CN113830729A - 一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法 - Google Patents

一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法 Download PDF

Info

Publication number
CN113830729A
CN113830729A CN202111254981.9A CN202111254981A CN113830729A CN 113830729 A CN113830729 A CN 113830729A CN 202111254981 A CN202111254981 A CN 202111254981A CN 113830729 A CN113830729 A CN 113830729A
Authority
CN
China
Prior art keywords
mgh
powder
hydrogen storage
doped
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111254981.9A
Other languages
English (en)
Inventor
房达瑞
陈玉安
苏建章
潘复生
周世明
杨修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Guoyan Technology Research Center Co ltd
Original Assignee
Guangdong Guoyan Technology Research Center Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Guoyan Technology Research Center Co ltd filed Critical Guangdong Guoyan Technology Research Center Co ltd
Priority to CN202111254981.9A priority Critical patent/CN113830729A/zh
Publication of CN113830729A publication Critical patent/CN113830729A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明涉及一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法,属于储氢材料领域。该储氢材料是由掺杂物纳米Fe粉和MgH2粉末组成,掺杂Fe元素来源于纳米Fe粉,材料中MgH2粉末和纳米Fe粉的原子质量比1:0.15~0.25。制备方法主要是:将MgH2粉末和纳米Fe粉混合均匀后得到混合物,置于球磨罐中,加入不锈钢球作为磨球,在惰性气体气氛下球磨。本发明制得的掺杂Fe元素的MgH2固溶体储氢材料综合利用纳米Fe粉使MgH2造成晶格畸变以及Fe对Mg‑H键的削弱作用,显著改善了材料的释氢性能。采用低能球磨法,成本低,适用于大规模工业化生产,在储能系统以及氢能利用等领域具有广泛的应用前景。

Description

一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法
技术领域
本发明属于储氢材料领域,具体涉及一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法。
背景技术
目前,“碳达峰”和“碳中和”已经成为全世界关注的焦点,而现有能源格局仍以消耗化石燃料为基础,长久以来造成了巨大的环境和经济问题。在全球能源危机的大背景下,发展氢能被认为是一种有效的应对方案。氢能作为一种新的可再生清洁能源,具有储量丰富、无毒环保、能量密度高的特点,一直备受关注。氢能的运输和储存是亟需解决的难题。
当前氢能的储存技术主要有三种:气态储氢、液态储氢和固态材料储氢。气态储氢技术比较成熟,应用较为广泛,但是储氢质量不足容器质量的1%,储氢效率低且运输风险大。液态储氢技术相对于气态储氢来说,储氢量大,能量密度高,但是成本高、耗能大。固态材料储氢技术与前两者相比,具有循环可逆、储氢量大、安全高效等优点,是目前的研究热点。
镁基储氢材料由于其储氢密度高(7.6wt%)、资源丰富、价格低廉等特点,引来了许多研究人员的关注,被广泛认为是最具有发展前景的储氢材料之一。然而其热力学稳定性高和吸、放氢动力学缓慢成为了应用于实际生产生活的主要障碍。目前,国内外研究者通过纳米化、合金化、构建复合体系以及掺杂催化剂等方法,使改善MgH2放氢性能的研究取得了阶段性进展。
掺杂过渡金属元素是改善MgH2放氢性能的一种有效方法。过渡金属元素可以降低MgH2的稳定性,对氢分子解离起到催化作用,加快吸放氢速率。其中Fe元素不仅价格低廉,且可以显著促进MgH2中H-H之间的轨道杂化,促进H的解离,从而有效降低MgH2的放氢活化能。而Fe元素在MgH2中的掺杂比以及制备的工艺参数,对该体系放氢性能的改善起着决定性作用,掺杂量不足会导致改善效果不明显,掺杂量过多又会显著降低总储氢量,且工艺参数的不同会导致组织结构的差异,迄今为止并没有给出一个改善程度较为理想的技术方案。
综上所述,为了解决上述问题,因此迫切需要对掺杂Fe元素的MgH2固溶体储氢材料的制备工艺进行进一步深入研究。
发明内容
有鉴于此,本发明的目的之一在于提供一种掺杂Fe元素的MgH2固溶体储氢材料;目的之二在于提供一种掺杂Fe元素的MgH2固溶体储氢材料的制备方法。
为达到上述目的,本发明提供如下技术方案:
1.一种掺杂Fe元素的MgH2固溶体储氢材料,所述材料由掺杂Fe元素和MgH2粉末组成,所述掺杂Fe元素来源于纳米Fe粉,所述材料中MgH2粉末和纳米Fe粉的原子质量比1:0.15~0.25。
优选的,所述材料的释氢初始温度为156℃。
优选的,所述材料的储氢量为4.3~5.3wt%。
2.上述掺杂Fe元素的MgH2固溶体储氢材料的制备方法,所述方法包括如下步骤:
(1)将MgH2粉末和纳米Fe粉混合均匀后得到混合物,置于球磨罐中,加入不锈钢球作为磨球;
(2)将步骤(1)中球磨罐抽真空后,在惰性气体气氛下进行球磨。
优选的,步骤(1)中,所述磨球与混合物的质量比为20:1~40:1。
优选的,步骤(1)中,所述磨球的直径为10~15mm。
优选的,步骤(1)中,所述MgH2粉末的粒径为15~25μm,纯度为98%。
优选的,步骤(1)中,所述纳米Fe粉的粒径为75~150nm,纯度为99.9%。
优选的,步骤(2)中,所述的惰性气体为氩气。
优选的,步骤(2)中,所述球磨的具体操作为每球磨20min,停歇5min,球磨转速为280~400rpm,球磨时间为12~40h。
本发明的有益效果在于:
1.本发明提供了一种掺杂Fe元素的MgH2固溶体储氢材料,本发明把Fe元素在MgH2中的掺杂比例和制备工艺加以确定,得到了一种放氢性能较好的掺杂Fe元素的MgH2固溶体储氢材料。其综合利用纳米Fe粉使MgH2造成晶格畸变以及Fe对Mg-H键的削弱作用,可以将释氢初始温度降低至156℃,并在230℃下具有较快的释氢速率,30min内可释放4.5wt%的H2,使得MgH2释氢过程的热力学与动力学都有了显著的改善。而且本发明使用Fe元素作为掺杂剂,而非贵金属或者稀土元素,如铂、钯、镍、钇等,大大控制了成本,有益于该储氢材料的工业化生产。
2.本发明提供了一种掺杂Fe元素的MgH2固溶体储氢材料的制备方法,该工艺简单、易操作,采用低能球磨法,利用纳米Fe粉与MgH2在280~400rpm下球磨即可制备,设备成本和能源消耗较低,且在显著降低材料释氢温度、加快释氢速率的同时,仍能保持4.3~5.3wt%H2的储氢量,在储能系统以及氢能利用等领域具有理想的应用前景。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料的TEM图(a)、选区电子衍射(SAED)图(b)和高分辨透射电镜(HRTEM)图(c);
图2为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料的高角环形暗场扫描透射(HAADF)图(a)和其元素分布图(Mapping),其中b为Mg、Fe元素分布图、c为Mg元素分布图和d为Fe元素分布图。
图3为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料随不同球磨时间变化的XRD图:(a)3-21h、(b)24-42h、(c)45-57h;
图4为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料(a)与MgH2球磨态粉末(milled MgH2)(b)的氢气程序升温脱附曲线(TPD)图;
图5为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料(a)与MgH2球磨态粉末(milled MgH2)(b)在230℃下的放氢动力学曲线图;
图6为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料(a)与MgH2球磨态粉末(milled MgH2)(b)的XRD图;
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
实施例1
制备掺杂Fe元素的MgH2固溶体储氢材料,包括如下步骤:
(1)将粒径为25μm、纯度为98%的MgH2和粒径为150nm、纯度为99.9%的纳米Fe粉均匀混合均匀后,置于球磨罐中,加入直径为15mm、质量为100g的不锈钢球作为磨球;
(2)先将步骤(1)中球磨罐抽真空后,通入氩气,以280rpm的转速球磨12h,每球磨20min,停歇5min,即可得到掺杂Fe元素的MgH2固溶体储氢材料(MgH2-25at%Fe,其中MgH2和Fe元素的原子质量比1:0.25),此操作需要在充满氩气的手套箱中进行。
图1为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料的TEM图(a)、选区电子衍射(SAED)图(b)和高分辨透射电镜(HRTEM)图(c)。从图1中可看出掺杂Fe元素后MgH2的(101)晶面间距明显增大,说明形成了含Fe元素的MgH2固溶体。
图2为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料的高角环形暗场扫描透射(HAADF-STEM)图(a)和元素分布图(其中b为元素Mg、Fe的分布、c为Mg元素的分布、d为Fe元素的分布)。从图2中可以更直观地看出Fe原子在MgH2中的固溶现象,说明纳米Fe粉使MgH2造成晶格畸变以及对Mg-H键的削弱作用,使其具有优良的放氢性能。
实施例2
制备掺杂Fe元素的MgH2固溶体储氢材料,包括如下步骤:
(1)将粒径为20μm,纯度为98%的MgH2和粒径为110nm,纯度为99.9%的纳米Fe粉均匀混合均匀后,置于球磨罐中,加入直径为20mm,质量为160g的不锈钢球作为磨球;
(2)先将步骤(1)中球磨罐抽真空后,通入氩气,以340rpm的转速球磨26h,每球磨20min,停歇5min,即可得到掺杂Fe元素的MgH2固溶体储氢材料(MgH2-20at%Fe,其中MgH2和Fe元素的原子质量比1:0.20),此操作需要在充满氩气的手套箱中进行。
实施例3
制备掺杂Fe元素的MgH2固溶体储氢材料,包括如下步骤:
(1)将粒径为15μm,纯度为98%的MgH2和粒径为75nm,纯度为99.9%的纳米Fe粉均匀混合均匀后,置于球磨罐中,加入直径为10mm,质量为90g的不锈钢球作为磨球;
(2)先将步骤(1)中球磨罐抽真空后,通入氩气,以400rpm的转速球磨40h,每球磨20min,停歇5min,即可得到掺杂Fe元素的MgH2固溶体储氢材料(MgH2-15at%Fe,其中MgH2和Fe元素的原子质量比1:0.15),此操作需要在充满氩气的手套箱中进行。
性能测试
为了研究球磨时间对掺杂Fe元素的MgH2固溶体储氢材料的影响,采用实施例1中的制备方法,将球磨时间设置为3、9、12、15、18、21、24、27、30、33、36、39、42、45、48、51、54、57h,制备得到掺杂Fe元素的MgH2固溶体储氢材料,分别对其进行X射线衍射测试,图3为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料随不同球磨时间变化的XRD图:(a)3-21h、(b)24-42h、(c)45-57h,由图3可以看出球磨时间达到12h以上时,MgH2的峰明显向小角度偏移,说明其晶格内形成了Fe原子的固溶;球磨时间超过40h时,开始出现新的Mg2FeH6相,并伴随着MgH2的消失与MgO的产生;随着球磨时间的进一步延长,会导致MgO继续增加;说明当球磨时间超过40h时,MgH2会发生分解,并与Fe结合形成Mg2FeH6相,且原位形成的Mg活性较强,极容易被氧化,产生MgO,从而影响材料的性能。
为了方便比较,采用实施例1中制备得到掺杂Fe元素的MgH2固溶体储氢材料和实施例1中MgH2的球磨态粉末,对上述两种材料进行氢气程序升温脱附(TPD)、放氢动力学、X射线衍射(XRD)测试对比。
图4为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料(a)与MgH2球磨态粉末(milled MgH2)(b)的氢气程序升温脱附曲线图(TPD),由图4可以看出掺杂Fe元素的MgH2固溶体储氢材料的释氢初始温度为156℃,MgH2的球磨态粉末的释氢初始温度为253℃,说明掺杂Fe元素的MgH2固溶体储氢材料较MgH2的球磨态粉末可以使初始放氢温度下降97℃。
图5为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料与MgH2(a)球磨态粉末(milled MgH2)(b)在230℃下的放氢动力学曲线图,由图5可以看出在230℃下,掺杂Fe元素的MgH2固溶体储氢材料具有较快的放氢速率,可在30min内释放4.5wt%的H2,而不掺杂Fe元素的MgH2在230℃下,无法释放氢气,说明在230℃下掺杂Fe元素的MgH2固溶体储氢材料比MgH2球磨态粉末具有较快的放氢速率。
图6为实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料(a)与MgH2球磨态粉末(b)的XRD图,由图6可以看出出现了Fe的衍射峰的同时,MgH2的衍射峰向小角度偏移,且衍射强度降低,说明Fe原子固溶入MgH2的晶格中,使得MgH2体积膨胀,并且颗粒尺寸得到了细化。
对实施例2和3中制备的掺杂Fe元素的MgH2固溶体储氢材料同样进行如同实施例1中的性能测试,得到与实施例1中制备的掺杂Fe元素的MgH2固溶体储氢材料显示的性能。
综上所述,1.本发明提供了一种掺杂Fe元素的MgH2固溶体储氢材料,本发明把Fe元素在MgH2中的掺杂比例和制备工艺加以确定,得到了一种放氢性能较好的掺杂Fe元素的Mg H2固溶体储氢材料。其综合利用纳米Fe粉使MgH2造成晶格畸变以及Fe对Mg-H键的削弱作用,可以将释氢初始温度降低至156℃,并在230℃下具有较快的释氢速率,30min内可释放4.5wt%的H2,使得MgH2释氢过程的热力学与动力学都有了显著的改善。而且本发明使用Fe元素作为掺杂剂,而非贵金属或者稀土元素,如铂、钯、镍、钇等,大大控制了成本,有益于该储氢材料的工业化生产。
2.本发明提供了一种掺杂Fe元素的MgH2固溶体储氢材料的制备方法,该工艺简单、易操作,采用低能球磨法,利用纳米Fe粉与MgH2在280~400rpm下球磨即可制备,设备成本和能源消耗较低,且在显著降低材料释氢温度、加快释氢速率的同时,仍能保持4.3~5.3wt%H2的储氢量,在储能系统以及氢能利用等领域具有理想的应用前景。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种掺杂Fe元素的MgH2固溶体储氢材料,其特征在于,所述材料由掺杂Fe元素和MgH2粉末组成,所述掺杂Fe元素来源于纳米Fe粉,所述材料中MgH2粉末和纳米Fe粉的原子质量比1:0.15~0.25。
2.根据权利要求1所述的掺杂Fe元素的MgH2固溶体储氢材料,其特征在于,所述材料的释氢初始温度为156℃。
3.根据权利要求1所述的掺杂Fe元素的MgH2固溶体储氢材料,其特征在于,所述材料的储氢量为4.3~5.3wt%。
4.权利要求1~3任一项所述的掺杂Fe元素的MgH2固溶体储氢材料的制备方法,其特征在于,所述方法包括如下步骤:
(1)将MgH2粉末和纳米Fe粉混合均匀后得到混合物,置于球磨罐中,加入不锈钢球作为磨球;
(2)将步骤(1)中球磨罐抽真空后,在惰性气体气氛下进行球磨。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述磨球与混合物的质量比为20:1~40:1。
6.根据权利要求5所述的制备方法,其特征在于,所述磨球的直径为10~15mm。
7.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述MgH2粉末的粒径为15~25μm,纯度为98%。
8.根据权利要求4所述的制备方法,其特征在于,步骤(1)中,所述纳米Fe粉的粒径为75~150nm,纯度为99.9%。
9.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述惰性气体为氩气。
10.根据权利要求4所述的制备方法,其特征在于,步骤(2)中,所述球磨的具体操作为每球磨20min,停歇5min,球磨转速为280~400rpm,球磨时间为12~40h。
CN202111254981.9A 2021-10-27 2021-10-27 一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法 Pending CN113830729A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111254981.9A CN113830729A (zh) 2021-10-27 2021-10-27 一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111254981.9A CN113830729A (zh) 2021-10-27 2021-10-27 一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113830729A true CN113830729A (zh) 2021-12-24

Family

ID=78966328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111254981.9A Pending CN113830729A (zh) 2021-10-27 2021-10-27 一种掺杂Fe元素的MgH2固溶体储氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113830729A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368143A (en) * 1978-11-14 1983-01-11 Battelle Memorial Institute Composition for the storage of hydrogen and method of making the composition
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368143A (en) * 1978-11-14 1983-01-11 Battelle Memorial Institute Composition for the storage of hydrogen and method of making the composition
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Lin et al. Recent advances in metastable alloys for hydrogen storage: a review
Luo et al. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification
Liu et al. Issues and opportunities facing hydrolytic hydrogen production materials
Fu et al. Effect of in-situ formed Mg2Ni/Mg2NiH4 compounds on hydrogen storage performance of MgH2
Ma et al. Electron microscope investigation on hydrogen storage materials: A review
Xu et al. Research progress of hydrogen energy and metal hydrogen storage materials
Song et al. Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under H2 atmosphere
Nyahuma et al. Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst
Huang et al. Improved dehydrogenation performance of NaAlH4 using NiFe2O4 nanoparticles
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
Ali et al. Influence of K2NbF7 catalyst on the desorption behavior of LiAlH4
Wang et al. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2
Xie et al. Catalytic effects of decorating AlV3 nanocatalyst on hydrogen storage performance of Mg@ Mg17Al12 nanocomposite: experimental and theoretical study
CN109175349B (zh) 一种高性能双稀土固溶体基贮氢材料及其制备方法
Yu et al. Remarkable kinetics of novel Ni@ CeO2–MgH2 hydrogen storage composite
Guemou et al. Graphene-anchored Ni6MnO8 nanoparticles with steady catalytic action to accelerate the hydrogen storage kinetics of MgH2
Yan et al. Enhanced hydrogen storage properties of magnesium hydride by multifunctional carbon-based materials: a review
Zhou et al. Hydrogen storage properties of Mg-based alloys modified with metal-organic frameworks and carbon-based porous materials: A review and summary
Yin et al. Ni-based catalyst assisted by MnO to boost the hydrogen storage performance of magnesium hydride
Chen et al. Catalytic effect of double transition metal sulfide NiCo2S4 on hydrogen storage properties of MgH2
Zhang et al. Effect of bimetallic nitride NiCoN on the hydrogen absorption and desorption properties of MgH2 and the catalytic effect of in situ formed Mg2Ni and Mg2Co phases
Liu et al. Review on improved hydrogen storage properties of MgH2 by adding new catalyst
CN113148956A (zh) 一种石墨烯负载的纳米片状过渡金属氢化物的制备方法和储氢材料
Hong et al. Improvement in hydrogen storage performance of MgH 2 by vanadium doped with ZIF-8 derived a single-atom catalyst V–N–C
ZHANG et al. Catalytic effect of two-dimensional Mo2TiC2 MXene for tailoring hydrogen storage performance of MgH2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211224