aacatgaagg ggagatgatg agttgatgac gaggtttaat 960
ttgtggctgc catggcgtgg cgtgcaggaa gctcgcggag atggggtaca agaggagcgc 1020
caagaagtgc cgcgagaagt tcgagaacgt cgacaagtac tacaagcgca ccaaggacgg 1080
ccgcgccggc cgcggcgacg gcaagaccta ccgcttcttc accgagctcg aggccctcca 1140
cggcgccgcc gccgccaccg cgcgcccgcc gccggtgtcc ctcgcgccgg cgcccgtggc 1200
cgtggcgccg ccggccaccc ctgcgggtct ctcggcgttg cgcgtccacg cctcgccgcc 1260
gccgccgcct gtcaagcagc acgccgctcc gccgccgcct gtcatggatg tggcggcgtg 1320
cgtgatgacg atggacgacg tgagcttctc gtcggggtcg gacacggagg agacggcgga 1380
ggagggcggg aagcggaagc ggaggggcgg cggaggcatc ggcggcggcg gcggcggcgg 1440
gaaggcgatg aggatgttcg aggggctgat gcggcaggtg atggagcggc aggaggcgat 1500
gcagcagagg cttctggagg cgatcgagcg gcgcgaccag gagaggatga tccgcgagga 1560
ggcgtggcgg cggcaggagg tggcgcgcct cgcccgcgag caggacgccc tcgcccagga 1620
gcgcgccatt gccgcctccc gcgacgccgc cgtcatctcc ttcatacaga gggtcaccgg 1680
ccagtccatc gccgccgtgc caccgccgcc gctgcagccc acgccggtgg cttccgctgc 1740
accaccacca ccaccgcagc atcatcatca gcaaacacca ccaccgattc aggttcagcc 1800
gcaccacata atgccgatga cgccgcagcc ccagctgcaa ccaccgcagc cgcagagcaa 1860
ggaggccaac accgtcgtcc gggcggcgcc gccgccgcaa gagcagcacg acacggcggc 1920
gtccggcggc ggcggcggcg cgtcgtcgtc gaggtggccg aaggcggagg tgcacgcgct 1980
gatccagctg cgcacagagc tggagacgag gtaccaggac tcggggccca aggggcctct 2040
ctgggaggac atctcggcgg ggatgcggcg gctggggtac agccggagct ccaagagatg 2100
caaggagaag tgggagaaca tcaacaagta cttcaagaag gtgaaggaga gcaacaagaa 2160
gcgccccgag gactccaaga catgccccta ctaccaccag ctcgacgcgc tctaccgcac 2220
caaggcggcc aacgccgccg ccgccgcctc agcctcgccg gctccggcga ccaccaccgt 2280
gcttgccccg gtgccgctct cccagacgcc gccgcacgtc gaccacggcg gcagcaacgg 2340
caatgggaat gggtgggcga gtgccaacaa cggcggcggc ggcagcagct ccgggggcat 2400
gcaaacgaag gctagcaaca atggcacggc gacggccggc gggctgcccg tcgtttcggt 2460
cgccggcggc aacggcaacg gcaacggcgt ggcggcgacg acggataaca aggtaattag 2520
ttaaaaacgc attgcattta actcgtgcag tgtacttgtg cgtgcacagg cacatgcatg 2580
tacgcatcgt tgcctgtacg attcgttctg atcgatcgat gtcacgtatc aaatctgtaa 2640
atttagggat cgaagcaggt gcccgtcgcg aaggagacgg cggggcagag gcagccacag 2700
ccgttggcca tgaaccacaa ctacggcaac gacagaatgg ccgacgacat ggacagcgac 2760
agcatggacg acgacgacga cgacgacgaa tttgacgacg acgaaaacga cgacgacatc 2820
ggcggtggca agatgcaggt gcagtacgag acgtcgtccc atttccaacg gccgcagctg 2880
cagaaccaga acgtcgtcgt cggccggcca aacgcgagcg gcggcggcgg cggtggcgct 2940
ccgacgacac cggcgggccc tccgccgcct gcggcaacaa gtgggacgtc attcttggcc 3000
tgcgtccagt ga 3012
<210> 2
<211> 725
<212> PRT
<213> Oryza sativa
<400> 2
Met Pro Pro Phe Ser Ala Ala Gly Gly Glu Gly Ala Pro Ser Pro Ile
1 5 10 15
Ser Ser Arg Pro Pro Pro Pro Glu Gln Ala Ala Ala Ala Ala Ala Glu
20 25 30
Glu Gln Leu Asn Gly Ser Ser Leu Glu His Asp Gly Val Leu Gly Gly
35 40 45
Glu Glu Gly Asp Arg Gly Gly Ser Ser Ala Gly Asn Arg Trp Pro Arg
50 55 60
Gln Glu Thr Leu Ala Leu Leu Lys Ile Arg Ser Glu Met Asp Ala Ala
65 70 75 80
Phe Arg Glu Ala Ala Leu Lys Gly Pro Leu Trp Glu Glu Val Ser Arg
85 90 95
Lys Leu Ala Glu Met Gly Tyr Lys Arg Ser Ala Lys Lys Cys Arg Glu
100 105 110
Lys Phe Glu Asn Val Asp Lys Tyr Tyr Lys Arg Thr Lys Asp Gly Arg
115 120 125
Ala Gly Arg Gly Asp Gly Lys Thr Tyr Arg Phe Phe Thr Glu Leu Glu
130 135 140
Ala Leu His Gly Ala Ala Ala Ala Thr Ala Arg Pro Pro Pro Val Ser
145 150 155 160
Leu Ala Pro Ala Pro Val Ala Val Ala Pro Pro Ala Thr Pro Ala Gly
165 170 175
Leu Ser Ala Leu Arg Val His Ala Ser Pro Pro Pro Pro Pro Val Lys
180 185 190
Gln His Ala Ala Pro Pro Pro Pro Val Met Asp Val Ala Ala Cys Val
195 200 205
Met Thr Met Asp Asp Val Ser Phe Ser Ser Gly Ser Asp Thr Glu Glu
210 215 220
Thr Ala Glu Glu Gly Gly Lys Arg Lys Arg Arg Gly Gly Gly Gly Ile
225 230 235 240
Gly Gly Gly Gly Gly Gly Gly Lys Ala Met Arg Met Phe Glu Gly Leu
245 250 255
Met Arg Gln Val Met Glu Arg Gln Glu Ala Met Gln Gln Arg Leu Leu
260 265 270
Glu Ala Ile Glu Arg Arg Asp Gln Glu Arg Met Ile Arg Glu Glu Ala
275 280 285
Trp Arg Arg Gln Glu Val Ala Arg Leu Ala Arg Glu Gln Asp Ala Leu
290 295 300
Ala Gln Glu Arg Ala Ile Ala Ala Ser Arg Asp Ala Ala Val Ile Ser
305 310 315 320
Phe Ile Gln Arg Val Thr Gly Gln Ser Ile Ala Ala Val Pro Pro Pro
325 330 335
Pro Leu Gln Pro Thr Pro Val Ala Ser Ala Ala Pro Pro Pro Pro Pro
340 345 350
Gln His His His Gln Gln Thr Pro Pro Pro Ile Gln Val Gln Pro His
355 360 365
His Ile Met Pro Met Thr Pro Gln Pro Gln Leu Gln Pro Pro Gln Pro
370 375 380
Gln Ser Lys Glu Ala Asn Thr Val Val Arg Ala Ala Pro Pro Pro Gln
385 390 395 400
Glu Gln His Asp Thr Ala Ala Ser Gly Gly Gly Gly Gly Ala Ser Ser
405 410 415
Ser Arg Trp Pro Lys Ala Glu Val His Ala Leu Ile Gln Leu Arg Thr
420 425 430
Glu Leu Glu Thr Arg Tyr Gln Asp Ser Gly Pro Lys Gly Pro Leu Trp
435 440 445
Glu Asp Ile Ser Ala Gly Met Arg Arg Leu Gly Tyr Ser Arg Ser Ser
450 455 460
Lys Arg Cys Lys Glu Lys Trp Glu Asn Ile Asn Lys Tyr Phe Lys Lys
465 470 475 480
Val Lys Glu Ser Asn Lys Lys Arg Pro Glu Asp Ser Lys Thr Cys Pro
485 490 495
Tyr Tyr His Gln Leu Asp Ala Leu Tyr Arg Thr Lys Ala Ala Asn Ala
500 505 510
Ala Ala Ala Ala Ser Ala Ser Pro Ala Pro Ala Thr Thr Thr Val Leu
515 520 525
Ala Pro Val Pro Leu Ser Gln Thr Pro Pro His Val Asp His Gly Gly
530 535 540
Ser Asn Gly Asn Gly Asn Gly Trp Ala Ser Ala Asn Asn Gly Gly Gly
545 550 555 560
Gly Ser Ser Ser Gly Gly Met Gln Thr Lys Ala Ser Asn Asn Gly Thr
565 570 575
Ala Thr Ala Gly Gly Leu Pro Val Val Ser Val Ala Gly Gly Asn Gly
580 585 590
Asn Gly Asn Gly Val Ala Ala Thr Thr Asp Asn Lys Gly Ser Lys Gln
595 600 605
Val Pro Val Ala Lys Glu Thr Ala Gly Gln Arg Gln Pro Gln Pro Leu
610 615 620
Ala Met Asn His Asn Tyr Gly Asn Asp Arg Met Ala Asp Asp Met Asp
625 630 635 640
Ser Asp Ser Met Asp Asp Asp Asp Asp Asp Asp Glu Phe Asp Asp Asp
645 650 655
Glu Asn Asp Asp Asp Ile Gly Gly Gly Lys Met Gln Val Gln Tyr Glu
660 665 670
Thr Ser Ser His Phe Gln Arg Pro Gln Leu Gln Asn Gln Asn Val Val
675 680 685
Val Gly Arg Pro Asn Ala Ser Gly Gly Gly Gly Gly Gly Ala Pro Thr
690 695 700
Thr Pro Ala Gly Pro Pro Pro Pro Ala Ala Thr Ser Gly Thr Ser Phe
705 710 715 720
Leu Ala Cys Val Gln
725
<210> 3
<211> 348
<212> DNA
<213> sgRNA expression cassette (Artificial)
<400> 3
ggatcatgaa ccaacggcct ggctgtattt ggtggttgtg tagggagatg gggagaagaa 60
aagcccgatt ctcttcgctg tgatgggctg gatgcatgcg ggggagcggg aggcccaagt 120
acgtgcacgg tgagcggccc acagggcgag tgtgagcgcg agaggcggga ggaacagttt 180
agtaccacat tgcccagcta actcgaacgc gaccaactta taaacccgcg cgctgtcgct 240
tgtgtgggcg ccgccggcca cccctggttt tagagctaga aatagcaagt taaaataagg 300
ctagtccgtt atcaacttga aaaagtggca ccgagtcggt gctttttt 348
<210> 4
<211> 6550
<212> DNA
<213> Cas9 nuclease expression cassette (Artificial)
<400> 4
tgcagcgtga cccggtcgtg cccctctcta gagataatga gcattgcatg tctaagttat 60
aaaaaattac cacatatttt ttttgtcaca cttgtttgaa gtgcagttta tctatcttta 120
tacatatatt taaactttac tctacgaata atataatcta tagtactaca ataatatcag 180
tgttttagag aatcatataa atgaacagtt agacatggtc taaaggacaa ttgagtattt 240
tgacaacagg actctacagt tttatctttt tagtgtgcat gtgttctcct ttttttttgc 300
aaatagcttc acctatataa tacttcatcc attttattag tacatccatt tagggtttag 360
ggttaatggt ttttatagac taattttttt agtacatcta ttttattcta ttttagcctc 420
taaattaaga aaactaaaac tctattttag tttttttatt taataattta gatataaaat 480
agaataaaat aaagtgacta aaaattaaac aaataccctt taagaaatta aaaaaactaa 540
ggaaacattt ttcttgtttc gagtagataa tgccagcctg ttaaacgccg tcgacgagtc 600
taacggacac caaccagcga accagcagcg tcgcgtcggg ccaagcgaag cagacggcac 660
ggcatctctg tcgctgcctc tggacccctc tcgagagttc cgctccaccg ttggacttgc 720
tccgctgtcg gcatccagaa attgcgtggc ggagcggcag acgtgagccg gcacggcagg 780
cggcctcctc ctcctctcac ggcacggcag ctacggggga ttcctttccc accgctcctt 840
cgctttccct tcctcgcccg ccgtaataaa tagacacccc ctccacaccc tctttcccca 900
acctcgtgtt gttcggagcg cacacacaca caaccagatc tcccccaaat ccacccgtcg 960
gcacctccgc ttcaaggtac gccgctcgtc ctcccccccc ccccctctct accttctcta 1020
gatcggcgtt ccggtccatg gttagggccc ggtagttcta cttctgttca tgtttgtgtt 1080
agatccgtgt ttgtgttaga tccgtgctgc tagcgttcgt acacggatgc gacctgtacg 1140
tcagacacgt tctgattgct aacttgccag tgtttctctt tggggaatcc tgggatggct 1200
ctagccgttc cgcagacggg atcgatttca tgattttttt tgtttcgttg catagggttt 1260
ggtttgccct tttcctttat ttcaatatat gccgtgcact tgtttgtcgg gtcatctttt 1320
catgcttttt tttgtcttgg ttgtgatgat gtggtctggt tgggcggtcg ttctagatcg 1380
gagtagaatt ctgtttcaaa ctacctggtg gatttattaa ttttggatct gtatgtgtgt 1440
gccatacata ttcatagtta cgaattgaag atgatggatg gaaatatcga tctaggatag 1500
gtatacatgt tgatgcgggt tttactgatg catatacaga gatgcttttt gttcgcttgg 1560
ttgtgatgat gtggtgtggt tgggcggtcg ttcattcgtt ctagatcgga gtagaatact 1620
gtttcaaact acctggtgta tttattaatt ttggaactgt atgtgtgtgt catacatctt 1680
catagttacg agtttaagat ggatggaaat atcgatctag gataggtata catgttgatg 1740
tgggttttac tgatgcatat acatgatggc atatgcagca tctattcata tgctctaacc 1800
ttgagtacct atctattata ataaacaagt atgttttata attattttga tcttgatata 1860
cttggatgat ggcatatgca gcagctatat gtggattttt ttagccctgc cttcatacgc 1920
tatttatttg cttggtactg tttcttttgt cgatgctcac cctgttgttt ggtgttactt 1980
ctgcagccat ggactataag gaccacgacg gagactacaa ggatcatgat attgattaca 2040
aagacgatga cgataagatg gccccaaaga agaagcggaa ggtcggtatc cacggagtcc 2100
cagcagccga caagaagtac agcatcggcc tggacatcgg caccaactct gtgggctggg 2160
ccgtgatcac cgacgagtac aaggtgccca gcaagaaatt caaggtgctg ggcaacaccg 2220
accggcacag catcaagaag aacctgatcg gagccctgct gttcgacagc ggcgaaacag 2280
ccgaggccac ccggctgaag agaaccgcca gaagaagata caccagacgg aagaaccgga 2340
tctgctatct gcaagagatc ttcagcaacg agatggccaa ggtggacgac agcttcttcc 2400
acagactgga agagtccttc ctggtggaag aggataagaa gcacgagcgg caccccatct 2460
tcggcaacat cgtggacgag gtggcctacc acgagaagta ccccaccatc taccacctga 2520
gaaagaaact ggtggacagc accgacaagg ccgacctgcg gctgatctat ctggccctgg 2580
cccacatgat caagttccgg ggccacttcc tgatcgaggg cgacctgaac cccgacaaca 2640
gcgacgtgga caagctgttc atccagctgg tgcagaccta caaccagctg ttcgaggaaa 2700
accccatcaa cgccagcggc gtggacgcca aggccatcct gtctgccaga ctgagcaaga 2760
gcagacggct ggaaaatctg atcgcccagc tgcccggcga gaagaagaat ggcctgttcg 2820
gaaacctgat tgccctgagc ctgggcctga cccccaactt caagagcaac ttcgacctgg 2880
ccgaggatgc caaactgcag ctgagcaagg acacctacga cgacgacctg gacaacctgc 2940
tggcccagat cggcgaccag tacgccgacc tgtttctggc cgccaagaac ctgtccgacg 3000
ccatcctgct gagcgacatc ctgagagtga acaccgagat caccaaggcc cccctgagcg 3060
cctctatgat caagagatac gacgagcacc accaggacct gaccctgctg aaagctctcg 3120
tgcggcagca gctgcctgag aagtacaaag agattttctt cgaccagagc aagaacggct 3180
acgccggcta cattgacggc ggagccagcc aggaagagtt ctacaagttc atcaagccca 3240
tcctggaaaa gatggacggc accgaggaac tgctcgtgaa gctgaacaga gaggacctgc 3300
tgcggaagca gcggaccttc gacaacggca gcatccccca ccagatccac ctgggagagc 3360
tgcacgccat tctgcggcgg caggaagatt tttacccatt cctgaaggac aaccgggaaa 3420
agatcgagaa gatcctgacc ttccgcatcc cctactacgt gggccctctg gccaggggaa 3480
acagcagatt cgcctggatg accagaaaga gcgaggaaac catcaccccc tggaacttcg 3540
aggaagtggt ggacaagggc gcttccgccc agagcttcat cgagcggatg accaacttcg 3600
ataagaacct gcccaacgag aaggtgctgc ccaagcacag cctgctgtac gagtacttca 3660
ccgtgtataa cgagctgacc aaagtgaaat acgtgaccga gggaatgaga aagcccgcct 3720
tcctgagcgg cgagcagaaa aaggccatcg tggacctgct gttcaagacc aaccggaaag 3780
tgaccgtgaa gcagctgaaa gaggactact tcaagaaaat cgagtgcttc gactccgtgg 3840
aaatctccgg cgtggaagat cggttcaacg cctccctggg cacataccac gatctgctga 3900
aaattatcaa ggacaaggac ttcctggaca atgaggaaaa cgaggacatt ctggaagata 3960
tcgtgctgac cctgacactg tttgaggaca gagagatgat cgaggaacgg ctgaaaacct 4020
atgcccacct gttcgacgac aaagtgatga agcagctgaa gcggcggaga tacaccggct 4080
ggggcaggct gagccggaag ctgatcaacg gcatccggga caagcagtcc ggcaagacaa 4140
tcctggattt cctgaagtcc gacggcttcg ccaacagaaa cttcatgcag ctgatccacg 4200
acgacagcct gacctttaaa gaggacatcc agaaagccca ggtgtccggc cagggcgata 4260
gcctgcacga gcacattgcc aatctggccg gcagccccgc cattaagaag ggcatcctgc 4320
agacagtgaa ggtggtggac gagctcgtga aagtgatggg ccggcacaag cccgagaaca 4380
tcgtgatcga aatggccaga gagaaccaga ccacccagaa gggacagaag aacagccgcg 4440
agagaatgaa gcggatcgaa gagggcatca aagagctggg cagccagatc ctgaaagaac 4500
accccgtgga aaacacccag ctgcagaacg agaagctgta cctgtactac ctgcagaatg 4560
ggcgggatat gtacgtggac caggaactgg acatcaaccg gctgtccgac tacgatgtgg 4620
accatatcgt gcctcagagc tttctgaagg acgactccat cgacaacaag gtgctgacca 4680
gaagcgacaa gaaccggggc aagagcgaca acgtgccctc cgaagaggtc gtgaagaaga 4740
tgaagaacta ctggcggcag ctgctgaacg ccaagctgat tacccagaga aagttcgaca 4800
atctgaccaa ggccgagaga ggcggcctga gcgaactgga taaggccggc ttcatcaaga 4860
gacagctggt ggaaacccgg cagatcacaa agcacgtggc acagatcctg gactcccgga 4920
tgaacactaa gtacgacgag aatgacaagc tgatccggga agtgaaagtg atcaccctga 4980
agtccaagct ggtgtccgat ttccggaagg atttccagtt ttacaaagtg cgcgagatca 5040
acaactacca ccacgcccac gacgcctacc tgaacgccgt cgtgggaacc gccctgatca 5100
aaaagtaccc taagctggaa agcgagttcg tgtacggcga ctacaaggtg tacgacgtgc 5160
ggaagatgat cgccaagagc gagcaggaaa tcggcaaggc taccgccaag tacttcttct 5220
acagcaacat catgaacttt ttcaagaccg agattaccct ggccaacggc gagatccgga 5280
agcggcctct gatcgagaca aacggcgaaa ccggggagat cgtgtgggat aagggccggg 5340
attttgccac cgtgcggaaa gtgctgagca tgccccaagt gaatatcgtg aaaaagaccg 5400
aggtgcagac aggcggcttc agcaaagagt ctatcctgcc caagaggaac agcgataagc 5460
tgatcgccag aaagaaggac tgggacccta agaagtacgg cggcttcgac agccccaccg 5520
tggcctattc tgtgctggtg gtggccaaag tggaaaaggg caagtccaag aaactgaaga 5580
gtgtgaaaga gctgctgggg atcaccatca tggaaagaag cagcttcgag aagaatccca 5640
tcgactttct ggaagccaag ggctacaaag aagtgaaaaa ggacctgatc atcaagctgc 5700
ctaagtactc cctgttcgag ctggaaaacg gccggaagag aatgctggcc tctgccggcg 5760
aactgcagaa gggaaacgaa ctggccctgc cctccaaata tgtgaacttc ctgtacctgg 5820
ccagccacta tgagaagctg aagggctccc ccgaggataa tgagcagaaa cagctgtttg 5880
tggaacagca caagcactac ctggacgaga tcatcgagca gatcagcgag ttctccaaga 5940
gagtgatcct ggccgacgct aatctggaca aagtgctgtc cgcctacaac aagcaccggg 6000
ataagcccat cagagagcag gccgagaata tcatccacct gtttaccctg accaatctgg 6060
gagcccctgc cgccttcaag tactttgaca ccaccatcga ccggaagagg tacaccagca 6120
ccaaagaggt gctggacgcc accctgatcc accagagcat caccggcctg tacgagacac 6180
ggatcgacct gtctcagctg ggaggcgaca aaaggccggc ggccacgaaa aaggccggcc 6240
aggcaaaaaa gaaaaagtaa ggatcctgat tgatcgatag agctcgaatt tccccgatcg 6300
ttcaaacatt tggcaataaa gtttcttaag attgaatcct gttgccggtc ttgcgatgat 6360
tatcatataa tttctgttga attacgttaa gcatgtaata attaacatgt aatgcatgac 6420
gttatttatg agatgggttt ttatgattag agtcccgcaa ttatacattt aatacgcgat 6480
agaaaacaaa atatagcgcg caaactagga taaattatcg cgcgcggtgt catctatgtt 6540
actagatcgg 6550
<210> 5
<211> 20
<212> DNA
<213> Oryza sativa
<400> 5
ggcgccgccg gccacccctg 20
<210> 6
<211> 24
<212> DNA
<213> TGS1-P1(Artificial)
<400> 6
tgtgggcgcc gccggccacc cctg 24
<210> 7
<211> 24
<212> DNA
<213> TGS1-P2(Artificial)
<400> 7
aaaccagggg tggccggcgg cgcc 24
<210> 8
<211> 23
<212> DNA
<213> TGS1F(Artificial)
<400> 8
tccgtgtccg accccgacga gaa 23
<210> 9
<211> 23
<212> DNA
<213> TGS1R(Artificial)
<400> 9
acaagaggag cgccaagaag tgc 23
<210> 10
<211> 38
<212> DNA
<213> TGS1OE-F(Artificial)
<400> 10
actagggtct cgcaccatgc cgccattctc ggcagccg 38
<210> 11
<211> 40
<212> DNA
<213> TGS1OE-R(Artificial)
<400> 11
actagggtct ctaccgtcac tggacgcagg ccaagaatga 40
<210> 12
<211> 13398
<212> DNA
<213> pEGOEPubi-H-TGS1 overexpression transgenic vector sequence (Artificial)
<400> 12
tcattaatgc agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc 60
aattaatgtg agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc 120
tcgtatgttg tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacat 180
gattacgaat tccggccatg cggccgcaag ctgggtgcag cgtgacccgg tcgtgcccct 240
ctctagagat aatgagcatt gcatgtctaa gttataaaaa attaccacat attttttttg 300
tcacacttgt ttgaagtgca gtttatctat ctttatacat atatttaaac tttactctac 360
gaataatata atctatagta ctacaataat atcagtgttt tagagaatca tataaatgaa 420
cagttagaca tggtctaaag gacaattgag tattttgaca acaggactct acagttttat 480
ctttttagtg tgcatgtgtt ctcctttttt tttgcaaata gcttcaccta tataatactt 540
catccatttt attagtacat ccatttaggg tttagggtta atggttttta tagactaatt 600
tttttagtac atctatttta ttctatttta gcctctaaat taagaaaact aaaactctat 660
tttagttttt ttatttaata atttagatat aaaatagaat aaaataaagt gactaaaaat 720
taaacaaata ccctttaaga aattaaaaaa actaaggaaa catttttctt gtttcgagta 780
gataatgcca gcctgttaaa cgccgtcgac gagtctaacg gacaccaacc agcgaaccag 840
cagcgtcgcg tcgggccaag cgaagcagac ggcacggcat ctctgtcgct gcctctggac 900
ccctctcgag agttccgctc caccgttgga cttgctccgc tgtcggcatc cagaaattgc 960
gtggcggagc ggcagacgtg agccggcacg gcaggcggcc tcctcctcct ctcacggcac 1020
ggcagctacg ggggattcct ttcccaccgc tccttcgctt tcccttcctc gcccgccgta 1080
ataaatagac accccctcca caccctcttt ccccaacctc gtgttgttcg gagcgcacac 1140
acacacaacc agatctcccc caaatccacc cgtcggcacc tccgcttcaa ggtacgccgc 1200
tcgtcctccc cccccccccc tctctacctt ctctagatcg gcgttccggt ccatggttag 1260
ggcccggtag ttctacttct gttcatgttt gtgttagatc cgtgtttgtg ttagatccgt 1320
gctgctagcg ttcgtacacg gatgcgacct gtacgtcaga cacgttctga ttgctaactt 1380
gccagtgttt ctctttgggg aatcctggga tggctctagc cgttccgcag acgggatcga 1440
tttcatgatt ttttttgttt cgttgcatag ggtttggttt gcccttttcc tttatttcaa 1500
tatatgccgt gcacttgttt gtcgggtcat cttttcatgc ttttttttgt cttggttgtg 1560
atgatgtggt ctggttgggc ggtcgttcta gatcggagta gaattctgtt tcaaactacc 1620
tggtggattt attaattttg gatctgtatg tgtgtgccat acatattcat agttacgaat 1680
tgaagatgat ggatggaaat atcgatctag gataggtata catgttgatg cgggttttac 1740
tgatgcatat acagagatgc tttttgttcg cttggttgtg atgatgtggt gtggttgggc 1800
ggtcgttcat tcgttctaga tcggagtaga atactgtttc aaactacctg gtgtatttat 1860
taattttgga actgtatgtg tgtgtcatac atcttcatag ttacgagttt aagatggatg 1920
gaaatatcga tctaggatag gtatacatgt tgatgtgggt tttactgatg catatacatg 1980
atggcatatg cagcatctat tcatatgctc taaccttgag tacctatcta ttataataaa 2040
caagtatgtt ttataattat tttgatcttg atatacttgg atgatggcat atgcagcagc 2100
tatatgtgga tttttttagc cctgccttca tacgctattt atttgcttgg tactgtttct 2160
tttgtcgatg ctcaccctgt tgtttggtgt tacttctgca gccaccatgc cgccattctc 2220
ggcagccggc ggcgaggggg cgccgtcgcc gatcagcagc cggccgccgc cgccggagca 2280
ggcggcggcg gcggcggcgg aggagcagct caacgggagc tcactggagc acgacggggt 2340
gctgggcggc gaggagggcg accggggcgg gtcgtcggcg ggcaaccggt ggccgcggca 2400
ggagacgctg gcgctgctca agatccggtc ggagatggac gccgccttcc gggaagccgc 2460
cctcaagggc cccctctggg aggaagtctc caggaagctc gcggagatgg ggtacaagag 2520
gagcgccaag aagtgccgcg agaagttcga gaacgtcgac aagtactaca agcgcaccaa 2580
ggacggccgc gccggccgcg gcgacggcaa gacctaccgc ttcttcaccg agctcgaggc 2640
cctccacggc gccgccgccg ccaccgcgcg cccgccgccg gtgtccctcg cgccggcgcc 2700
cgtggccgtg gcgccgccgg ccacccctgc gggtctctcg gcgttgcgcg tccacgcctc 2760
gccgccgccg ccgcctgtca agcagcacgc cgctccgccg ccgcctgtca tggatgtggc 2820
ggcgtgcgtg atgacgatgg acgacgtgag cttctcgtcg gggtcggaca cggaggagac 2880
ggcggaggag ggcgggaagc ggaagcggag gggcggcgga ggcatcggcg gcggcggcgg 2940
cggcgggaag gcgatgagga tgttcgaggg gctgatgcgg caggtgatgg agcggcagga 3000
ggcgatgcag cagaggcttc tggaggcgat cgagcggcgc gaccaggaga ggatgatccg 3060
cgaggaggcg tggcggcggc aggaggtggc gcgcctcgcc cgcgagcagg acgccctcgc 3120
ccaggagcgc gccattgccg cctcccgcga cgccgccgtc atctccttca tacagagggt 3180
caccggccag tccatcgccg ccgtgccacc gccgccgctg cagcccacgc cggtggcttc 3240
cgctgcacca ccaccaccac cgcagcatca tcatcagcaa acaccaccac cgattcaggt 3300
tcagccgcac cacataatgc cgatgacgcc gcagccccag ctgcaaccac cgcagccgca 3360
gagcaaggag gccaacaccg tcgtccgggc ggcgccgccg ccgcaagagc agcacgacac 3420
ggcggcgtcc ggcggcggcg gcggcgcgtc gtcgtcgagg tggccgaagg cggaggtgca 3480
cgcgctgatc cagctgcgca cagagctgga gacgaggtac caggactcgg ggcccaaggg 3540
gcctctctgg gaggacatct cggcggggat gcggcggctg gggtacagcc ggagctccaa 3600
gagatgcaag gagaagtggg agaacatcaa caagtacttc aagaaggtga aggagagcaa 3660
caagaagcgc cccgaggact ccaagacatg cccctactac caccagctcg acgcgctcta 3720
ccgcaccaag gcggccaacg ccgccgccgc cgcctcagcc tcgccggctc cggcgaccac 3780
caccgtgctt gccccggtgc cgctctccca gacgccgccg cacgtcgacc acggcggcag 3840
caacggcaat gggaatgggt gggcgagtgc caacaacggc ggcggcggca gcagctccgg 3900
gggcatgcaa acgaaggcta gcaacaatgg cacggcgacg gccggcgggc tgcccgtcgt 3960
ttcggtcgcc ggcggcaacg gcaacggcaa cggcgtggcg gcgacgacgg ataacaaggg 4020
atcgaagcag gtgcccgtcg cgaaggagac ggcggggcag aggcagccac agccgttggc 4080
catgaaccac aactacggca acgacagaat ggccgacgac atggacagcg acagcatgga 4140
cgacgacgac gacgacgacg aatttgacga cgacgaaaac gacgacgaca tcggcggtgg 4200
caagatgcag gtgcagtacg agacgtcgtc ccatttccaa cggccgcagc tgcagaacca 4260
gaacgtcgtc gtcggccggc caaacgcgag cggcggcggc ggcggtggcg ctccgacgac 4320
accggcgggc cctccgccgc ctgcggcaac aagtgggacg tcattcttgg cctgcgtcca 4380
gtgacggtga tcctcccgat cgttcaaaca tttggcaata aagtttctta agattgaatc 4440
ctgttgccgg tcttgcgatg attatcatat aatttctgtt gaattacgtt aagcatgtaa 4500
taattaacat gtaatgcatg acgttattta tgaggtgggt ttttatgatt agagtcccgc 4560
aattatacat ttaatacgcg atagaaaaca aaatatagcg cgcaaactag gataaattat 4620
cgcgcgcggt gtcatctatg ttactagatc gggagcaccg gtaaggcgcg ccgtagtgaa 4680
gcttggcact ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac 4740
ttaatcgcct tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca 4800
ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga atgctagagc agcttgagct 4860
tggatcagat tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt 4920
ggcgggtaaa cctaagagaa aagagcgttt attagaataa cggatattta aaagggcgtg 4980
aaaaggttta tccgttcgtc catttgtatg tgcatgccaa ccacagggtt cccctcggga 5040
tcaaagtact ttgatccaac ccctccgctg ctatagtgca gtcggcttct gacgttcagt 5100
gcagccgtct tctgaaaacg acatgtcgca caagtcctaa gttacgcgac aggctgccgc 5160
cctgcccttt tcctggcgtt ttcttgtcgc gtgttttagt cgcataaagt agaatacttg 5220
cgactagaac cggagacatt acgccatgaa caagagcgcc gccgctggcc tgctgggcta 5280
tgcccgcgtc agcaccgacg accaggactt gaccaaccaa cgggccgaac tgcacgcggc 5340
cggctgcacc aagctgtttt ccgagaagat caccggcacc aggcgcgacc gcccggagct 5400
ggccaggatg cttgaccacc tacgccctgg cgacgttgtg acagtgacca ggctagaccg 5460
cctggcccgc agcacccgcg acctactgga cattgccgag cgcatccagg aggccggcgc 5520
gggcctgcgt agcctggcag agccgtgggc cgacaccacc acgccggccg gccgcatggt 5580
gttgaccgtg ttcgccggca ttgccgagtt cgagcgttcc ctaatcatcg accgcacccg 5640
gagcgggcgc gaggccgcca aggcccgagg cgtgaagttt ggcccccgcc ctaccctcac 5700
cccggcacag atcgcgcacg cccgcgagct gatcgaccag gaaggccgca ccgtgaaaga 5760
ggcggctgca ctgcttggcg tgcatcgctc gaccctgtac cgcgcacttg agcgcagcga 5820
ggaagtgacg cccaccgagg ccaggcggcg cggtgccttc cgtgaggacg cattgaccga 5880
ggccgacgcc ctggcggccg ccgagaatga acgccaagag gaacaagcat gaaaccgcac 5940
caggacggcc aggacgaacc gtttttcatt accgaagaga tcgaggcgga gatgatcgcg 6000
gccgggtacg tgttcgagcc gcccgcgcac gtctcaaccg tgcggctgca tgaaatcctg 6060
gccggtttgt ctgatgccaa gctggcggcc tggccggcca gcttggccgc tgaagaaacc 6120
gagcgccgcc gtctaaaaag gtgatgtgta tttgagtaaa acagcttgcg tcatgcggtc 6180
gctgcgtata tgatgcgatg agtaaataaa caaatacgca aggggaacgc atgaaggtta 6240
tcgctgtact taaccagaaa ggcgggtcag gcaagacgac catcgcaacc catctagccc 6300
gcgccctgca actcgccggg gccgatgttc tgttagtcga ttccgatccc cagggcagtg 6360
cccgcgattg ggcggccgtg cgggaagatc aaccgctaac cgttgtcggc atcgaccgcc 6420
cgacgattga ccgcgacgtg aaggccatcg gccggcgcga cttcgtagtg atcgacggag 6480
cgccccaggc ggcggacttg gctgtgtccg cgatcaaggc agccgacttc gtgctgattc 6540
cggtgcagcc aagcccttac gacatatggg ccaccgccga cctggtggag ctggttaagc 6600
agcgcattga ggtcacggat ggaaggctac aagcggcctt tgtcgtgtcg cgggcgatca 6660
aaggcacgcg catcggcggt gaggttgccg aggcgctggc cgggtacgag ctgcccattc 6720
ttgagtcccg tatcacgcag cgcgtgagct acccaggcac tgccgccgcc ggcacaaccg 6780
ttcttgaatc agaacccgag ggcgacgctg cccgcgaggt ccaggcgctg gccgctgaaa 6840
ttaaatcaaa actcatttga gttaatgagg taaagagaaa atgagcaaaa gcacaaacac 6900
gctaagtgcc ggccgtccga gcgcacgcag cagcaaggct gcaacgttgg ccagcctggc 6960
agacacgcca gccatgaagc gggtcaactt tcagttgccg gcggaggatc acaccaagct 7020
gaagatgtac gcggtacgcc aaggcaagac cattaccgag ctgctatctg aatacatcgc 7080
gcagctacca gagtaaatga gcaaatgaat aaatgagtag atgaatttta gcggctaaag 7140
gaggcggcat ggaaaatcaa gaacaaccag gcaccgacgc cgtggaatgc cccatgtgtg 7200
gaggaacggg cggttggcca ggcgtaagcg gctgggttgt ctgccggccc tgcaatggca 7260
ctggaacccc caagcccgag gaatcggcgt gacggtcgca aaccatccgg cccggtacaa 7320
atcggcgcgg cgctgggtga tgacctggtg gagaagttga aggccgcgca ggccgcccag 7380
cggcaacgca tcgaggcaga agcacgcccc ggtgaatcgt ggcaagcggc cgctgatcga 7440
atccgcaaag aatcccggca accgccggca gccggtgcgc cgtcgattag gaagccgccc 7500
aagggcgacg agcaaccaga ttttttcgtt ccgatgctct atgacgtggg cacccgcgat 7560
agtcgcagca tcatggacgt ggccgttttc cgtctgtcga agcgtgaccg acgagctggc 7620
gaggtgatcc gctacgagct tccagacggg cacgtagagg tttccgcagg gccggccggc 7680
atggccagtg tgtgggatta cgacctggta ctgatggcgg tttcccatct aaccgaatcc 7740
atgaaccgat accgggaagg gaagggagac aagcccggcc gcgtgttccg tccacacgtt 7800
gcggacgtac tcaagttctg ccggcgagcc gatggcggaa agcagaaaga cgacctggta 7860
gaaacctgca ttcggttaaa caccacgcac gttgccatgc agcgtacgaa gaaggccaag 7920
aacggccgcc tggtgacggt atccgagggt gaagccttga ttagccgcta caagatcgta 7980
aagagcgaaa ccgggcggcc ggagtacatc gagatcgagc tagctgattg gatgtaccgc 8040
gagatcacag aaggcaagaa cccggacgtg ctgacggttc accccgatta ctttttgatc 8100
gatcccggca tcggccgttt tctctaccgc ctggcacgcc gcgccgcagg caaggcagaa 8160
gccagatggt tgttcaagac gatctacgaa cgcagtggca gcgccggaga gttcaagaag 8220
ttctgtttca ccgtgcgcaa gctgatcggg tcaaatgacc tgccggagta cgatttgaag 8280
gaggaggcgg ggcaggctgg cccgatccta gtcatgcgct accgcaacct gatcgagggc 8340
gaagcatccg ccggttccta atgtacggag cagatgctag ggcaaattgc cctagcaggg 8400
gaaaaaggtc gaaaagctgt ctttcctgtg gatagcacgt acattgggaa cccaaagccg 8460
tacattggga accggaaccc gtacattggg aacccaaagc cgtacattgg gaaccggtca 8520
cacatgtaag tgactgatat aaaagagaaa aaaggcgatt tttccgccta aaactcttta 8580
aaacttatta aaactcttaa aacccgcctg gcctgtgcat aactgtctgg ccagcgcaca 8640
gccgaagagc tgcaaaaagc gcctaccctt cggtcgctgc gctccctacg ccccgccgct 8700
tcgcgtcggc ctatcgcggc cgctggccgc tcaaaaatgg ctggcctacg gccaggcaat 8760
ctaccagggc gcggacaagc cgcgccgtcg ccactcgacc gccggcgccc acatcaaggc 8820
accctgcctc gcgcgtttcg gtgatgacgg tgaaaacctc tgacacatgc agctcccgga 8880
gacggtcaca gcttgtctgt aagcggatgc cgggagcaga caagcccgtc agggcgcgtc 8940
agcgggtgtt ggcgggtgtc ggggcgcagc catgacccag tcacgtagcg atagcggagt 9000
gtatactggc ttaactatgc ggcatcagag cagattgtac tgagagtgca ccatatgcgg 9060
tgtgaaatac cgcacagatg cgtaaggaga aaataccgca tcaggcgctc ttccgcttcc 9120
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca 9180
aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca 9240
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg 9300
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg 9360
acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt 9420
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt 9480
tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc caagctgggc 9540
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt 9600
gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt 9660
agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc 9720
tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa 9780
agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg tttttttgtt 9840
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct 9900
acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgcattct 9960
aggtactaaa acaattcatc cagtaaaata taatatttta ttttctccca atcaggcttg 10020
atccccagta agtcaaaaaa tagctcgaca tactgttctt ccccgatatc ctccctgatc 10080
gaccggacgc agaaggcaat gtcataccac ttgtccgccc tgccgcttct cccaagatca 10140
ataaagccac ttactttgcc atctttcaca aagatgttgc tgtctcccag gtcgccgtgg 10200
gaaaagacaa gttcctcttc gggcttttcc gtctttaaaa aatcatacag ctcgcgcgga 10260
tctttaaatg gagtgtcttc ttcccagttt tcgcaatcca catcggccag atcgttattc 10320
agtaagtaat ccaattcggc taagcggctg tctaagctat tcgtataggg acaatccgat 10380
atgtcgatgg agtgaaagag cctgatgcac tccgcataca gctcgataat cttttcaggg 10440
ctttgttcat cttcatactc ttccgagcaa aggacgccat cggcctcact catgagcaga 10500
ttgctccagc catcatgccg ttcaaagtgc aggacctttg gaacaggcag ctttccttcc 10560
agccatagca tcatgtcctt ttcccgttcc acatcatagg tggtcccttt ataccggctg 10620
tccgtcattt ttaaatatag gttttcattt tctcccacca gcttatatac cttagcagga 10680
gacattcctt ccgtatcttt tacgcagcgg tatttttcga tcagtttttt caattccggt 10740
gatattctca ttttagccat ttattatttc cttcctcttt tctacagtat ttaaagatac 10800
cccaagaagc taattataac aagacgaact ccaattcact gttccttgca ttctaaaacc 10860
ttaaatacca gaaaacagct ttttcaaagt tgttttcaaa gttggcgtat aacatagtat 10920
cgacggagcc gattttgaaa ccgcggtgat cacaggcagc aacgctctgt catcgttaca 10980
atcaacatgc taccctccgc gagatcatcc gtgtttcaaa cccggcagct tagttgccgt 11040
tcttccgaat agcatcggta acatgagcaa agtctgccgc cttacaacgg ctctcccgct 11100
gacgccgtcc cggactgatg ggctgcctgt atcgagtggt gattttgtgc cgagctgccg 11160
gtcggggagc tgttggctgg ctggtggcag gatatattgt ggtgtaaaca aattgacgct 11220
tagacaactt aataacacat tgcggacgtt tttaatgtac tgaattaacg ccgaattaat 11280
tcgggggatc tggattttag tactggattt tggttttagg aattagaaat tttattgata 11340
gaagtatttt acaaatacaa atacatacta agggtttctt atatgctcaa cacatgagcg 11400
aaaccctata ggaaccctaa ttcccttatc tgggaactac tcacacatta ttatggagaa 11460
actcgagctt gtcgatcgac agatccggtc ggcatctact ctatttcttt gccctcggac 11520
gagtgctggg gcgtcggttt ccactatcgg cgagtacttc tacacagcca tcggtccaga 11580
cggccgcgct tctgcgggcg atttgtgtac gcccgacagt cccggctccg gatcggacga 11640
ttgcgtcgca tcgaccctgc gcccaagctg catcatcgaa attgccgtca accaagctct 11700
gatagagttg gtcaagacca atgcggagca tatacgcccg gagtcgtggc gatcctgcaa 11760
gctccggatg cctccgctcg aagtagcgcg tctgctgctc catacaagcc aaccacggcc 11820
tccagaagaa gatgttggcg acctcgtatt gggaatcccc gaacatcgcc tcgctccagt 11880
caatgaccgc tgttatgcgg ccattgtccg tcaggacatt gttggagccg aaatccgcgt 11940
gcacgaggtg ccggacttcg gggcagtcct cggcccaaag catcagctca tcgagagcct 12000
gcgcgacgga cgcactgacg gtgtcgtcca tcacagtttg ccagtgatac acatggggat 12060
cagcaatcgc gcatatgaaa tcacgccatg tagtgtattg accgattcct tgcggtccga 12120
atgggccgaa cccgctcgtc tggctaagat cggccgcagc gatcgcatcc atagcctccg 12180
cgaccggttg tagaacagcg ggcagttcgg tttcaggcag gtcttgcaac gtgacaccct 12240
gtgcacggcg ggagatgcaa taggtcaggc tctcgctaaa ctccccaatg tcaagcactt 12300
ccggaatcgg gagcgcggcc gatgcaaagt gccgataaac ataacgatct ttgtagaaac 12360
catcggcgca gctatttacc cgcaggacat atccacgccc tcctacatcg aagctgaaag 12420
cacgagattc ttcgccctcc gagagctgca tcaggtcgga gacgctgtcg aacttttcga 12480
tcagaaactt ctcgacagac gtcgcggtga gttcaggctt tttcatatct cattgccccc 12540
cgggatctgc gaaagctcga gagagataga tttgtagaga gagactggtg atttcagcgt 12600
gtcctctcca aatgaaatga acttccttat atagaggaag gtcttgcgaa ggatagtggg 12660
attgtgcgtc atcccttacg tcagtggaga tatcacatca atccacttgc tttgaagacg 12720
tggttggaac gtcttctttt tccacgatgc tcctcgtggg tgggggtcca tctttgggac 12780
cactgtcggc agaggcatct tgaacgatag cctttccttt atcgcaatga tggcatttgt 12840
aggtgccacc ttccttttct actgtccttt tgatgaagtg acagatagct gggcaatgga 12900
atccgaggag gtttcccgat attacccttt gttgaaaagt ctcaatagcc ctttggtctt 12960
ctgagactgt atctttgata ttcttggagt agacgagagt gtcgtgctcc accatgttat 13020
cacatcaatc cacttgcttt gaagacgtgg ttggaacgtc ttctttttcc acgatgctcc 13080
tcgtgggtgg gggtccatct ttgggaccac tgtcggcaga ggcatcttga acgatagcct 13140
ttcctttatc gcaatgatgg catttgtagg tgccaccttc cttttctact gtccttttga 13200
tgaagtgaca gatagctggg caatggaatc cgaggaggtt tcccgatatt accctttgtt 13260
gaaaagtctc aatagccctt tggtcttctg agactgtatc tttgatattc ttggagtaga 13320
cgagagtgtc gtgctccacc atgttggcaa gctgctctag ccaatacgca aaccgcctct 13380
ccccgcgcgt tggccgat 13398
<210> 13
<211> 20
<212> DNA
<213> TGS1RT-F(Artificial)
<400> 13
gcaaggagaa gtgggagaac 20
<210> 14
<211> 20
<212> DNA
<213> TGS1RT-R(Artificial)
<400> 14
tcgagctggt ggtagtaggg 20

Claims (7)

  1. The application of TGS1 gene in regulating rice grain size and yield is characterized in that: the TGS1 gene in rice is knocked out to increase the size or yield of rice grains, and the nucleotide sequence of the TGSl gene is shown in SEQ ID No. 1.
  2. 2. The use of claim 1, wherein the specific method for knocking out the TGS1 gene in rice is as follows: the TGS1 gene in rice is subjected to targeted mutation by using a CRISPR/Cas9 technology.
  3. 3. The application of claim 2, comprising the following steps:
    1) selecting a target fragment from a coding region of a rice grain size control gene TGS 1;
    2) synthesizing a linker primer with a cohesive end according to the sequence information of the target fragment, and constructing a CRISPR/Cas9 recombinant vector for TGS1 gene targeting; the recombinant vector comprises an sgRNA expression cassette having the target sequence and a Cas9 nuclease expression cassette capable of being expressed in rice cells;
    3) transferring the recombinant vector into an agrobacterium tumefaciens engineering strain, and transforming a conventional rice variety by using an agrobacterium-mediated method to obtain a transgenic rice plant;
    4) amplifying and sequencing the genome DNA of the transgenic plant by using a genome primer covering the target site, thereby carrying out genotype identification on the T0 generation transgenic plant and obtaining a homozygous mutant;
    5) the homozygous mutant is planted in T1 generation, and PCR detection is carried out on HPT, sgRNA and Cas9 transgenes in T1 generation plants by using primers, so that the rice without transgene insertion with increased grain size or yield can be obtained.
  4. 4. The use according to claim 3, wherein in step 1) the sequence of the target fragment is SEQ ID No. 5.
  5. 5. The use according to claim 3, wherein in step 2), the nucleotide sequence of the sgRNA expression cassette having the target sequence is shown in SEQ ID No. 3.
  6. 6. The use according to claim 3, wherein in step 2) the nucleotide sequence of the Cas9 nuclease expression cassette is set forth in SEQ ID No. 4.
  7. 7. The use according to claim 3, wherein in step 5), the primer sequences for HPT, sgRNA and Cas9 transgene amplification are:
    HPTF:5’-GGGTGTCACGTTGCAAGACC-3’,
    HPTR:5’-ATGCCTCCGCTCGAAGTAGC-3’,
    sgRNAF:5’-TCCCAGTCACGACGTTGTAA-3’,
    sgRNAR:5’-GGCCATTTGTCTGCAGAAT-3’,
    Cas9F:5’-CACCATCTACCACCTGAGAA-3’,
    Cas9R:5’-CGAAGTTGCTCTTGAAGTTG-3’。
CN202111139974.4A 2021-09-27 2021-09-27 Application of TGS1 gene in regulation and control of rice grain size and yield Active CN113862283B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111139974.4A CN113862283B (en) 2021-09-27 2021-09-27 Application of TGS1 gene in regulation and control of rice grain size and yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111139974.4A CN113862283B (en) 2021-09-27 2021-09-27 Application of TGS1 gene in regulation and control of rice grain size and yield

Publications (2)

Publication Number Publication Date
CN113862283A CN113862283A (en) 2021-12-31
CN113862283B true CN113862283B (en) 2022-03-15

Family

ID=78991522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111139974.4A Active CN113862283B (en) 2021-09-27 2021-09-27 Application of TGS1 gene in regulation and control of rice grain size and yield

Country Status (1)

Country Link
CN (1) CN113862283B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125219B (en) * 2022-06-14 2023-11-24 广东省农业科学院农业生物基因研究中心 Application of OsJMJ718 gene and encoding protein thereof in regulation and control of rice grain types
CN117187256B (en) * 2022-08-19 2024-08-09 首都师范大学 Plant seed size regulation gene and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451228A (en) * 2013-09-17 2013-12-18 淮阴师范学院 Method for regulating size and grain weight of rice seeds
KR102001823B1 (en) * 2018-01-16 2019-07-19 충남대학교 산학협력단 GW2 gene regulating senescence of plant and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451228A (en) * 2013-09-17 2013-12-18 淮阴师范学院 Method for regulating size and grain weight of rice seeds
KR102001823B1 (en) * 2018-01-16 2019-07-19 충남대학교 산학협력단 GW2 gene regulating senescence of plant and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Control of grain size in rice;Na Li等;《Plant Reprod》;20180310;参见全文 *
Oryza sativa Japonica Group DNA, chromosome 3, cultivar: Nipponbare, complete sequence,gene Os03g0113500;Kawahara,Y.等;《GenBank》;20151010;参见全文 *
水稻超大籽粒形成的重要基因和调控通路的转录组分析;梁文化等;《江苏农业学报》;20200831;参见全文 *

Also Published As

Publication number Publication date
CN113862283A (en) 2021-12-31

Similar Documents

Publication Publication Date Title
CN113862283B (en) Application of TGS1 gene in regulation and control of rice grain size and yield
CN109652440A (en) Application of the VQRn-Cas9&amp;PmCDA1&amp;UGI base editing system in plant gene editor
CN106906214B (en) Novel plant terminator sequences
AU2015345049B2 (en) Brassica events LBFLFK and LBFDAU and methods for detection thereof
CN107475256A (en) It is a kind of based on more target sequence sgRNA expression vectors of endogenous tRNA systems of processing and its application in plant gene editor
CN109593776B (en) Method for quickly and efficiently obtaining non-transgenic directional gene mutant plant and application
MX2013015338A (en) Methods and compositions for selective regulation of protein expression.
CA2469375A1 (en) Maize ccoaomt2 gene polymorphism, and uses thereof to enhance plant digestibility
Chatterjee et al. Reduced expression of a protein homologous to glycogenin leads to reduction of starch content in Arabidopsis leaves
US20200255855A1 (en) MAIZE CYTOPLASMIC MALE STERILITY (CMS) S-TYPE RESTORER GENE Rf3
CN114317561B (en) CRISPR/Cas 9-based broccoli gene fixed-point editing method
CN114164230B (en) Expression vector suitable for sugarcane genetic transformation and construction method and application thereof
CN114317590B (en) Method for mutating base C in plant genome into base T
CN101466839B (en) Transgenic plants and methods for controlling bolting in sugar beet
JP5186076B2 (en) Engineering plant senescence using the myb gene promoter and cytokinin biosynthesis genes
CN110628795B (en) Cell enrichment technology using inactivated screening agent resistance gene as report system for A.G base substitution and application thereof
AU2001283715A1 (en) Manipulation of plant senescence using an MYB gene promoter and cytokinin biosynthesis genes
CN101818169B (en) Method for improving content of protein and combined lysine in wheat seeds
CN112940092B (en) Corn ZmbHLH124 protein and application of coding gene thereof in regulating and controlling plant drought tolerance
CN113735950B (en) Nucleic acid molecules for imparting insecticidal properties in plants
CN114317518B (en) Application of SpRYn-CBE base editing system in plant genome base substitution
CN102417913A (en) Method for improving salt tolerance of wheat
US20130198892A1 (en) Method for modifying the blooming date of a plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant