CN113817738A - 银杏长链非编码rna及其在银杏内酯生物合成中的应用 - Google Patents

银杏长链非编码rna及其在银杏内酯生物合成中的应用 Download PDF

Info

Publication number
CN113817738A
CN113817738A CN202111220814.2A CN202111220814A CN113817738A CN 113817738 A CN113817738 A CN 113817738A CN 202111220814 A CN202111220814 A CN 202111220814A CN 113817738 A CN113817738 A CN 113817738A
Authority
CN
China
Prior art keywords
long
biosynthesis
bilobalide
ginkgo
coding rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111220814.2A
Other languages
English (en)
Other versions
CN113817738B (zh
Inventor
刘晓霞
覃佐东
罗小芳
骆鹰
何福林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Engineering
Original Assignee
Hunan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Engineering filed Critical Hunan University of Science and Engineering
Priority to CN202111220814.2A priority Critical patent/CN113817738B/zh
Publication of CN113817738A publication Critical patent/CN113817738A/zh
Application granted granted Critical
Publication of CN113817738B publication Critical patent/CN113817738B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于植物分子生物学技术领域,具体是涉及银杏长链非编码RNA及其在银杏内酯生物合成中的应用,所述银杏长链非编码RNA的序列为SEQ ID NO.1所示,本申请的银杏长链非编码RNA可以有效的提高银杏内酯的含量。

Description

银杏长链非编码RNA及其在银杏内酯生物合成中的应用
技术领域
本发明属于植物分子生物学技术领域,具体是涉及银杏长链非编码RNA及其在银杏内酯生物合成中的应用。
背景技术
银杏是最古老的孑遗植物之一,具有很高的药用和经济价值,其中萜烯三内酯是银杏提取物中特有的成分,包括二萜内酯银杏内酯和半萜内酯白果内酯。银杏内酯是银杏中一类重要的活性物质,主要活性成分可分为银杏内酯A、B、C、M和J,在治疗心血管和神经性疾病方面具有显著成效,已被广泛应用临床。由于银杏内酯化学结构的特殊性和复杂性使得人工合成工艺复杂繁琐、工业化成本高和产物不具备生物活性,目前银杏仍是提取银杏内酯类化合物的主要来源。
银杏内酯的生物合成主要包括上游途径和下游途径。上游途径为萜类合成的两种C5通用前体异戊烯基焦磷(IPP)酸和二甲基烯丙基焦磷酸(DMAPP)的合成,主要来源于胞质内的甲瓦龙酸(MVA)途径和质体内甲基赤藓糖醇4-磷酸(MEP)途径。下游途径为IPP/DMAPP经酶催化缩合生成银杏内酯的过程。虽然目前银杏内酯生物合成大致途径基本清楚,但银杏内酯合成的下游途径尚未完全阐明。
因此,探究银杏内酯生物合成的调控机理,对提高银杏内脂的产量和品质至关重要。
长链非编码RNA(lncRNA)是一类长度超过200nt且不具有蛋白质编码能力的转录本,可来源于基因编码区、非编码区、外显子、内含子、正义链或反义链。近年来大量的研究,lncRNA在植物的生长发育和抗逆响应中具有重要的调控作用。LncRNA可通过多种作用方式调控蛋白编码基因在细胞核和细胞质中的表达,除顺式调控邻近基因和反式调控远距离基因外,还可作为“海绵”竞争性吸附miRNA影响下游靶基因的表达。然而,目前在银杏这种重要的经济树种上,有关lncRNA在银杏内酯生物合成调控方面的应用尚处于空白阶段。
发明内容
本发明要解决的技术问题是提供一种银杏长链非编码RNA及其在银杏内酯生物合成中的应用,本申请的银杏长链非编码RNA可以有效的提高银杏内酯的含量。
本发明的内容包括一种银杏长链非编码RNA,所述银杏长链非编码RNA的序列为SEQ ID NO.1所示。
本发明提供一种银杏长链非编码RNA在提高银杏内酯生物合成中的应用。
本发明的有益效果是,本发明通过高通量测序技术和lncRNA-miRNA-mRNA联合分析,筛选到与银杏内酯合成相关的lncRNA,命名为LNC_61370,即SEQ ID NO.1,并初步确定LNC_61370-novel miR_68-GPPS(geranylgeranyl diphosphate synthase)(Gb_21550)基因调控网络。进一步通过实验验证LNC_61370、novel miR_68和GPPS基因在银杏叶和根样本间的显著性差异表达,LNC_61370能够通过竞争性吸附novel miR_68上调GPPS基因的表达调控银杏内酯的代谢,对银杏内脂的积累和银杏资源的有效开发具有重要的应用价值。本发明的银杏长链非编码RNA可以应用在银杏细胞的内酯物质的生物合成上。
附图说明
图1为不同基因在不同部分的相对表达图。
具体实施方式
实施例1
1、样品的采集
以5年生健康雄性银杏树为供试材料,分别采集叶和根(作为对照)样品,立即放入液氮中,-80℃保存备用。
2、RNA的提取
采用Trizol试剂盒(Invitrogen,Carlsbad,CA,USA)从银杏叶和根中分离和纯化RNA。分别使用NanoDrop ND-1000(NanoDrop,Wilmington,DE,USA)和Agilent 2100检测RNA的纯度和完整性。
3、RNA文库构建和测序
经Ribo-ZeroTMrRNA Removal Kit(Illumina,San Diego,USA)去除rRNA后,在高温下使用二价阳离子将剩余的RNA片段化成小块。切割的RNA片段逆转录成cDNA,然后将其用大肠杆菌DNA聚合酶I、RNase H和dUTP合成带有U标记的第二链DNA。然后将A碱基添加到每条链的平末端,准备将它们连接到索引接头。每个接头都包含一个T碱基突出端,用于将接头连接到带A尾的片段化DNA。将单或双索引接头连接到片段上,并使用AMPureXP珠子进行大小选择。将带有U标记的第二链DNA经不耐热UDG酶处理后,连接产物按以下条件进行PCR扩增:95℃初始变性3min;98℃变性15s,60℃退火15s,72℃延伸30,循环8次;72℃延伸5min。最终将构建的特异性的cDNA文库在Illumina HiSeq 4000平台进行高通量双端测序。
4、lncRNA的鉴定及差异表达分析
测序后,将获得的高质量reads使用Bowtie2和Hisat2与银杏基因组进行比对。接下来,使用StringTie和Ballgown进行转录组装并估计所有转录本的表达水平。根据lncRNAs的特点,过滤掉与已知mRNAs重叠且短于200bp的转录本,利用CPC和CNCI预测具有编码潜力的转录本,剔除CPC评分<-1和CNCI评分<0后的转录本即为lncRNA。通过使用StringTie计算FPKM(每千个碱基的转录每百万映射读取的fragments)分析鉴定到lncRNA的表达水平。运用Ballgown R包,基于log2FC(倍数变化)>1或log2FC<-1且具有统计显着性(p值<0.05)的标准筛选差异表达lncRNA。
5、LncRNA、miRNA和mRNA联合分析筛选银杏内酯生物合成相关的关键lncRNA-miRNA-mRNA调控网络
结合银杏叶和根的miRNA和mRNA的测序数据,利用Targetscan、miRanda和Mireap软件预测miRNA与潜在lncRNA和靶mRNA之间的靶向作用,使用Perl或Python等脚本语言构建三种RNA之间的关系,通过对靶mRNA进行GO和KEGG富集分析筛选到LNC_61370作为novelmiR_68内源性竞争,吸附novel miR_68进而调控GPPS基因的表达,在银杏内酯生物合成中发挥重要的作用。novel miR_68的序列为:SEQ ID NO.2所示。
6、LNC_61370-novel miR_68-GPPS调控网络在银杏内酯生物合成中的应用
6.1银杏内酯的提取和差异分析
样品的提取和预处理:分别称取100mg的银杏叶和根样品用液氮研磨至粉末状;将上述分别转移至1.5ml EP管,加入500μl 50%甲醇/水溶液,超声混匀,加入500μl乙腈,混匀;-20℃冰箱静止2h,20000g离心10min;用移液器取出上清液,冷冻抽干机抽干;100μl乙腈复溶,每个样品等量取出10ul稀释液混合成QC样品;-80℃冰箱保存,等待LC-MS上机分析。
LC:采用超性能高效液相色谱(UPLC)系统(SCIEX,UK)。ACQUITY UPLC T3(100mm*2.1mm,1.8μm,英国沃特斯)用于反向相分离。流动相:溶剂A(水,0.1%甲酸)和溶剂B(乙腈,0.1%甲酸)。梯度洗脱条件:0-0.5min,5%B,0.5-7min,5%-100%B,7-8min,100%B;8-8.1min,100%-5%B;8.1-10min,5%B。流速:0.4mL/min;柱温:35℃,进样量:4μL。
MS:采用TripleTOF5600plus(SCIEX,UK)高分辨率串联质谱仪。Q-TOF在正离子和负离子模式下运行。窗帘气体设定为30PSI,离子源气体1设定为60PSI,离子源气体2设定为60PSI,接口加热器温度为650℃。对于负离子模式,离子电压浮动分别设置为-4500V。质谱数据是在IDA模式下获得的。TOF质量范围为60至1200Da。调查扫描以150ms进行,如果超过每秒100次计数的阈值(计数/s),并且具有1+充电状态,则会收集多达12次产品离子扫描。通过监测带有四极/通道检测的40GHz多通道TDC探测器,每次扫描的总周期时间被固定为0.56s。4个时间箱,每次扫描的脉冲频率值为11kHz。动态排除设置为4s。在采集过程中,每20个样本校准质量精度。此外,为了评估LC-MS在整个收购过程中的稳定性,每10个样品后就获得一个质量控制样品(所有样品池)。
通过XCMS软件对保留时间(RT)、分子量数据(m/z)数据和碎裂模式数据进行标准化后,使用样品的精确m/z匹配在线KEGG和HMDB数据库以识别代谢物。根据p值<0.05和|Log2FC|≥1筛选出显著性变化的代谢物。
代谢物的分析结果如表1所示,与叶相比,银杏根中的银杏内酯含量呈显著性差异。
表1银杏叶和根中银杏内酯含量的比较
Figure BDA0003312517030000041
6.2qRT-PCR检测LNC_61370、novel miR_68和GPPS基因的表达
(1)银杏总RNA的提取和质量检测参照上述方案进行。
(2)主要试剂和仪器
TaqDNA酶、随机引物、dNTPs、RNA酶抑制剂、反转录酶、5×RT-Buffer、RNase-freeH2O、SYBR染料、正向/反向引物、离心机(Thermo)、核酸浓度检测仪(Themo SCIENTIFIC,NanoDrop2000)、PCR仪(BIO-RAD,S1000 Thermal Cycler)、低温冰箱(中科美菱)、超净工作台(AIRTECH,苏州安泰)、7500定量仪(Applied Biosystems)。
(3)引物的设计
引物设计根据转录组测序所得的序列,采用Primer 5.0软件设计。
Figure BDA0003312517030000042
Gb_21550的序列为:SEQ ID NO.3所示。
(4)逆转录
反应体系:
Figure BDA0003312517030000043
反应条件:42℃,1h;70℃,15min;8℃,forever。
(4)SYBR荧光定量检测目的基因
反应体系:
Figure BDA0003312517030000051
反应条件:
Figure BDA0003312517030000052
每个样品3次重复,通过GAPDH表达水平对每个基因的相对表达量进行归一化处理,FC采用2-ΔΔCT方法进行分析。
如图1所示novel miR_68与LNC_61370和GPPS基因表现相反的表达趋势,且与银杏内酯A、B、C和J的相对含量呈显著性负相关,表明LNC_61370-novel miR_68-GPPS调控网络能调节银杏中银杏内酯的代谢。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本公开的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请中一个或多个实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。
本申请中一个或多个实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本申请中一个或多个实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本公开的保护范围之内。
<110> 湖南科技学院
<120> 银杏长链非编码RNA及其在银杏内酯生物合成中的应用
<160>10
<210>1
<211>783
<212>RNA
<213>银杏(Ginkgo biloba L.)
<400>1
atttaagaag tggataccat cagtttagaa gatgtggaaa aagacaaccc ttaccaaaag 60
ataagaacat tataattgat tggtattact tttggactaa caattgctcc tgctacattc 120
ataagatcat tgaacaacat cttaagacct tataggggaa aagttgataa tattatggtt 180
tttagtaaaa ataaggagga gcataagcaa caactgcaaa aagtattgga agtcataaga 240
caagaaaagt tatatacaaa aatatccaaa aatgagtgtt gtaaagaaga aattggatat 300
acagttcaaa taagggaatt tcagtgaacc ctaagaaaat aaaagcagtc agagaatgga 360
agaaatcaat aagtttacat aaggtaagaa acactattag aatggatagt tgttttataa 420
aatgtttatg ttggatttct ccaaaataac aacaccatta aatgagttat tgaagaaatc 480
aaagagtttc aaacccaagt taaatagtct acaaggaaaa gaggacataa tgagagatgc 540
tttgtttggc ttttaacatt tcagtaatac aaggttattt tccaacaaga gatatagaaa 600
gcataagagc aagataaatg gtgccaagaa acaagagaag cattagaaga aagtgagtaa 660
gtgactaaca tatcttataa tgatggcata atatggtata gagataaagt cattgtttta 720
gatattgcag aactttatta caacatcctc tatcagattg atgatagtcc cttttgggga 780
aac 783
<210>2
<211>22
<212>RNA
<213>银杏(Ginkgo biloba L.)
<400>2
aatacagttt tgctttacca ca 22
<210>3
<211>1272
<212>RNA
<213>银杏(Ginkgo biloba L.)
<400>3
atggcttgcg gtgctatttc cattgcagtt gggagtaacc aaagcttgca tgatagtgtc 60
cagtcagaga atattcgttc gcaacattgc aaaacttcga agagtttttc tctagttgcg 120
tcgactagtc gtttcaatgg agttccaata actttgttgg gggcttcgga tggccaatta 180
caacattata tgggtttggg aggcaatttg attagtgggt tcttgccaac agcaacacgg 240
tcagctatat catcatgtag atcctcaacg gctacatttc atgcccaatt gaccgtttgt 300
catgcccaat tgaccgttac cgacgatgat gaaaatcaga tgaagaagat agattttgat 360
ttgggaaagt atatgcagtc gaaagcagac gcagtgaatg atgagctaaa gaaggctgtt 420
tcggttggtt atcctaagaa actggaggaa gcaatgaggt tttctcttct ggcaggaggg 480
aaacgtattc atccaactct atgtattgca gcgtgtgaga ttgtaggagg gagtcaatat 540
ctggccatgc ccacagcctg tgcgctggaa atgctgcaca caatgtcttt aacacatgat 600
tatttccgca gaggaaaacc agcaaaccac atagtgtttg gtgaaagcag ggctgttttt 660
gcaggcgatg cgctcctggc ccttgcattt cagcatgttg caaagtgtac atcaaaatca 720
gttcaaaatg ataggattgt gagagtgatt gcagaattgg gtaaatcatt caggtcccaa 780
aggcttctgg gacgagaggc tgttggtatt gccagcgaag gtgatccgtg tgtgtacata 840
aaaacagtgg aatatattca tctccgtaag actgctacgc ttttggagta ttggggtgtg 900
tgtggagcaa taattggagg tgggtcagag gaagagattg agagcataag aaggtatggg 960
cattatgtgg gtctgttgtt gcagggggtt tatgatcaca tactcgatgc aacaaaatcg 1020
tctcagaagt tggggaagac tgcagggaag gagttgattg tggataaagc cacttatccc 1080
aaactaatgg gtatggagaa gtccaaggag tacagtatta atgaattggt ggaaaaggcc 1140
aaggcagaat tggtttcctt ccatccagta aaagccgtgc cattgttggc tgtcgcagat 1200
tacataaatg agaaaattag agccaggtcg aatcatcaat cacttaagaa tactattttc 1260
ctttttttgt aa 1272
<210>4
<211>21
<212>DNA
<213>人工序列
<400>4
tgagagatgc tttgtttggc t 21
<210>5
<211>21
<212>DNA
<213>人工序列
<400>5
tgcttctctt gtttcttggc a 21
<210>6
<211>23
<212>DNA
<213>人工序列
<400>6
cgtgaataca gttttgcttt acc 23
<210>7
<211>19
<212>DNA
<213>人工序列
<400>7
gtcgtatcca gtgcagggt 19
<210>8
<211>50
<212>DNA
<213>人工序列
<400>8
gtcgtatcca gtgcagggtc cgaggtattc gcactggata cgactgtggt 50
<210>9
<211>20
<212>DNA
<213>人工序列
<400>9
tgggtttggg aggcaatttg 20
<210>10
<211>20
<212>DNA
<213>人工序列
<400>10
aatacgtttc cctcctgcca 20

Claims (2)

1.一种银杏长链非编码RNA,其特征是,所述银杏长链非编码RNA的序列为SEQ ID NO.1所示。
2.一种如权利要求1所述的银杏长链非编码RNA在提高银杏内酯生物合成中的应用。
CN202111220814.2A 2021-10-20 2021-10-20 银杏长链非编码rna及其在银杏内酯生物合成中的应用 Active CN113817738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111220814.2A CN113817738B (zh) 2021-10-20 2021-10-20 银杏长链非编码rna及其在银杏内酯生物合成中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111220814.2A CN113817738B (zh) 2021-10-20 2021-10-20 银杏长链非编码rna及其在银杏内酯生物合成中的应用

Publications (2)

Publication Number Publication Date
CN113817738A true CN113817738A (zh) 2021-12-21
CN113817738B CN113817738B (zh) 2023-06-16

Family

ID=78920730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111220814.2A Active CN113817738B (zh) 2021-10-20 2021-10-20 银杏长链非编码rna及其在银杏内酯生物合成中的应用

Country Status (1)

Country Link
CN (1) CN113817738B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078434B1 (en) * 1999-08-12 2006-07-18 Societe De Conseils De Recherches Et D'applications Scientifiques Sas Use of Ginkgo extract
WO2015035199A1 (en) * 2013-09-06 2015-03-12 Mayo Foundation For Medical Education And Research Neem compositions used for the treatment of cancer
CN107115367A (zh) * 2017-05-12 2017-09-01 湖南科技学院 一种从银杏叶中高效率提取黄酮的发酵生产方法
CN107249578A (zh) * 2014-11-21 2017-10-13 奥菲瑞克斯股份有限公司 毒液蛰入治疗方法及相关药物组合物、系统和试剂盒
CN112646732A (zh) * 2020-12-24 2021-04-13 湖南科技学院 同时提升银杏叶中内酯a、c和白果内酯含量的促生制剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078434B1 (en) * 1999-08-12 2006-07-18 Societe De Conseils De Recherches Et D'applications Scientifiques Sas Use of Ginkgo extract
WO2015035199A1 (en) * 2013-09-06 2015-03-12 Mayo Foundation For Medical Education And Research Neem compositions used for the treatment of cancer
CN107249578A (zh) * 2014-11-21 2017-10-13 奥菲瑞克斯股份有限公司 毒液蛰入治疗方法及相关药物组合物、系统和试剂盒
CN107115367A (zh) * 2017-05-12 2017-09-01 湖南科技学院 一种从银杏叶中高效率提取黄酮的发酵生产方法
CN112646732A (zh) * 2020-12-24 2021-04-13 湖南科技学院 同时提升银杏叶中内酯a、c和白果内酯含量的促生制剂及其制备方法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHUNJUN LI等: "Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway", 《FRONTIERS IN PHARMACOLOGY》 *
KUN CHEN等: "Ginkgolide B Suppresses TLR4-Mediated Inflammatory Response by Inhibiting the Phosphorylation of JAK2/STAT3 and p38 MAPK in High Glucose-Treated HUVECs", 《OXIDATIVE MEDICINE AND CELLULAR LONGEVITY》 *
ZHONGLIN LIU等: "Ginkgolide A Participates in LPS-Induced PMVEC Injury by Regulating miR-224 and Inhibiting p21 in a Targeted Manner", 《CONTRAST MEDIA & MOLECULAR IMAGING》, pages 203 - 206 *
王丽纯;舒宝童;马宇;刘意;: "lncRNA XIST靶向miR-410对谷氨酸诱导视网膜神经细胞损伤的调控机制研究", 眼科新进展, no. 10 *
罗小芳;覃佐东;袁琦韵;许丽;王蓉;何福林;: "简析银杏研究的相关进展", 科技通报, no. 08 *
赵建伟;韩丽妹;韩海岭;王建新;秦晶;李永吉;: "银杏内酯缓释微丸的制备及释放度研究", 中国新药与临床杂志, no. 01 *
陈小明;何福林;李志忠;袁志辉;: "产银杏内酯内生真菌的分离与鉴定", 食品与机械, no. 08 *

Also Published As

Publication number Publication date
CN113817738B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
Schumann et al. Multiple links between 5-methylcytosine content of mRNA and translation
Moghe et al. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway
Mauer et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability
Andreasen et al. Improved microRNA quantification in total RNA from clinical samples
Courts et al. Specific micro‐RNA signatures for the detection of saliva and blood in forensic body‐fluid identification
Fonseca et al. Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays
Wang et al. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.)
Thatcher et al. Differential expression of miRNAs and their target genes in senescing leaves and siliques: insights from deep sequencing of small RNAs and cleaved target RNAs
You et al. Translesion synthesis of 8, 5′-cyclopurine-2′-deoxynucleosides by DNA polymerases η, ι, and ζ
Ye et al. Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis
Brouze et al. Measuring the tail: Methods for poly (A) tail profiling
EP2803726B1 (en) Standardized reference gene for microrna and use thereof
Shaffer et al. miRNA profiling from blood—challenges and recommendations
CN103555848B (zh) 小RNA的3’-5’-qPCR定量检测技术
Pahlevan Kakhki TRIzol-based RNA extraction: a reliable method for gene expression studies
Luo et al. Transcriptome analysis reveals the effect of pre-harvest CPPU treatment on the volatile compounds emitted by kiwifruit stored at room temperature
CN113817738B (zh) 银杏长链非编码rna及其在银杏内酯生物合成中的应用
EP2182357A1 (en) Cell monitoring and molecular analysis
US20210284997A1 (en) Parallel analysis of rna 5&#39; ends from low-input rna
Li et al. RNA amplification, fidelity and reproducibility of expression profiling
WO2017035821A1 (zh) RNA 5mC重亚硫酸盐测序的文库构建方法及其应用
CN110029153A (zh) 核酸多肽复合物探针及其制备方法和应用
Wambua et al. Creating mass signatures for the detection of microRNA
de Oliveira et al. Procedures of Mitochondria purification and gene expression to study alternative respiratory and uncoupling pathways in fruits
CN104109708A (zh) 一种直接测定生物样品中未经分离的小核酸的方法及检测试剂盒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant