CN113838121A - 基于图像识别的烟气层高度检测方法及检测系统 - Google Patents

基于图像识别的烟气层高度检测方法及检测系统 Download PDF

Info

Publication number
CN113838121A
CN113838121A CN202111398544.4A CN202111398544A CN113838121A CN 113838121 A CN113838121 A CN 113838121A CN 202111398544 A CN202111398544 A CN 202111398544A CN 113838121 A CN113838121 A CN 113838121A
Authority
CN
China
Prior art keywords
smoke
layer
space
height
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111398544.4A
Other languages
English (en)
Other versions
CN113838121B (zh
Inventor
李昂
侯岳
任凯
李营
陈莹
赵博
王式耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval University of Engineering PLA
Original Assignee
Naval University of Engineering PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval University of Engineering PLA filed Critical Naval University of Engineering PLA
Priority to CN202111398544.4A priority Critical patent/CN113838121B/zh
Publication of CN113838121A publication Critical patent/CN113838121A/zh
Application granted granted Critical
Publication of CN113838121B publication Critical patent/CN113838121B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods

Abstract

本发明提供了一种基于图像识别的烟气层高度检测方法及检测系统。该检测系统包括烟气图像采集模块,用于采集待监测空间内的全视场烟气层图像;空间坐标构建模块,用于构建待监测空间的空间三维坐标系,并与烟气图像采集模块进行空间位置关联,以实现对全视场烟气层图像的定点采集;烟气图像处理模块,用于提取全视场烟气层图像的灰度值,并根据灰度值识别出属于烟气区域的像素点;烟气层高度获取模块,用于根据属于烟气区域的像素点的下方边缘点的坐标值,确定烟气层高度。本发明根据火灾烟气学的一般规律,通过K‑均值聚类算法对待监测空间进行烟气层、过渡层和冷空气层的区域划分,从而更准确和快速地识别出烟气层高度。

