CN113856712B - 一种可用于光催化分解纯水的催化剂的制备方法 - Google Patents

一种可用于光催化分解纯水的催化剂的制备方法 Download PDF

Info

Publication number
CN113856712B
CN113856712B CN202111139980.XA CN202111139980A CN113856712B CN 113856712 B CN113856712 B CN 113856712B CN 202111139980 A CN202111139980 A CN 202111139980A CN 113856712 B CN113856712 B CN 113856712B
Authority
CN
China
Prior art keywords
catalyst
pure water
photocatalytic
reactor
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111139980.XA
Other languages
English (en)
Other versions
CN113856712A (zh
Inventor
游遨
宋金刚
肖吉
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Industry Technical College
Original Assignee
Guangdong Industry Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Industry Technical College filed Critical Guangdong Industry Technical College
Priority to CN202111139980.XA priority Critical patent/CN113856712B/zh
Publication of CN113856712A publication Critical patent/CN113856712A/zh
Application granted granted Critical
Publication of CN113856712B publication Critical patent/CN113856712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本申请利用溶剂热方法在三乙烯四胺和水混合溶剂中,成功制备了Zn0.5Cd0.5S固溶体材料,并利用光化学合成法对材料进行磷氧化物负载以及金属掺杂等修饰获得催化剂。利用XRD、UV‑vis DRS、SEM、EDS等多种手段,对所制催化剂的晶体结构、禁带宽度、形貌及组成等参数进行了详细表征。将制备的催化剂进行光催化分解纯水测试,发现:(ZnxCdyFe1‑x‑y)S/Pi/NizPi样品展示了最高的光催化分解纯水产氢速率,在可见光(420nm<λ<780nm)照射条件下,产氢速率达到了1.81mmol·h‑1·g‑1;在全谱光(350nm<λ<780nm)照射下的产氢速率更是高达5.63mmol·h‑1·g‑1

Description

一种可用于光催化分解纯水的催化剂的制备方法
技术领域
本发明涉及一种光催化水产氢的方法,特别是涉及一种光催化分解纯水的催化剂及其制备方法。
背景技术
氢能作为一种二次能源,具有燃烧热值高(能量密度为143kJ/g)、储量大(水可作为氢源)、可再生(燃烧产物是水,水可再次还原为氢气)、便于储存运输等优势,可用于缓解现在的能源危机和环境污染问题。与目前化石燃料制氢方法相比,操作简单、成本低廉的光催化分解水制氢技术潜力巨大,但制备高活性、高稳定性光催化剂仍然是一项长期且艰巨的挑战。在诸多的光催化材料之中,ZnxCd1-xS基催化剂因其可控的能带结构、光催化部分分解水(PPWS)产氢效率高等优点,被认为是最具潜力的光催化材料之一。但在光催化纯水分解应用中,由于缺少牺牲试剂捕获光生空穴,稳定性较差、产氢效率低的缺陷,制约了ZnxCd1-xS基催化剂的研究发展。
光催化分解纯水过程可分为:光催化全分解水(2H2O→2H2+O2,POWS)和光催化中间级分解水(2H2O→H2+H2O2,PIWS)。与光催化部分分解水反应(PPWS)不同,由于缺少牺牲试剂的捕获作用,光生空穴反应路径众多。除了生成四电子(O2)转移产物,还可能生成单电子(·OH)、二电子(H2O2)转移副产物,其中H2O2会氧化S2-,造成催化剂中毒(CdS+4H2O2→Cd2++SO4 2-+4H2O)。此外,ZnxCd1-xS基催化剂会发生光腐蚀现象(无氧光腐蚀:CdS+2h+→Cd2++S;有氧光腐蚀:CdS+4h++2H2O+O2→Cd2++SO4 2-+4H+),这使得水氧化过程作为分解纯水反应的动力学决速步骤,直接影响催化剂的稳定性和分解纯水效率。
考虑到稳定性是催化剂应用的一项重要指标,因此改善ZnxCd1-xS基催化剂的光腐蚀问题势在必行。通过大量文献调研发现:由于磷化物具备类金属和高稳定特性,向ZnxCd1-xS基催化剂中引入磷化物助催化剂后,能有效的缓解其光腐蚀问题。2018年,吕功煊课题组利用易燃易爆的白磷作磷源,利用水热方法在ZnxCd1-xS基催化剂外层,制备了Ni2P壳材料,实现了光催化全分解水(POWS)过程,并借助“人工腮(AG)”高效6分离体系中溶解氧,使AG/Ni2P/CdS催化体系展示了较高的分解纯水产氢速率(0.838mmol·h-1·g-1)。2020年,陈玉彬课题组利用高温热解NaH2PO2产生的剧毒PH3作磷源,制备了RP@CoP/Cd0.9Zn0.1S型Z-scheme体系,其能以光催化中间级分解水(PIWS)路线分解纯水,在420nm处实现了6.4%的表观量子效率。通过对比,不难发现:尽管上述催化体系负载了磷化物助催化剂,但其光催化分解纯水产氢性能与传统的光催化部分分解水产氢性能仍相差甚远。而且上述高毒、高能耗的修饰过程,也限制了磷化物的应用空间。从绿色、安全、节能的角度来看,利用快速、便捷的光化学合成法制备磷化物优势巨大。
众所周知,磷化物制备过程中会混有大量的磷酸盐化合物,这些磷酸盐的作用往往会被忽视掉。近期,郑远辉课题组组装了NiCoPi修饰的CdS催化体系,其发现:NiCoPi可以捕获CdS催化剂的光生电子和空穴,从而产生NiICoP和NiCoIIIPi,并以此为催化位点进行光催化产氢和氧化牺牲试剂反应。这说明磷酸盐助催化剂可以同时充当产氢和水氧化助催化剂,这种双功能特性使其在光催化纯水领域,具备极高的应用价值。虽然过渡金属磷酸盐催化剂,已经广泛应用于电催化和光电催化分解纯水领域,但利用其作为助催化剂修饰ZnxCd1-xS基催化剂,从而实现光催化分解纯水过程的研究还鲜有报道。
发明内容
鉴于上述情况,本发明者进行深入的研究,发现了一种光催化分解纯水的催化剂及其制备方法。
本发明的目的是在于提供了一种光催化分解纯水的催化剂的制备方法,包括如下步骤:
(1)Zn0.5Cd0.5S固溶体材料分散于H2PO2 -溶液中,在惰性气体的保护下超声处理;
(2)然后将步骤(1)所得的悬浮液转移至光催化反应器中,将容器密封后,用真空泵将整个反应体系抽真空处理,利用可见光源照射反应器,并保持室温、不断搅拌;
(3)待反应结束后,打开反应器,移去上清液,离心回收沉淀物,在烘箱中干燥后回收得到磷酸根修饰的Zn0.5Cd0.5S,标记为Zn0.5Cd0.5S/Pi;
(4)取Zn0.5Cd0.5S/Pi样品,分散到含有一种或多种过渡金属盐的H2PO2 -水溶液中,在惰性气体的保护下超声处理,然后转移至光催化反应器中,将容器密封后,用真空泵将整个反应体系抽真空处理,利用可见光源照射反应器,并保持室温、不断搅拌,待反应结束后,打开反应器,移去上清液,离心回收沉淀物,烘箱中干燥后回收得到掺杂过渡金属和负载过渡金属磷酸盐的Zn0.5Cd0.5S/Pi,即为光催化分解纯水的催化剂;
所述一种或多种过渡金属盐选自镍盐,钴盐,镍、铁混合盐,镍、锰混合盐。
优选地,所述惰性其他为氮气、氩气或氦气;
优选地,所述H2PO2 -溶液为NaH2PO2、KH2PO2中的一种;
优选地,所述超声处理时间为20-60min;
优选地,所述真空处理时间为10-30min;
优选地,所述可见光源为太阳光,氙灯,汞灯,白炽灯、发光二极管灯等其中的一种,处理时间为2-5h;
优选地,烘箱烘干温度为50-70℃,烘干时间为10-15h。
本发明还提供了如上述方法制备得到的光催化分解纯水催化剂。
相对于现有技术,本发明的有益效果为:
本研究首先设计合成了Zn0.5Cd0.5S固溶体材料,然后通过光化学合成方法,制备磷氧化物保护层,提升材料的抗光腐蚀能力,进一步通过光化学合成过渡金属磷酸盐助催化剂,并通过阳离子交换方法,制备过渡金属硫化物助催化剂,从而协同优化催化体系的表面动力学反应速率,缓解ZnxCd1-xS材料的光腐蚀现象,实现高效、稳定的光催化纯水分解过程。
在第一步光合成后,Zn0.5Cd0.5S材料表面会形成一层不规则的磷酸盐。在第二步光合成中,由于同步存在金属离子交换作用,加入的Fe3+或Mn2+部分会与材料内部的Zn2+和Cd2+交换,形成Fe2S3或MnS负载于催化剂表层,这些硫化物助催化剂在光催化分解纯水过程中,极易被部分氧化成FexO或MnxO助催化剂;另外由于加入金属离子的特性不一,Ni2+或Co2+会在催化剂表面上通过光合成过程,形成NixPi或CoxPi助催化剂。
根据光催化的基本原理,当制备的半导体材料受到光激发后会形成光生电子以及光生空穴,理论上光生空穴以及光生电子会在材料内部分离,但同时也有复合的可能。由于表层不同类型助催化剂负载,Zn0.5Cd0.5S材料产生的光生空穴易被产氧助催化剂(NixPi或CoxPi、FexO或MnxO)捕获,用于水氧化反应,生成H2O2或O2;与此同时,NixPi也会捕获光生电子,部分还原成NixP,并以此为反应位点,进行水还原反应,生成H2
从动力学的角度出发,第一步光化学合过程中,形成的磷氧化物可以减缓催化剂材料的光腐蚀速度,而第二步光化学合成形成的助催化剂优化了催化剂表面的动力学机制,从而使得反应体系整体对光生电子以及光生空穴的利用率提高,最终提高了光催化分解纯水的产氢速率。
本文利用溶剂热方法在混合溶剂中,成功制备了Zn0.5Cd0.5S材料,并利用光化学合成法对材料进行磷氧化物负载以及金属掺杂等修饰。利用XRD、SEM、EDS和UV-vis DRS等多种手段,对所制样品的晶体结构、形貌、组成和禁带宽度等参数进行详细表征。并对各种催化剂材料进行了光催化分解纯水性质测试,其中(ZnxCdyFe1-x-y)S/Pi/NizPi材料在可见光(420<λ<780nm)照射条件下,展示了1.81mmol·h-1·g-1的光催化产氢速率;在全谱光(350<λ<780nm)照射条件下,展示了5.63mmol·h-1·g-1的光催化产氢速率,要远优于其他样品的性能。这种操作简单、成本低廉的光化学合成修饰策略,为ZnxCd1-xS型材料的光催化纯水应用打开了一扇门。
附图说明
图1:Zn0.5Cd0.5S的X射线衍射(XRD)图谱
图2:Zn0.5Cd0.5S的紫外-可见漫反射(A)以及能带换算图谱(B)
图3:Zn0.5Cd0.5S的SEM图
图4:Zn0.5Cd0.5S、Zn0.5Cd0.5S/Pi、(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi的紫外-可见漫反射光谱(A)和能带换算谱(B)
图5:Zn0.5Cd0.5S、Zn0.5Cd0.5S/Pi、Zn0.5Cd0.5S/Pi/NixPi、Zn0.5Cd0.5S/Pi/CoxPi、(ZnxCdyMn1-x-y)S/Pi、(ZnxCdyFe1-x-y)S/Pi、(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi样品的XRD图
图6:(ZnxCdyFe1-x-y)S/Pi/NizPi的SEM图
图7:产氢标准曲线图
图8:各体系在光源波长420nm<λ<780nm下光催化分解纯水产氢测试结果(A),各体系在光源波长350nm<λ<780nm下光催化分解纯水产氢测试结果(B)
具体实施方式
实施例1.Zn0.5Cd0.5S固溶体材料的合成
通过溶剂热方法合成Zn0.5Cd0.5S固溶体材料。将5mmol乙酸锌、5mmol乙酸镉和20mmol L-半胱氨酸混合在三乙烯四胺∶蒸馏水=315ml∶15ml的溶剂体系中,然后超声搅拌30min。将搅拌均匀的悬浮液转移至反应釜中,并在180℃下反应24h。用蒸馏水离心两次,乙醇离心一次(9000rpm,5min),洗涤回收沉淀物质。在60℃烘箱中干燥12h后回收得到黄色样品,标记为Zn0.5Cd0.5S。
实施例2.Zn0.5Cd0.5S材料表层的磷氧化物覆盖
称取160mg Zn0.5Cd0.5S样品,放入离心管中,再称取2.385g次亚磷酸钠与之混合,用量筒量取30ml蒸馏水溶解,然后在氩气的保护下超声处理30min。超声结束后将离心管中的悬浮液转移至容器中,并且再次量取50ml蒸馏水加入容器中,将容器密封好后用真空泵将整个反应体系抽成真空状态。在带有前截止滤光片的300W氙灯环境下,照射3h。反应结构后让其静置一段时间移去上清液,将回收沉底,沉淀用蒸馏水离心两次,乙醇离心一次(9000rpm,5min)。最后,在60℃烘箱中干燥12h后回收得到黄色样品,标记为Zn0.5Cd0.5S/Pi。
实施例3.Zn0.5Cd0.5S/Pi材料表层的助催化剂负载
称取82mg磷氧化物覆盖后的样品Zn0.5Cd0.5S/Pi与141mg次亚磷酸钠,共同加入到同一离心管中,再根据不同的体系加入不同含量的铁、钴、镍、锰四种元素的金属盐。然后用量筒量取30ml水将其溶解,在氩气的保护下超声处理半小时。超声结束后将离心管中的悬浮液转移至容器中,并且再次量取50ml蒸馏水加入容器中,将容器密封好后用真空泵将整个反应体系抽成真空状态。在带有前截止滤光片的300W氙灯环境下,照射2h。反应结构后让其静置一段时间移去上清液,将回收沉底,沉淀用蒸馏水离心两次,乙醇离心一次(9000rpm,5min)。最后,在60℃烘箱中干燥12h后,回收得到黄色样品,标记为:Zn0.5Cd0.5S/Pi/NixPi(纯镍体系)、Zn0.5Cd0.5S/Pi/CoxPi(纯钴体系)、(ZnxCdyMn1-x-y)S/Pi(纯锰体系)、(ZnxCdyFe1-x-y)S/Pi(纯铁体系)、(ZnxCdyFe1-x-y)S/Pi/NizPi(镍铁体系)、(ZnxCdyMn1-x-y)S/Pi/NizPi(镍锰体系)
不同金属体系对应的金属盐使用量如下,纯镍体系:硫酸镍50mg;纯铁体系:硝酸铁77mg;纯锰体系:硫酸锰33mg;纯钴体系:硝酸钴56mg;镍铁体系:硫酸镍38mg、硝酸铁18.5mg;镍锰体系:硫酸镍35.7mg、硫酸锰9.2mg。
实施例4.Zn0.5Cd0.5S的表征
X射线粉末衍射图谱(XRD)分析:X-射线粉末衍射仪可以确定所制备得到催化剂材料的物质组成和晶型,并可以确定所得到的催化剂材料含杂质情况,本次测试的扫描范围在10°到90°。通过对比发现:Zn0.5Cd0.5S材料的XRD衍射峰位于立方相ZnS(PDF#05-0566)和CdS(PDF#41-1049)卡片峰之间(图1),说明课题组制备的Zn0.5Cd0.5S材料为固溶体材料,而不是ZnS和CdS的混合物。此外,Zn0.5Cd0.5S材料展示了两种晶相:立方晶相和六方晶相,且立方晶相含量明显高于六方晶相含量。
紫外-可见漫反射(UV-vis DRS)光谱分析是用于检测催化剂材料吸光能力的一种方法。通过测量得到材料的光吸收波长,得到漫反射光谱,进一步借助K-M公式换算,可得到能带换算谱。由紫外漫反射图谱(图2A)可以观察,Zn0.5Cd0.5S材料的吸收边带大约在520nm。通过K-M公式可以换算得到材料的能带换算图谱(图2B),Zn0.5Cd0.5S材料的带隙宽度为2.33eV,说明该材料确实具备优异的可见光响应能力。
我们进一步探究了Zn0.5Cd0.5S材料的形貌,对其进行SEM扫描电子显微镜分析。通过图3可知,Zn0.5Cd0.5S材料展示了2~2.5μm的块状形貌,进一步放大后,发现块状材料表层负载了大量的纳米颗粒,尺寸介于100~200nm之间。
实施例5.修饰后催化剂材料的表征
图4A展示了Zn0.5Cd0.5S、Zn0.5Cd0.5S/Pi、(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi样品的紫外漫反射光谱和能带换算图谱。与Zn0.5Cd0.5S相比,Zn0.5Cd0.5S/Pi材料对紫外-可见光的能力明显了提高,吸收边带均在520nm附近,没有明显的变化。而在进行了第二步光化学合成后,(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi的吸收带边都发生了不同程度的红移,通过Kubelka-Munk公式,可换算出各种样品的禁带宽度。如图4B所示,相比于Zn0.5Cd0.5S材料的带隙(2.33eV),Zn0.5Cd0.5S/Pi材料的带隙宽度为2.37eV,虽然带隙变宽,但属于可见光响应材料。在经过第二步修饰后(ZnxCdyFe1-x-y)S/Pi/NizPi材料的带隙为2.36eV,(ZnxCdyMn1-x-y)S/Pi/NizPi材料的带隙变为2.33eV,基本与原材料的带隙宽度相同。说明经过一步光化学合成过程后,沉积的磷氧化物保护层可能修饰了原材料内部的硫空位缺陷态,致使材料的带隙变宽;在第二步光化学合成过程中,由于阳离子交换作用,Fe、Mn等离子可能对Zn0.5Cd0.5S/Pi材料进行掺杂,最终使形成的(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi材料的带隙,产生不同程度的降低。这些结果说明经过二次修饰后催化剂体系对可见光的吸收能力明显增强,拥有更高的光子捕获效率,就可能产生更高密度的光生载流子,有利于提升催化体系的光解水产氢速率。
如图5所示,与Zn0.5Cd0.5S相比,Zn0.5Cd0.5S/Pi、Zn0.5Cd0.5S/Pi/NixPi(纯镍体系)、Zn0.5Cd0.5S/Pi/CoxPi(纯钴体系)、(ZnxCdyMn1-x-y)S/Pi(纯锰体系)、(ZnxCdyFe1-x-y)S/Pi(纯铁体系)、(ZnxCdyFe1-x-y)S/Pi/NizPi(镍铁体系)和(ZnxCdyMn1-x-y)S/Pi/NizPi等样品的出峰位置没有发生明显变化,没有新衍射峰生成。说明经过两步光化学合成后,表层沉积的磷氧化物保护层、磷酸盐助催化剂均为无定型结构,这种无定型金属磷酸盐材料,通常具有“自愈”特性,内部的过渡金属能够通过变价,使得这类过渡金属磷酸盐可以与磷化物相互转化,令这类材料在光催化分解纯水过程中拥有更高的应用潜力。
如图6可知,经过两步光化学合成修饰后,(ZnxCdyFe1-x-y)S/Pi/NizPi材料仍然展示了块状形貌,粒径约为2.1~2.88μm,进一步放大后,发现块状材料表面纳米颗粒的密度增大,而且粒径大小不一。
实施例6.修饰后催化剂材料的光催化中间级分解纯水性能测试
在光催化产氢测试前,我们通过外表法绘制了产氢标准曲线如图7所示,横坐标是往反应容器中打入氢气的体积,纵坐标是对应得到的氢气峰面积。经过作图拟合最后得到回归方程y=-68+253.8x。
称取30mg待测试样品,分散于80ml超纯水中,在氩气的保护下超声处理30min。然后将悬浮液转移至光催化反应器中,将容器密封后,用真空泵将整个反应体系抽真空处理15min。利用可见光源(配有420nm前截止滤光片的300W氙灯)照射反应器,并保持室温、不断搅拌,体系产生的气体通过色谱(天美GC7900,TCD,Ar作载气,分子筛柱),利用拟合的标准曲线,对出峰面积进行定量分析。
图8A展示了Zn0.5Cd0.5S/Pi/NixPi、Zn0.5Cd0.5S/Pi/CoxPi、(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi等在可见光(420nm<λ<780nm)照射下的光催化分解纯水产氢测试结果。由于存在严重的光腐蚀现象,Zn0.5Cd0.5S材料在纯水中没有展示出产氢性能;Zn0.5Cd0.5S/Pi、(ZnxCdyMn1-x-y)S/Pi和(ZnxCdyFe1-x-y)S/Pi仅能产生微弱氢气峰,而且系统无法检测出其峰面积,可以认为这三种体系几乎不产氢气,因此在图上并没有标注。产氢性能从无到有,我们推测原因是,经过第一步光化学合成后,Zn0.5Cd0.5S材料表层覆盖了一层磷氧化物,这层无定型的物质可以充当保护层,有效延缓了Zn0.5Cd0.5S材料因为与水中溶解氧接触而发生的光腐蚀作用,而且单独掺杂Fe或Mn元素并不能有效提升材料的产氢性能。此外,从图中结果可以直观得到Zn0.5Cd0.5S/Pi/NixPi体系的催化剂材料产氢性能优于Zn0.5Cd0.5S/Pi/CoxPi体系。根据相关报道可知,磷化镍类催化剂因为其类金属特性,已被广泛用作产氢助催化剂,应用于光催化产氢半反应中,因此其在单金属体系中Zn0.5Cd0.5S/Pi/NixPi体系催化剂展示了最优光催化分解纯水产氢性能。众所周知,硫化物材料在光催化分解纯水过程中容易受到光腐蚀影响,导致其催化剂活性和稳定性大打折扣。因此,我们进一步引入不同金属元素,构建双金属催化体系。综合单金属体系研究结果,我们进一步组装了(ZnxCdyFe1-x-y)S/Pi/NizPi和(ZnxCdyMn1-x-y)S/Pi/NizPi双金属体系催化剂。由图8以及表1可知,双金属体系的产氢速率优于纯镍体系,其中(ZnxCdyFe1-x-y)S/Pi/NizPi体系展示了最高的光解纯水产氢速率1.81mmol·h-1·g-1
此外,我们测试了不同样品在全谱光(350nm<λ<780nm)照射下的光源照射下的光解水产氢速率,由图8B和表2可知,由于新引入了一段高能的紫外光,所有样品的产氢速率都有了明显的提升,其中(ZnxCdyFe1-x-y)S/Pi/NizPi产氢速率达到了最高的5.63mmol·h-1·g-1。从图中的趋势可以观察到,产氢速率的最高点没有变化,排出了因为入射光强度增加,而加快催化剂材料发生自身光腐蚀的可能。
表1:各体系在光源波长420nm<λ<780nm光照下光催化分解纯水产氢速率
表2:各体系在光源波长350nm<λ<780nm光照下光催化分解纯水产氢速率

Claims (3)

1.一种光催化分解纯水的催化剂的制备方法,其特征在于,包括如下步骤:
(1)Zn0.5Cd0.5S固溶体材料分散于H2PO2 -溶液中,在惰性气体的保护下超声处理;
(2)然后将步骤(1)所得的悬浮液转移至光催化反应器中,将容器密封后,用真空泵将整个反应体系抽真空处理,利用可见光源照射反应器,并保持室温、不断搅拌;
(3)待反应结束后,打开反应器,移去上清液,离心回收沉淀物,在烘箱中干燥后回收得到磷酸根修饰的Zn0.5Cd0.5S材料,标记为Zn0.5Cd0.5S/Pi;
(4)取Zn0.5Cd0.5S/Pi样品,分散到含有一种或多种过渡金属盐的H2PO2 -水溶液中,在惰性气体的保护下超声处理,然后转移至光催化反应器中,将容器密封后,用真空泵将整个反应体系抽真空处理,利用可见光源照射反应器,并保持室温、不断搅拌,待反应结束后,打开反应器,移去上清液,离心回收沉淀物,烘箱中干燥后回收得到掺杂过渡金属和负载过渡金属磷酸盐的Zn0.5Cd0.5S/Pi,即为光催化分解纯水的催化剂;
所述一种或多种过渡金属盐选自镍盐,钴盐,镍、铁混合盐,镍、锰混合盐。
2.根据权利要求1所述的制备方法,其特征在于,
所述惰性气体为氩气或氦气;
所述H2PO2 -溶液为NaH2PO2、KH2PO2中的一种;
所述超声处理时间为20-60min;
所述真空处理时间为10-30min;
所述可见光源为太阳光、氙灯、汞灯、白炽灯、发光二极管灯其中的一种,处理时间为2-5h;
烘箱烘干温度为50-70℃,烘干时间为10-15h。
3.一种如权利要求1或2制备得到的光催化分解纯水的催化剂。
CN202111139980.XA 2021-09-26 2021-09-26 一种可用于光催化分解纯水的催化剂的制备方法 Active CN113856712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111139980.XA CN113856712B (zh) 2021-09-26 2021-09-26 一种可用于光催化分解纯水的催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111139980.XA CN113856712B (zh) 2021-09-26 2021-09-26 一种可用于光催化分解纯水的催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN113856712A CN113856712A (zh) 2021-12-31
CN113856712B true CN113856712B (zh) 2023-11-14

Family

ID=78991528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111139980.XA Active CN113856712B (zh) 2021-09-26 2021-09-26 一种可用于光催化分解纯水的催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113856712B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534666A (zh) * 2022-02-23 2022-05-27 中国能源建设集团广东省电力设计研究院有限公司 一种连续光催化制氢反应装置及其制氢方法
CN118416915B (zh) * 2024-06-28 2024-09-17 东莞理工学院 一种利用具有压电效应的产氢型光催化剂海水-甲烷混合样制备乙烯和氢气的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311057A (zh) * 2000-02-22 2001-09-05 韩国化学研究所 用于水分解的CdZnMS光催化剂及其制备和生产氢气的方法
CN107790160A (zh) * 2017-10-30 2018-03-13 中国科学院理化技术研究所 一种磷掺杂硫化锌镉固溶体催化剂、光催化体系及分解水制氢的方法
CN110075875A (zh) * 2019-05-08 2019-08-02 福州大学 一种以NiSe为助剂的高效异质结光催化剂及其制备方法和应用
CN112547102A (zh) * 2020-12-04 2021-03-26 江南大学 一种磷化镍/CdxZn1-xS催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311057A (zh) * 2000-02-22 2001-09-05 韩国化学研究所 用于水分解的CdZnMS光催化剂及其制备和生产氢气的方法
CN107790160A (zh) * 2017-10-30 2018-03-13 中国科学院理化技术研究所 一种磷掺杂硫化锌镉固溶体催化剂、光催化体系及分解水制氢的方法
CN110075875A (zh) * 2019-05-08 2019-08-02 福州大学 一种以NiSe为助剂的高效异质结光催化剂及其制备方法和应用
CN112547102A (zh) * 2020-12-04 2021-03-26 江南大学 一种磷化镍/CdxZn1-xS催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新型 ZnxCd1-xS 类催化剂的可见光催化产氢性能研究;宋金刚;《中国博士学位论文全文数据库 工程科技I辑》(第12期);第156-157段 *

Also Published As

Publication number Publication date
CN113856712A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Zhang et al. Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution
Yin et al. Facile fabrication of nano-sized hollow-CdS@ g-C3N4 Core-shell spheres for efficient visible-light-driven hydrogen evolution
Wang et al. Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation
Xiao et al. One-step preparation of sulfur-doped porous gC 3 N 4 for enhanced visible light photocatalytic performance
CN113856709B (zh) 一种可用于光催化分解纯水的催化剂的制备方法
CN113181945B (zh) 一种高效产过氧化氢的复合光催化剂的制备方法
CN113856712B (zh) 一种可用于光催化分解纯水的催化剂的制备方法
Zhu et al. Fabrication of ZnS/CdS heterojunction by using bimetallic MOFs template for photocatalytic hydrogen generation
Sarwar et al. Synergistic effect of photo-reduced Ni–Ag loaded g-C3N4 nanosheets for efficient visible Light‐Driven photocatalytic hydrogen evolution
Yu et al. Synergistic effect of rare earth metal Sm oxides and Co 1− x S on sheet structure MoS 2 for photocatalytic hydrogen evolution
CN113680356B (zh) 一种可用于光催化分解纯水的Zn1-xCdxS/D-ZnS(en)0.5/Pi/NiaPi型催化剂的制备方法
CN114100643B (zh) 一种可用于光催化分解纯水的催化剂的制备方法
Wei et al. Efficient visible-light-driven photocatalytic hydrogen production over a direct Z-scheme system of TaON/Cd 0.5 Zn 0.5 S with a NiS cocatalyst
Yu et al. Noble-metal-free ternary CN–ZCS–NiS nanocomposites for enhanced solar photocatalytic H 2-production activity
Dong et al. Facile preparation of Zn x Cd 1− x S/ZnS heterostructures with enhanced photocatalytic hydrogen evolution under visible light
CN114308079A (zh) 一种硫化镉-双助催化剂复合光催化材料及其制备方法与应用
CN114950522A (zh) 氮化硼/硫化铟锌复合光催化剂及其制备方法和应用
Huang et al. The heterojunction construction of hybrid B-doped g-C3N4 nanosheets and ZIF67 by simple mechanical grinding for improved photocatalytic hydrogen evolution
Zhong et al. Plasma-induced black bismuth tungstate as a photon harvester for photocatalytic carbon dioxide conversion
Li et al. Highly dispersed NiS 2 quantum dots as a promising cocatalyst bridged by acetylene black significantly improved the photocatalytic H 2 evolution performance of gC 3 N 4 nanosheets
CN114160169A (zh) 一种共价有机框架材料封装钼硫团簇的制备方法及其应用
CN115845832B (zh) ZIF-8衍生的ZnO/BiVO4异质结复合物的制备方法与应用
CN116726949A (zh) 一种Cd0.5Zn0.5S的制备方法及其在光催化下固氮的实验方法
CN112774700B (zh) 一种抑制卤氧化铋光腐蚀的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant