RU2694139C1 - Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер - Google Patents

Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер Download PDF

Info

Publication number
RU2694139C1
RU2694139C1 RU2019110037A RU2019110037A RU2694139C1 RU 2694139 C1 RU2694139 C1 RU 2694139C1 RU 2019110037 A RU2019110037 A RU 2019110037A RU 2019110037 A RU2019110037 A RU 2019110037A RU 2694139 C1 RU2694139 C1 RU 2694139C1
Authority
RU
Russia
Prior art keywords
movement
person
trajectory
video cameras
determining
Prior art date
Application number
RU2019110037A
Other languages
English (en)
Inventor
Илья Павлович Гоценко
Мария Игоревна Филистеева
Павел Дмитриевич Каширин
Ваагн Володяевич Минасян
Рифкат Рифкатович Загитов
Махмуд Джамалдинович Магомедов
Original Assignee
Общество с ограниченной ответственностью "Скайтрэк" (ООО "Скайтрэк")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Скайтрэк" (ООО "Скайтрэк") filed Critical Общество с ограниченной ответственностью "Скайтрэк" (ООО "Скайтрэк")
Priority to RU2019110037A priority Critical patent/RU2694139C1/ru
Application granted granted Critical
Publication of RU2694139C1 publication Critical patent/RU2694139C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Image Analysis (AREA)

Abstract

Изобретение относится к анализу изображений для определения девиантного поведения человека в режиме одновременной работы группы видеокамер. Технический результат – повышение точности определения девиантного поведения человека. Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер, выполняемый с помощью процессора, содержит этапы, на которых формируют в области размещения группы видеокамер набор траекторий, каждая из которых характеризует нормальный паттерн перемещения людей в области видимости камер, получают изображение перемещения по меньшей мере одного человека в области установки видеокамер, содержащее изображение траектории перемещения человека, причем траектория перемещения характеризуется пространственными координатами (x, y) и временем t перемещения человека в упомянутых координатах, осуществляют кластеризацию пространственных координат перемещения для каждой выявленной траектории с помощью деления траектории перемещения на K участков и определения для каждого участка средних значений пространственных координат (x, y) и времени прохождения t участков, определяют усредненную траекторию перемещения человека на основании кластеризации координат и сравнивают ее с нормальным паттерном перемещения для данной области наблюдения, определяют девиантное поведение человека при показателе отклонения усредненной траектории его перемещения от нормального паттерна выше заданного порогового значения. 7 з.п. ф-лы, 7 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
[1] Заявленное решение относится к области вычислительной техники, в частности к способам анализа изображений для определения девиантного поведения человека в режиме одновременной работы группы видеокамер.
УРОВЕНЬ ТЕХНИКИ
[2] Анализ поведения людей на основе информации, получаемых с помощью систем видеоаналитики, на сегодняшний день находит широкое применение в различных системах контроля безопасности и позволяет выявить и предупредить возможные негативные последствия.
[3] В качестве аналога заявленного способа можно рассмотреть известное решение для анализа девиантного поведения человека на основании его перемещения (заявка CN 101719216 A, 21.12.2009). В известном решении определяется девиантное поведение на основе того, соответствует ли поведение шаблону поведение. Получение информации о траектории передвижения по помещению производится с использованием методов компьютерного зрения, а проверка соответствия шаблону осуществляется посредствам статистического анализа.
[4] Недостатком данного метода является то, что оно не позволяет определить девиантное поведение в контексте временного анализа, то есть, например, слишком медленное передвижение, либо бег по помещению.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
[5] Для решения существующей технической проблемы предлагается новый способ анализа девиантного поведения, позволяющий с более высокой точностью выявить девиантное поведение человека на основании траектории его перемещения.
[6] Техническим результатом является повышение точности определения девиантного поведения человека, за счет анализа траектории перемещения человека в наблюдаемой области во временном разрезе с привязкой к координатам его перемещения.
[7] Заявленное решение осуществляется за счет компьютерно-реализуемого способа определения девиантного поведения человека в режиме одновременной работы группы видеокамер, выполняемый с помощью процессора и содержащий этапы, на которых:
- формируют в области размещения группы видеокамер набор траекторий, каждая из которых характеризует нормальный паттерн перемещения людей в области видимости камер, причем паттерны строятся на основании выборки из усредненных значений траекторий перемещения людей в заданной области;
- получают изображение перемещения по меньшей мере одного человека в области установки видеокамер, содержащее изображение траектории перемещения человека, причем траектория перемещения характеризуется пространственными координатами (x, y) и временем t перемещения человека в упомянутых координатах;
- осуществляют кластеризацию пространственных координат перемещения для каждой выявленной траектории с помощью деления траектории перемещения на K участков и определения для каждого участка средних значений пространственных координат (x, y) и времени прохождения t участков;
- определяют усредненную траекторию перемещения человека на основании кластеризации координат и сравнивают ее с нормальным паттерном перемещения для данной области наблюдения;
- определяют девиантное поведение человека при показателе отклонения усредненной траектории его перемещения от нормального паттерна выше заданного порогового значения.
[8] В одном из частных вариантов осуществления способа формирование нормального паттерна осуществляется на основании кластеризации траекторий перемещения людей.
[9] В другом частном варианте осуществления способа для каждого кластера области формируется усредненная траектория перемещения.
[10] В другом частном варианте осуществления способа изображения с видеокамер при анализе траекторий перемещения преобразовываются в двумерный вид с помощью перспективной трансформации.
[11] В другом частном варианте осуществления способа преобразование выполняется по матрице трансформации.
[12] В другом частном варианте осуществления способа при выявлении девиантного поведения осуществляется распознавание личности человека по изображению лица и/или внешним приметам.
[13] В другом частном варианте осуществления способа выполняется отслеживание перемещение человека с помощью фиксации его изображения на разных видеокамерах.
[14] В другом частном варианте осуществления способа траектория перемещения человека накладывается на цифровой план помещения или области размещения видеокамер.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[15] Фиг. 1 иллюстрирует пример области наблюдения с помощью нескольких камер.
[16] Фиг. 2 иллюстрирует блок-схему формирования нормального паттерна перемещения.
[17] Фиг. 3 – Фиг. 5 иллюстрируют пример анализа траектории перемещения людей в области наблюдения.
[18] Фиг. 6 иллюстрирует блок-схему выполнения заявленного способа.
[19] Фиг. 7 иллюстрирует пример вычислительного компьютерного устройства.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
[20] Как представлено на Фиг. 1 заявленное решение реализуется в системах видеонаблюдения за областью (100) с помощью группы видеокамер (110, 120, 130). Каждая из камер (110, 120, 130) осуществляет наблюдение за установленной частью области (100) под соответствующим углом (область видимости камер) и соответственно получают различные изображения (ракурсы) людей (10).
[21] Алгоритм определения девиантного поведения основывается на трех составляющих: 1) кластеризация координат передвижения с целью определения пролагаемых маршрутов передвижения (далее – априорных маршрутов); 2) сбор статистики по передвижению внутри помещения; 3) определение отклонение маршрута передвижения нового человека от среднего маршрута (нормализованного паттерна перемещения). Этапы 2) и 3) являются составляющими, характеризующие общий процесс декомпозиции маршрута (передвижения) человека внутри помещения.
[22] На Фиг. 2 представлен общий процесс построения нормальных паттернов (200) или средних маршрутов передвижения людей (10) в заданной области (100). На первом этапе (201) осуществляется сбор изображений перемещений людей (10) в заданной области (100) с помощью группы камер (110, 120, 130).
[23] Далее осуществляется декомпозиция определения априорных маршрутов. Определение априорных маршрутов передвижения происходит исключительно с использованием координат х и у, а время для данной подзадачи не учитывается. Под априорными маршрутами понимаются такие траектории передвижения, которые бы имели разную структуру. Например, если речь идет о коридоре, то логично ожидать один маршрут передвижения, соответственно будет один априорный маршрут. Если же речь идет о комнате с тремя дверьми, как представлено на Фиг. 3 – Фиг. 5, то логично ожидать, что будет так же три априорных маршрута (111, 112, 113) : из 1-ой двери во 2-ую и обратно, из 1-ой двери в 3-ую и обратно, из 2-ой двери в 3-ую и обратно, однако так же будет три области пересечения маршрутов (114, 115, 116), которые также необходимо отнести к априорным маршрутам. В итоге получится, что в комнате с тремя дверьми будет суммарно шесть априорных маршрутов.
[24] Далее на этапе (202) получается статистика распределения траекторий нормального перемещения в области (100). Для каждого законченного передвижения z
Figure 00000001
Z, где Z - множество маршрутов передвижения людей (10) в априорном маршруте, необходимом для сбора статистики. В процессе передвижения человека (10) производится сбор информации о его нахождении в точке x,y,t , где x,y – координаты в условной системе координат, а t – время нахождения в данной координате.
[25] Далее по полученной информации формируется массив размерностью nx3, где n – количество собранных точек. Производится сортировка массива по времени, в котором первое значение – самая ранняя точка, последнее значение – самая поздняя точка. Массив разделяется по строкам на k массивов с одинаковым числом строк в каждом массиве. Если n не делится нацело на k, то результат округляется до меньшего значения. Гиперпараметр k выбирается в зависимости от области наблюдения (100), в частности, в результате экспериментов было выявлено, что k=15 является адекватным выбором для большинства типов помещений и открытых областей с площадью <100м2. Параметр k можно выбирать из расчета 2 метров квадратных на 1 единицу k.
[26] В результате деления n на k получается m точек в N-мерном (в данном случае, 3- мерном) пространстве x,y,t. Далее определяется средняя точка x,y,t. В матричном виде это можно представить следующим образом:
Figure 00000002
-> Разделение массива на K равно содержащих массивов ->
Figure 00000003
После этого осуществляется получение среднего значения маршрута для каждой группы координат k ->
Figure 00000004
для формирования и сохранения усредненной матрицы передвижения упорядоченного передвижения z по определенному маршруту, в частности одному из априорных маршрутов
[
Figure 00000005
=
Figure 00000006
[27] Формирование матриц X,Y и T по собранным усредненным матрицам передвижения
X=
Figure 00000007
, аналогично для Y и T.
Нахождение среднего маршрута (усредненной траектории) (111, 112, 113) и стандартного отклонения маршрута передвижения для всех априорных маршрутов в области (100) для каждого из параметров X,Y,T , т.е.
Figure 00000008
, аналогично для
Figure 00000009
.
[28] На основании вычисленных нормальных траекторий перемещений для априорных маршрутов в области наблюдения (100) формируется нормальный паттерн перемещения людей (10) с учетом возможного допустимого отклонения.
[29] На Фиг. 6 представлен процесс реализации заявленного способа (300 определения девиантного поведения. По полученной информации с видеокамер (301) осуществляется процесс определения априорных маршрутов по траектории перемещения человека (10) в области (100) с помощью использования как минимум кластеризации данных. Изображение перемещения по меньшей мере одного человека (10) в области (100) установки видеокамер (110-130) содержит видеопоток, фиксирующий изображение траектории перемещения человека, причем траектория перемещения характеризуется пространственными координатами (x, y) и временем t перемещения человека в упомянутых координатах.
[30] Получаемые изображения с видеокамер (110 – 130) при анализе траекторий перемещения могут также преобразовываться в двумерный вид с помощью перспективной трансформации, которое выполняется с помощью матрицы трансформации (матрица перехода).
[31] Далее на этапе (302) выполняется анализ траектории перемещения человека (10) в области наблюдения (100). Кластеризация направленна на выделение априорных маршрутов перемещения человека (10) – кластеров, которые бы говорили, что структура передвижения на данном участке принадлежит тому или иному кластеру, т.е. области нормального паттерна перемещения. Кластеризация осуществляется с помощью описанного выше процесса обработки пространственных координат перемещения для каждой выявленной траектории с помощью деления траектории перемещения на K участков и определения для каждого участка средних значений пространственных координат (x, y) и времени прохождения t данных участков.
[32] Пример результата кластеризации данных с целью выявления априорных маршрутов представлен на Фиг. 3 – Фиг. 5. Далее выполняется декомпозиция алгоритма определения отклонение нового маршрута от среднего нормализованного маршрута (303).
[33] Декомпозиция алгоритма определения отклонение нового маршрута от среднего маршрута, следующая. По описанному выше подходу находится матрица передвижения в области (100) человека (10).
[
Figure 00000010
Далее выполняется декомпозиция полученных данных по векторам
Figure 00000011
:
Figure 00000012
,
Figure 00000013
,
Figure 00000014
[34] Как показано на Фиг. 4 в области наблюдения (100) содержится шесть априорных маршрутов (111 - 116) и человек (10) начал движение по маршруту (113) с учетом пересечений зон расположения дверей (115, 116). Соответственно в заданный момент времени, человек (10) ближе всего находится к априорному маршруту (113) и как результат, определение того, является ли его поведение девиантным будет производится для этого априорного маршрута. Если человек не совершил девиантного поведения, то при анализе усредненной траектории его перемещения на этапе (304), траектория его движения будет схожей с траекторией нормализованного паттерна априорного маршрута (113).
[35] На Фиг. 5 траектория перемещения человека (10) не принадлежит ни одному априорному маршруту в области (100), поэтому рассчитывается расстояние от него до ближайшего элемента какого-либо кластера. В данном случае человек (10) ближе всего к элементам кластеров маршрутов (112, 113). Соответственно, определение того, является ли его поведение девиантным или нет будет производится на основе статистик (среднего и стандартного отклонения) именно этого кластера.
[36] Суждение о наличии девиантного поведения (этап 305) определяют с помощью сравнения усредненной траектории перемещения человека (10) с нормальным паттерном перемещения для данной области наблюдения (100). Для этого осуществляется проверки гипотезы о принадлежности нового наблюдения перемещения человека (10) распределениям нормального паттерна поведения, для чего выполняется поэлементная проверка, при которой анализируется для всех ли k выполняется нижеприведенное неравенство:
Figure 00000015
Если хотя бы для одного элемента не выполнено данное неравенство – то поведение считается девиантным.
[37] Таким образом, описанный алгоритм позволяет более точно осуществить анализ девиантного поведения, за счет кластеризации траектории перемещения и сравнения с нормализованными паттернами перемещения людей (10) для заданной области наблюдения (100) с помощью получения изображений с группы камер (110-130).
[38] Заявленное изобретение в части способа его осуществления выполняется на вычислительном компьютерном устройстве (400), схема которого приведена в Фиг. 7. В общем случае устройство (400) содержит такие компоненты, как: один или более процессоров (401), по меньшей мере одну оперативную память (402), средство постоянного хранения данных (403), интерфейсы ввода/вывода (404), средство В/В (405), средства сетевого взаимодействия (406).
[39] Процессор (401) устройства выполняет основные вычислительные операции, необходимые для функционирования устройства (400) или функционала одного или более его компонентов. Процессор (401) исполняет необходимые машиночитаемые команды, содержащиеся в оперативной памяти (402).
[40] Память (402), как правило, выполнена в виде ОЗУ и содержит необходимую программную логику, обеспечивающую требуемый функционал. Средство хранения данных (403) может выполняться в виде HDD, SSD дисков, рейд массива, сетевого хранилища, флэш-памяти, оптических накопителей информации (CD, DVD, MD, Blue-Ray дисков) и т.п. Средство (403) позволяет выполнять долгосрочное хранение различного вида информации, например, истории обработки запросов (логов), идентификаторов пользователей, данные камер, изображения и т.п.
[41] Интерфейсы (404) представляют собой стандартные средства для подключения и работы с камерами (110, 120, 130) или иными вычислительноыми устройствами, например, USB, RS232, RJ45, LPT, COM, HDMI, PS/2, Lightning, FireWire и т.п. Выбор интерфейсов (404) зависит от конкретного исполнения устройства (400), которое может представлять собой персональный компьютер, мейнфрейм, серверный кластер, тонкий клиент, смартфон, ноутбук и т.п.
[42] В качестве средств В/В данных (405) может использоваться: клавиатура, джойстик, дисплей (сенсорный дисплей), проектор, тачпад, манипулятор мышь, трекбол, световое перо, динамики, микрофон и т.п.
[43] Средства сетевого взаимодействия (406) выбираются из устройства, обеспечивающий сетевой прием и передачу данных, например, Ethernet карту, WLAN/Wi-Fi модуль, Bluetooth модуль, BLE модуль, NFC модуль, IrDa, RFID модуль, GSM модем и т.п. С помощью средства (406) обеспечивается организация обмена данными по проводному или беспроводному каналу передачи данных, например, WAN, PAN, ЛВС (LAN), Интранет, Интернет, WLAN, WMAN или GSM.
[44] Компоненты устройства (400), как правило, сопряжены посредством общей шины передачи данных.
[45] В качестве камер (110, 120, 130) могут применяться различные типы камер, например, IP видеокамеры, PTZ-камеры и т.п. Камеры (110, 120, 130) могут осуществлять передачу данных на устройство (400) с помощью проводного и/или беспроводного канала передачи данных, например, посредством TCP/IP протокола, Ethernet подключения и т.п.
[46] В случае выявления девиантного поведения выявлении девиантного поведения человека (10) дополнительно может осуществляется процесс распознавания его личности по изображению лица и/или внешним приметам. Распознавание может происходить с помощью сравнения полученных изображений с информацией, хранимой в базе данных устройства (400) или удаленного сервера, например, облачного сервера. Также, может осуществляться формирование тревожного сигнала, передаваемого на пульт охраны.
[47] При фиксации девиантного поведения человека (10) может применяться алгоритм трекинга его перемещения, при выполнении которого осуществляется отслеживание перемещение человека (10) с помощью фиксации его изображения на разных видеокамерах. При этом может формироваться карта перемещения человека (10) с помощью наложения отслеживаемой с помощью камер траектории его перемещения на цифровую карту или плана области наблюдения (10).
[48] В настоящих материалах заявки было представлено предпочтительное раскрытие осуществление заявленного технического решения, которое не должно использоваться как ограничивающее иные, частные воплощения его реализации, которые не выходят за рамки испрашиваемого объема правовой охраны и являются очевидными для специалистов в соответствующей области техники.

Claims (13)

1. Компьютерно-реализуемый способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер, выполняемый с помощью процессора и содержащий этапы, на которых:
- формируют в области размещения группы видеокамер набор траекторий, каждая из которых характеризует нормальный паттерн перемещения людей в области видимости камер, причем паттерны строятся на основании выборки из усредненных значений траекторий перемещения людей в заданной области;
- получают изображение перемещения по меньшей мере одного человека в области установки видеокамер, содержащее изображение траектории перемещения человека, причем траектория перемещения характеризуется пространственными координатами (x, y) и временем t перемещения человека в упомянутых координатах;
- осуществляют кластеризацию пространственных координат перемещения для каждой выявленной траектории с помощью деления траектории перемещения на K участков и определения для каждого участка средних значений пространственных координат (x, y) и времени прохождения t участков;
- определяют усредненную траекторию перемещения человека на основании кластеризации координат и сравнивают ее с нормальным паттерном перемещения для данной области наблюдения;
- определяют девиантное поведение человека при показателе отклонения усредненной траектории его перемещения от нормального паттерна выше заданного порогового значения.
2. Способ по п.1, характеризующийся тем, что формирование нормального паттерна осуществляется на основании кластеризации траекторий перемещения людей.
3. Способ по п.2, характеризующийся тем, что для каждого кластера области формируется усредненная траектория перемещения.
4. Способ по п.1, характеризующийся тем, что изображения с видеокамер при анализе траекторий перемещения преобразовываются в двумерный вид с помощью перспективной трансформации.
5. Способ по п.4, характеризующийся тем, что преобразование выполняется по матрице трансформации.
6. Способ по п.1, характеризующийся тем, что при выявлении девиантного поведения осуществляется распознавание личности человека по изображению лица и/или внешним приметам.
7. Способ по п.6, характеризующийся тем, что выполняется отслеживание перемещение человека с помощью фиксации его изображения на разных видеокамерах.
8. Способ по п.6, характеризующийся тем, что траектория перемещения человека накладывается на цифровой план помещения или области размещения видеокамер.
RU2019110037A 2019-04-04 2019-04-04 Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер RU2694139C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019110037A RU2694139C1 (ru) 2019-04-04 2019-04-04 Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019110037A RU2694139C1 (ru) 2019-04-04 2019-04-04 Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер

Publications (1)

Publication Number Publication Date
RU2694139C1 true RU2694139C1 (ru) 2019-07-09

Family

ID=67252336

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019110037A RU2694139C1 (ru) 2019-04-04 2019-04-04 Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер

Country Status (1)

Country Link
RU (1) RU2694139C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111966767A (zh) * 2020-06-28 2020-11-20 北京百度网讯科技有限公司 轨迹热力图生成方法、装置、电子设备和存储介质
RU2779971C1 (ru) * 2022-05-27 2022-09-16 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" Способ автоматического определения в поле видеонаблюдения статистических характеристик рассеивания траекторий характерных точек транспортных средств

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719216B (zh) * 2009-12-21 2012-01-04 西安电子科技大学 基于模板匹配的运动人体异常行为识别方法
US8169481B2 (en) * 2008-05-05 2012-05-01 Panasonic Corporation System architecture and process for assessing multi-perspective multi-context abnormal behavior
RU2475853C2 (ru) * 2007-02-08 2013-02-20 Бихейвиэрл Рикогнишн Системз, Инк. Система распознавания поведения
US8866910B1 (en) * 2008-09-18 2014-10-21 Grandeye, Ltd. Unusual event detection in wide-angle video (based on moving object trajectories)
RU2017131075A (ru) * 2017-09-04 2019-03-04 ООО "Ай Ти Ви групп" Системы и способы обнаружения тревожных траекторий движения объектов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475853C2 (ru) * 2007-02-08 2013-02-20 Бихейвиэрл Рикогнишн Системз, Инк. Система распознавания поведения
US8169481B2 (en) * 2008-05-05 2012-05-01 Panasonic Corporation System architecture and process for assessing multi-perspective multi-context abnormal behavior
US8866910B1 (en) * 2008-09-18 2014-10-21 Grandeye, Ltd. Unusual event detection in wide-angle video (based on moving object trajectories)
CN101719216B (zh) * 2009-12-21 2012-01-04 西安电子科技大学 基于模板匹配的运动人体异常行为识别方法
RU2017131075A (ru) * 2017-09-04 2019-03-04 ООО "Ай Ти Ви групп" Системы и способы обнаружения тревожных траекторий движения объектов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111966767A (zh) * 2020-06-28 2020-11-20 北京百度网讯科技有限公司 轨迹热力图生成方法、装置、电子设备和存储介质
CN111966767B (zh) * 2020-06-28 2023-07-28 北京百度网讯科技有限公司 轨迹热力图生成方法、装置、电子设备和存储介质
RU2783676C1 (ru) * 2021-12-13 2022-11-15 Общество с ограниченной ответственностью фирма "Интерсвязь" Способ автоматизированного определения локального позиционирования движущихся объектов
RU2779971C1 (ru) * 2022-05-27 2022-09-16 Федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" Способ автоматического определения в поле видеонаблюдения статистических характеристик рассеивания траекторий характерных точек транспортных средств

Similar Documents

Publication Publication Date Title
US10074008B2 (en) Facial recognition with biometric pre-filters
WO2018116488A1 (ja) 解析サーバ、監視システム、監視方法及びプログラム
CN107016322B (zh) 一种尾随人员分析的方法及装置
CN110428449B (zh) 目标检测跟踪方法、装置、设备及存储介质
JPWO2007026744A1 (ja) 広域分散カメラ間の連結関係推定法および連結関係推定プログラム
CN106570490B (zh) 一种基于快速聚类的行人实时跟踪方法
EA018349B1 (ru) Способ видеоанализа
CN106295598A (zh) 一种跨摄像头目标跟踪方法及装置
JP2012059224A (ja) 移動物体追跡システムおよび移動物体追跡方法
RU2713876C1 (ru) Способ и система выявления тревожных событий при взаимодействии с устройством самообслуживания
CN112232178A (zh) 基于人像聚档的区域落脚点判定方法、系统、设备及介质
EP2618288A1 (en) Monitoring system and method for video episode viewing and mining
CN109902681B (zh) 用户群体关系确定方法、装置、设备及存储介质
WO2022156234A1 (zh) 一种目标重识别方法、装置及计算机可读存储介质
US20230060211A1 (en) System and Method for Tracking Moving Objects by Video Data
RU2694139C1 (ru) Способ определения девиантного поведения человека в режиме одновременной работы группы видеокамер
CN111739056A (zh) 一种轨迹追踪系统
Rezaee et al. Deep-Transfer-learning-based abnormal behavior recognition using internet of drones for crowded scenes
CN112200956B (zh) 一种门禁控制方法、系统、电子设备及存储介质
CN109977796A (zh) 尾随通行检测方法及装置
CN115272967A (zh) 一种跨摄像机行人实时跟踪识别方法、装置及介质
RU2694140C1 (ru) Способ идентификации человека в режиме одновременной работы группы видеокамер
CN114038040A (zh) 机房巡检监督方法、装置、设备
CN110956057A (zh) 一种人群态势分析方法、装置及电子设备
CN113095110B (zh) 人脸数据动态入库的方法、装置、介质及电子设备

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210405

NF4A Reinstatement of patent

Effective date: 20220301