Description

基于图像识别的烟气层高度检测方法及检测系统
技术领域
本发明涉及火灾探测技术领域,尤其涉及一种基于图像识别的烟气层高度检测方法及检测系统。
背景技术
建筑火灾中,烟气层高度是影响人员安全的重要参数。在火灾区域模拟模型、排烟系统有效性评判以及性能化防火设计等应用中具有十分重要的作用。真实火灾中,上层烟气与下层空气并不存在十分明晰的分界面,而是存在一定厚度的过渡层。在这种环境下,烟气层高度往往取过渡层内的某虚拟分界平面(下称分界面)高度。而这个虚拟分界面则需根据烟气层和空气层中气体的特性差异通过一定的计算方法获得。目前主要采用热电偶记录火灾试验空间温度,再通过N-百分比法和积分比值法对温度数据进行处理,从而计算得出相应的烟气层高度。但这种方法存在数据处理量庞大,带有较强的人为主观性,使用时需要对所研究问题具有一定的经验,否则可能得到错误的烟气层高度。
这些计算方法所用的烟气特性参数主要有温度、CO体积分数、CO2体积分数、能见度等。其中温度参数由于其测量系统具有布置简单、价格便宜、测量准确、响应较快、易实时测量等优点,被广泛用于烟气层高度的计算。尤其是在高度较高或分辨率要求较密等需要布置较多探点的场合。但是,采用温度作为计算参数时,对计算方法提出了更高的要求。尤其是在离火源较远或者着火空间高度较高的场合。在这些情况下,烟气虽可形成明显分层,但烟气层整体温度较低,梯度较小,对烟气层高度计算较为不利。其中,温度梯度较小会使N百分比法等主观方法的计算结果对人为给定的参数值十分敏感,这样的话,人为给定参数值已难正确计算烟气层高度;同时,在烟气温度较低时,对应的温度数据往往振荡较明显,使得均一度法也面临较大的困难。
有鉴于此,有必要设计一种改进的基于图像识别的烟气层高度检测方法及检测系统,以解决上述问题。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供一种基于图像识别的烟气层高度检测方法及检测系统。根据火灾烟气学的一般规律,通过K-均值聚类算法对待监测空间进行烟气层、过渡层和冷空气层的区域划分,从而更准确和快速地识别出烟气层高度。
为实现上述发明目的,本发明提供了一种基于图像识别的烟气层高度检测系统,包括:
烟气图像采集模块,用于采集待监测空间内的全视场烟气层图像;
空间坐标构建模块,用于构建待监测空间的坐标系,并与所述烟气图像采集模块进行空间位置关联,以实现对所述全视场烟气层图像的定点采集;其中,所述待监测空间的坐标系以所述待监测空间的底部边缘为纵向坐标轴X轴,以所述待监测空间的高度方向为竖向坐标轴Y轴;烟气层在所述待监测空间内沿所述纵向坐标轴方向蔓延,以蔓延起点为坐标系原点;
烟气图像处理模块,用于提取所述全视场烟气层图像的灰度值,并根据灰度值识别出属于烟气区域的像素点;
烟气层高度获取模块,用于根据所述属于烟气区域的像素点的下方边缘点的竖向坐标值,确定烟气层高度。
作为本发明的进一步改进,所述烟气图像采集模块包括激光片源和高速摄像机;所述激光片源用于向所述待检测空间内烟气层蔓延的方向发射激光,所述高速摄像机用于从该方向的垂直方向进行拍摄。
作为本发明的进一步改进,所述烟气图像采集模块包括若干组分散布置的激光片源和高速摄像机以及同步信号发生器;所述同步信号发生器用于保证若干组所述高速摄像机的采样频率同步,实现同步触发、实时传输和储存。
作为本发明的进一步改进,所述烟气图像处理模块根据灰度值将所述待监测空间在其竖向上划分为烟气层、过渡层和冷空气层区域;所述烟气层的下方边缘点的竖向坐标值即为烟气层高度。
作为本发明的进一步改进,所述烟气图像处理模块通过K-均值聚类算法识别烟气层、过渡层和冷空气层区域,从而实现对全视场烟气层图像的竖向区域划分,再根据烟气层区域的竖向坐标值得到待监测空间纵向上不同位置的烟气层高度。
作为本发明的进一步改进,所述待监测空间的竖向区域划分步骤包括:
S1.提取片状激光光场背景颜色空间特征;
S2.计算烟气图像与背景图像之间的颜色差值;
S3.利用K-均值聚类算法寻找过渡层,以过渡层为分界线,将整个空间分为上部烟气层和下部冷空气层两个区域。
作为本发明的进一步改进,步骤S3包括:
S31.设定聚类中心:先估算过渡层位置,然后确定烟气层和空气层的初始聚类中心;烟气层和空气层的初始聚类中心通过下式得到:
Figure 394724DEST_PATH_IMAGE001
其中,H为待监测空间的高度;
Figure 390362DEST_PATH_IMAGE002
分别为烟气层竖向坐标、纵向坐标和温度值;
Figure 636405DEST_PATH_IMAGE003
分别为空气层竖向坐标、纵向坐标和温度值;ymi和xmi分别为过渡层竖向坐标和纵向坐标;m为烟气层内的数据点个数,n为空气层内的数据点个数;
S32.计算每个样本与每一个聚类中心的距离,根据欧式距离最小值,将相应的样本归入相应的簇内,从纵向上就实现了区间的划分。
作为本发明的进一步改进,所述烟气图像处理模块还根据烟气层在纵向上的高度差异,将所述待监测空间在纵向上划分为若干个区间,将每个区间的平均烟气层高度作为该区间的烟气层高度。
作为本发明的进一步改进,所述平均烟气层高度的获取方法包括:通过下式找到烟气层聚类中心与样本形成一定夹角范围内的边缘样本,求取其对应高度的平均值:
Figure 895348DEST_PATH_IMAGE004
式中,
Figure 321781DEST_PATH_IMAGE005
为烟气层高度,m;pci为簇Ci的样本,yj为pj的竖向高度值,
Figure 901536DEST_PATH_IMAGE006
的簇Ci边缘分布特征角。
为实现上述发明目的,本发明提供了一种基于图像识别的烟气层高度检测方法,包括以下步骤:
S1.采集全视场烟气层图像;
S2.提取全视场烟气层图像的灰度值;
S3.根据全视场烟气层图像的灰度值识别出属于烟气区域的像素点;
S4.根据烟气区域的像素点在高度方向上的边缘点的坐标值,确定烟气层高度。
本发明的有益效果是:
1.本发明提供的基于图像识别的烟气层高度检测系统,采用高速摄像机对火灾试验进行拍照,解析像素点灰度,再根据图像的灰度值,对空间进行区域划分,确定烟气层边缘位置坐标,进而判定烟气层高度。如此操作,利用烟气层图像信息,辅以合理的判定方法,能够快速准确地识别出烟气层高度,通过对待监测空间烟气层高度的计算,有助于在实际建筑工程设计中,对通风系统进行科学合理的设计。
2.本发明提供的基于图像识别的烟气层高度检测系统,根据火灾烟气学的一般规律,通过K-均值聚类算法对待监测空间进行烟气层、过渡层和冷空气层的竖向区域划分,在纵向上(即烟气层蔓延方向)也根据烟气层高度差划分为若干个区间,最后通过每个纵向区间的平均高度来表征该区间的烟气层高度,普适性和准确性更高。
3.本发明提供的基于图像识别的烟气层高度检测系统,通过在烟气空间设置若干组激光片源,向空间内烟气流动的主要方向发射激光,形成某一方向的片状光场,并与摄像机的拍摄方向垂直,从而加强背景光,提高对比度,进而提高图像清晰度;同时,配置同步信号发生器,以保证多个高速摄像机采样频率同步,实现同步触发以及实时传输和储存。
附图说明
图1为本发明基于图像识别的烟气层高度检测系统的烟气图像采集模块的空间布设示意图。
图2为本发明基于图像识别的烟气层高度检测系统的烟气图像采集模块的工作原理图。
图3为本发明基于图像识别的烟气层高度检测系统的组成结构框图。
图4为本发明基于图像识别的烟气层高度检测方法的流程示意图。
图5为本发明聚类中心设定结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在具体实施例中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
请参阅图1至4所示,本发明提供的一种基于图像识别的烟气层高度检测系统,包括:
烟气图像采集模块,用于采集待监测空间内的全视场烟气层图像;
空间坐标构建模块,用于构建待监测空间的空间三维坐标系,并与所述烟气图像采集模块进行空间位置关联,以实现对所述全视场烟气层图像的定点采集;其中,所述待监测空间的坐标系以所述待监测空间的底部边缘为纵向坐标轴X轴,以所述待监测空间的高度方向为竖向坐标轴Y轴;烟气层在所述待监测空间内沿所述纵向坐标轴方向蔓延,以蔓延起点为坐标系原点;如此设置,可沿烟气层蔓延方向仅设置二维坐标,即通过某个纵列面的烟气层高度,基本可表征其他纵列面的烟气层高度;因为烟气层主要沿空间纵向蔓延,如果需要获取其他纵列面的烟气层高度,也可采用本发明相似的方法,在其他纵列面构建坐标系进行拍摄处理。
烟气图像处理模块,用于提取所述全视场烟气层图像的灰度值,并根据灰度值识别出属于烟气区域的像素点;
烟气层高度获取模块,用于根据所述属于烟气区域的像素点的下方边缘点的竖向坐标值,确定烟气层高度。
所述烟气图像采集模块包括激光片源和高速摄像机;所述激光片源用于向空间内烟气流动的方向发射激光,所述高速摄像机用于从该方向的垂直方向进行拍摄。本发明总体的方法是采用高速摄像机拍照,之后提取图像的灰度值,根据灰度值确定过渡层,通过过渡层将区间分为上层烟气层和下层冷空气层;之后根据烟气层边缘位置坐标,判定烟气层的高度。
因此在火灾试验过程中需要首先获取烟气图像,但烟气在空间的蔓延是朝向各个方向,且分布并不均匀,并且某些空间区域会出现烟气浓度较为稀薄,摄像机难以清晰采集的情况。因此需要加强背景光,提高对比度,所采用的方式是,由激光片源向空间内烟气流动的主要方向发射激光,形成某一方向的片状光场,摄像机则从该方向的垂直方向进行拍摄。
同时由于烟气的空间整体扩散性,需要在多个方向上布置多个激光片源和摄像机。根据火灾烟气基本规律,5个纵列面可以基本反映烟气的蔓延情况,因此每套系统之间的间距为相应方向上长度的1/5,典型烟气生成空间内装置布置如图1所示。
请参阅图2所示,由于高速摄像机是分散布置的,因此需要配置同步信号发生器(触发器),以保证多个高速摄像机采样频率同步,实现同步触发,实时传输,实时储存,采用工业摄像机,其配置有外同步接口。
对于烟气层高度的解算方法分主要为两个部分,一是要识别出相应区域是否为烟气区域,二是根据所识别出的烟气区域,结合位置坐标判定烟气层高度。
当摄像机采集到某一时刻的烟气图片,主要是通过识别图片中的RGB颜色空间,按照光学原理,RGB值的平均值可以代表光强,因此计算RGB值的数值空间并进行判断就可以完成烟雾识别。
根据火灾烟气学的一般规律,烟气层与下部冷空气之间事实上并不存在一个明显的分界线,而是存在一个“过渡层”,过渡层上部为烟气,下部为冷空气,因此只要能够识别出烟气层过渡层位置,自然可以进行烟气层高度的计算。
烟气层特征是空间内填充聚集了大量烟气,因此相对光强较弱,过渡层的基本特征是烟气填充并不充分,其光强值相对较高,而冷空气层基本特征是只存在少量烟气或者无烟气,因此其光强值在三个区域中相对是最高的,因此可以通过利用过渡层所具有的光强数值特征进行识别。
请参阅图4所示,K-均值算法属于聚类算法的一种,其基本特点是,对于无数据特征标记的数据,能够进行聚类分析,数据自动聚集成不同类,根据K-均值算法的基本特点,利用其实现三个不同区域的识别,从而可以判定烟气层高度,算法实现的基本步骤包括:
(1)提取片状激光光场背景颜色空间特征
拍摄记录某一时刻每一个片状光场方向上的照片作为基础背景,并提取照片中的每一个像素点的RGB数值,构成某一时刻某一方向的背景颜色空间集合:
Figure 690500DEST_PATH_IMAGE007
其中,
Figure 198973DEST_PATH_IMAGE008
分别为五个纵向方向上激光片状光场烟气空间集合,
Figure 971757DEST_PATH_IMAGE009
为正整数,分别代表
Figure 558465DEST_PATH_IMAGE010
五个方向上的空间位置点总数量。
(2)烟气图像与背景图像之间的颜色差值计算
拍摄记录某一时刻某一方向上的烟气图像,将两者之间RGB数值进行差值计算,设点q为某一时刻某一方向上的空间位置点,其空间位置为
Figure 733094DEST_PATH_IMAGE011
,对其进行差值计算:
Figure 599419DEST_PATH_IMAGE012
如上式所示,对某一时刻每一个位置点均进行差值计算,构成一个差值集合:
Figure 859499DEST_PATH_IMAGE013
其中
Figure 220205DEST_PATH_IMAGE014
为颜色差值集合,
Figure 249340DEST_PATH_IMAGE015
为烟气图像颜色空间集合,
Figure 552146DEST_PATH_IMAGE016
为背景颜色空间集合。例如当点q为Lci方向上的空间位置点,则i∈n1。
(3)利用K-均值算法寻找过渡层
由于过渡层决定了烟气层的高度,而过渡层所具有的特征是,以过渡层为分界线,将整个空间分为上部烟气层和下部冷空气层两个区域,层内各个像素之间的颜色差值空间数值总体距离最小,而两个层之间颜色差值空间数值差值最大,按照K-均值算法的基本算法步骤:
(31)设定聚类中心
(311)估算过渡层位置:
请参阅图5所示,设某一区间内数据点共有pj个,因此过渡层竖向y和纵向x坐标为:
Figure 814369DEST_PATH_IMAGE017
(312)确定烟气层和空气层初始聚类中心:
设烟气层内的数据点为m个,空气层内的数据点为n个,因此两者聚类中心由下式可得:
Figure 962453DEST_PATH_IMAGE018
其中,H为待监测空间的高度;
Figure 377254DEST_PATH_IMAGE019
分别为烟气层竖向坐标、纵向坐标和温度值;
Figure 132852DEST_PATH_IMAGE020
分别为空气层竖向坐标、纵向坐标和温度值。
(32)寻找过渡层位置
(321)计算每一个样本pi(j=1,2,…,m)与每一个聚类中心μp(1≤p≤K)的距离,按照下式计算:
Figure 679108DEST_PATH_IMAGE021
(322)根据欧式距离最小值,将相应的样本归入相应的簇,
Figure 630884DEST_PATH_IMAGE022
(323)数据样本归类到相应的簇内,从纵向上就划分了区间。
对烟气层高度的求解采用一个烟气层区间的平均高度来表征高度,这样可以突出表征烟气层的区间特征,此时只需要找到烟气层聚类中心与样本形成一定夹角范围内的边缘样本,求取其对应高度的平均值即可:
Figure 369033DEST_PATH_IMAGE023
式中,HS,Ci为烟气层高度,m;pci为簇Ci的样本,yj为pj的竖向高度值,
Figure 13641DEST_PATH_IMAGE024
的簇Ci边缘分布特征角。
特别地,所述烟气层高度检测系统还包括显示模块,用于显示采集的空间烟气图像。
本发明还提供了一种基于图像识别的烟气层高度检测方法,包括以下步骤:
S1.采集全视场烟气层图像;
S2.提取全视场烟气层图像的灰度值;
S3.根据全视场烟气层图像的灰度值识别出属于烟气区域的像素点;具体包括:
S4.根据烟气区域的像素点在高度方向上的边缘点的坐标值,确定烟气层高度。
综上所述,本发明提供的基于图像识别的烟气层高度检测系统,采用高速摄像机对火灾试验进行拍照,解析像素点灰度,再根据图像的灰度值,对空间进行区域划分,确定烟气层边缘位置坐标,进而判定烟气层高度。如此操作,利用烟气层图像信息,辅以合理的判定方法,能够快速准确地识别出烟气层高度。通过K-均值聚类算法对待监测空间进行烟气层、过渡层和冷空气层的区域划分,最后通过烟气层区间的平均高度来表征烟气层高度,普适性和准确性更高。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

1.一种基于图像识别的烟气层高度检测系统,其特征在于,包括:
烟气图像采集模块,用于采集待监测空间内的全视场烟气层图像;
空间坐标构建模块,用于构建待监测空间的坐标系,并与所述烟气图像采集模块进行空间位置关联,以实现对所述全视场烟气层图像的定点采集;其中,所述待监测空间的坐标系以所述待监测空间的底部边缘为纵向坐标轴X轴,以所述待监测空间的高度方向为竖向坐标轴Y轴;烟气层在所述待监测空间内沿所述纵向坐标轴方向蔓延,以蔓延起点为坐标系原点;
烟气图像处理模块,用于提取所述全视场烟气层图像的灰度值,并根据灰度值识别出属于烟气区域的像素点;
烟气层高度获取模块,用于根据所述属于烟气区域的像素点的下方边缘点的竖向坐标值,确定烟气层高度。
2.根据权利要求1所述的基于图像识别的烟气层高度检测系统,其特征在于,所述烟气图像采集模块包括激光片源和高速摄像机;所述激光片源用于向所述待检测空间内烟气层蔓延的方向发射激光,所述高速摄像机用于从该方向的垂直方向进行拍摄。
3.根据权利要求2所述的基于图像识别的烟气层高度检测系统,其特征在于,所述烟气图像采集模块包括若干组分散布置的激光片源和高速摄像机以及同步信号发生器;所述同步信号发生器用于保证若干组所述高速摄像机的采样频率同步,实现同步触发、实时传输和储存。
4.根据权利要求1所述的基于图像识别的烟气层高度检测系统,其特征在于,所述烟气图像处理模块根据灰度值将所述待监测空间在其竖向上划分为烟气层、过渡层和冷空气层区域;所述烟气层的下方边缘点的竖向坐标值即为烟气层高度。
5.根据权利要求4所述的基于图像识别的烟气层高度检测系统,其特征在于,所述烟气图像处理模块通过K-均值聚类算法识别烟气层、过渡层和冷空气层区域,从而实现对全视场烟气层图像的竖向区域划分,再根据烟气层区域的竖向坐标值得到待监测空间纵向上不同位置的烟气层高度。
6.根据权利要求5所述的基于图像识别的烟气层高度检测系统,其特征在于,所述待监测空间的竖向区域划分步骤包括:
S1.提取片状激光光场背景颜色空间特征;
S2.计算烟气图像与背景图像之间的颜色差值;
S3.利用K-均值聚类算法寻找过渡层,以过渡层为分界线,将整个空间分为上部烟气层和下部冷空气层两个区域。
7.根据权利要求6所述的基于图像识别的烟气层高度检测系统,其特征在于,步骤S3包括:
S31.设定聚类中心:先估算过渡层位置,然后确定烟气层和空气层的初始聚类中心;烟气层和空气层的初始聚类中心通过下式得到:
Figure 408825DEST_PATH_IMAGE001
其中,H为待监测空间的高度;
Figure 857124DEST_PATH_IMAGE002
分别为烟气层竖向坐标、纵向坐标和温度值;
Figure 168020DEST_PATH_IMAGE003
分别为空气层竖向坐标、纵向坐标和温度值;ymi和xmi分别为过渡层竖向坐标和纵向坐标;m为烟气层内的数据点个数,n为空气层内的数据点个数;
S32.计算每个样本与每一个聚类中心的距离,根据欧式距离最小值,将相应的样本归入相应的簇内,从纵向上就实现了区间的划分。
8.根据权利要求5所述的基于图像识别的烟气层高度检测系统,其特征在于,所述烟气图像处理模块还根据烟气层在纵向上的高度差异,将所述待监测空间在纵向上划分为若干个区间,将每个区间的平均烟气层高度作为该区间的烟气层高度。
9.根据权利要求8所述的基于图像识别的烟气层高度检测系统,其特征在于,所述平均烟气层高度的获取方法包括:通过下式找到烟气层聚类中心与样本形成一定夹角范围内的边缘样本,求取其对应高度的平均值:
Figure 140393DEST_PATH_IMAGE004
式中,
Figure 485923DEST_PATH_IMAGE005
为烟气层高度,m;pci为簇Ci的样本,yj为pj的竖向高度值,
Figure 839544DEST_PATH_IMAGE006
的簇Ci边缘分布特征角。
10.一种基于图像识别的烟气层高度检测方法,其特征在于,采用权利要求1至9中任一项所述的检测系统,包括以下步骤:
S1.采集全视场烟气层图像;
S2.提取全视场烟气层图像的灰度值;
S3.根据全视场烟气层图像的灰度值识别出属于烟气区域的像素点;
S4.根据烟气区域的像素点在高度方向上的边缘点的坐标值,确定烟气层高度。
CN202111398544.4A 2021-11-24 2021-11-24 基于图像识别的烟气层高度检测方法及检测系统 Active CN113838121B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111398544.4A CN113838121B (zh) 2021-11-24 2021-11-24 基于图像识别的烟气层高度检测方法及检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111398544.4A CN113838121B (zh) 2021-11-24 2021-11-24 基于图像识别的烟气层高度检测方法及检测系统

Publications (2)

Publication Number Publication Date
CN113838121A true CN113838121A (zh) 2021-12-24
CN113838121B CN113838121B (zh) 2022-02-18

Family

ID=78971591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111398544.4A Active CN113838121B (zh) 2021-11-24 2021-11-24 基于图像识别的烟气层高度检测方法及检测系统

Country Status (1)

Country Link
CN (1) CN113838121B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506221A (zh) * 2022-03-03 2022-05-17 西南交通大学 基于高温超导磁浮的隧道火场环境侦测系统及方法
CN114999092A (zh) * 2022-06-10 2022-09-02 北京拙河科技有限公司 一种基于多发性森林火灾模型的灾难预警方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085714A (zh) * 2017-05-09 2017-08-22 北京理工大学 一种基于视频的森林火灾检测方法
CN109598194A (zh) * 2018-10-25 2019-04-09 安徽含光软件开发有限公司 一种基于人工智能的火灾烟气图像识别方法
CN110264570A (zh) * 2019-06-13 2019-09-20 咏峰(大连)科技有限公司 一种基于无人机的林地自主巡检系统
CN110826559A (zh) * 2019-11-01 2020-02-21 北京工业大学 基于视觉感知的火炬烟尘监测方法
US20210192175A1 (en) * 2019-12-20 2021-06-24 Volant Aerial, Inc. System and method for the early visual detection of forest fires using a deep convolutional neural network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085714A (zh) * 2017-05-09 2017-08-22 北京理工大学 一种基于视频的森林火灾检测方法
CN109598194A (zh) * 2018-10-25 2019-04-09 安徽含光软件开发有限公司 一种基于人工智能的火灾烟气图像识别方法
CN110264570A (zh) * 2019-06-13 2019-09-20 咏峰(大连)科技有限公司 一种基于无人机的林地自主巡检系统
CN110826559A (zh) * 2019-11-01 2020-02-21 北京工业大学 基于视觉感知的火炬烟尘监测方法
US20210192175A1 (en) * 2019-12-20 2021-06-24 Volant Aerial, Inc. System and method for the early visual detection of forest fires using a deep convolutional neural network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘欢,等: "基于背景反馈和k-means算法的野外烟雾检测", 《中国科技论文》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506221A (zh) * 2022-03-03 2022-05-17 西南交通大学 基于高温超导磁浮的隧道火场环境侦测系统及方法
CN114506221B (zh) * 2022-03-03 2023-08-08 西南交通大学 基于高温超导磁浮的隧道火场环境侦测系统及方法
CN114999092A (zh) * 2022-06-10 2022-09-02 北京拙河科技有限公司 一种基于多发性森林火灾模型的灾难预警方法及装置

Also Published As

Publication number Publication date
CN113838121B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN113838121B (zh) 基于图像识别的烟气层高度检测方法及检测系统
CN105956632B (zh) 一种检测目标的方法和装置
CN111047568A (zh) 一种漏汽缺陷检测识别方法及系统
Xue et al. Refraction wiggles for measuring fluid depth and velocity from video
JP7156515B2 (ja) 点群アノテーション装置、方法、及びプログラム
CN103761826A (zh) 一种热成像视频双鉴林火识别系统的识别方法
CN109253722A (zh) 融合语义分割的单目测距系统、方法、设备及存储介质
CN101876535A (zh) 一种高度测量方法、装置及监控系统
CN111967443A (zh) 基于图像处理与bim的档案馆内感兴趣区域分析方法
JP3436519B2 (ja) 噴煙等の観測システム
CN114020043A (zh) 无人机建筑工程监理系统、方法、电子设备及存储介质
CN116152697A (zh) 一种混凝土结构裂缝的三维模型测量方法及相关装置
Motayyeb et al. Fusion of UAV-based infrared and visible images for thermal leakage map generation of building facades
CN111402188A (zh) Tof摄像模组深度测量评价方法及其评价装置
JP6171781B2 (ja) 視線分析システム
Gharahjeh et al. Application of video imagery techniques for low cost measurement of water surface velocity in open channels
CN111723656A (zh) 一种基于YOLO v3与自优化的烟雾检测方法及装置
CN111539264A (zh) 一种船舶火焰探测定位系统与探测定位方法
CN112163988B (zh) 红外图像的生成方法、装置、计算机设备和可读存储介质
TWI766460B (zh) 空氣濕度量測方法及電子裝置
CN105678230B (zh) 一种红外目标投影模型指导的飞机感兴趣区测谱方法
CN112541403B (zh) 一种利用红外摄像头的室内人员跌倒检测方法
RU2694139C1 (ru) Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер
JP4431486B2 (ja) 目標物同定支援システム
Rotman et al. Modeling human search and target acquisition performance: fixation-point analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant