CN113810655B - 一种湖区智能救生系统的实现方法 - Google Patents

一种湖区智能救生系统的实现方法 Download PDF

Info

Publication number
CN113810655B
CN113810655B CN202010545749.XA CN202010545749A CN113810655B CN 113810655 B CN113810655 B CN 113810655B CN 202010545749 A CN202010545749 A CN 202010545749A CN 113810655 B CN113810655 B CN 113810655B
Authority
CN
China
Prior art keywords
intelligent life
life buoy
water
personal computer
industrial personal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010545749.XA
Other languages
English (en)
Other versions
CN113810655A (zh
Inventor
刘兴龙
吴勇
郑福进
周海明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN202010545749.XA priority Critical patent/CN113810655B/zh
Publication of CN113810655A publication Critical patent/CN113810655A/zh
Application granted granted Critical
Publication of CN113810655B publication Critical patent/CN113810655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/32Electron compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/17Emergency applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Resources & Organizations (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Tourism & Hospitality (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • General Business, Economics & Management (AREA)
  • Biophysics (AREA)
  • Emergency Management (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Environmental & Geological Engineering (AREA)
  • Primary Health Care (AREA)
  • Computer Security & Cryptography (AREA)

Abstract

本发明提供了一种湖区智能救生系统的实现方法,所述湖区智能救生系统包括用于搜寻待救人员并获取待救人员位置的岸基子系统和用于救出待救人员的智能救生圈,所述岸基子系统包括设置在岸上的高清摄像头、雷达和工控机,所述雷达与所述高清摄像头电连接,所述高清摄像头与所述工控机电连接,所述工控机经无线通讯模块与2.4G通讯基站进行无线通信,且所述2.4G通讯基站与所述智能救生圈进行无线通信;本发明能够智能操作,可用于复杂水面救援的湖区水面救生系统。

Description

一种湖区智能救生系统的实现方法
技术领域
本发明涉及水上救生和检测通信技术领域,特别是一种湖区智能救生系统的实现方法。
背景技术
根据世界卫生组织《全球溺水报告》显示,全球每小时有40多人溺水死亡,每年共有约37,2万人溺水死亡。在我国每年也约有5.9万人死于溺水事故。夏季是溺水事故的高发季节,天气炎热前往湖区景点游玩的游客络绎不绝,保障游客生命安全成为重中之重。通过科学技术手段对传统水上安全设备进行改进,提高传统水上安全设备的实际应用能力,是有重大的研究意义的。
传统的水上安全设备可分为两大类,一类是救生衣,救生圈这种小型设备,另一类则是皮划艇,冲锋救援舟大型救生设备。前者存在机动性能差,往往会耽误救援时机。后者相对快捷,施救效率高,但是需要专门人员操控,无法普遍推广。
基于上述内容可得知,当面临突发落水事件时,往往难以第一时间提供高效的救援手段,面对复杂水域环境时,无法人工施救时,更是加大了救援难度。
发明内容
有鉴于此,本发明的目的是提供一种能够智能操作,可用于复杂水面救援的湖区水面救生系统的实现方法。
本发明采用以下方法来实现:一种湖区智能救生系统的实现方法,其特征在于:所述湖区智能救生系统包括用于搜寻待救人员并获取待救人员位置的岸基子系统和用于救出待救人员的智能救生圈,所述岸基子系统包括设置在岸上的高清摄像头、雷达和工控机,所述雷达与所述高清摄像头电连接,所述高清摄像头与所述工控机电连接,所述工控机经无线通讯模块与2.4G通讯基站进行无线通信,且所述2.4G通讯基站与所述智能救生圈进行无线通信;
所述湖区智能救生系统的实现方法,包括以下步骤:
步骤S1、使用时,高清摄像头检测到湖区水面有人落水,同时雷达扫描湖区水面发现异常情况,工控机接收二者反馈的数据;
步骤S2、工控机再通过卷积神经网络算法,对视频图像数据、雷达扫描数据等融合后的湖区水面环境数据进行学习训练,以实际落水信息作为机器学习的目标值,不断对视频图像识别模型进行监督训练;
步骤S3、当工控机确定湖区水面有人落水时,发出警报,同时通过2.4G通讯基站发送指令给智能救生圈,使智能救生圈保持待命状态;
步骤S4、工控机结合高清摄像头图像内容和雷达扫描情况,确定落水人员的位置,同时检测湖区水面可航行区域,再通过A*算法的启发式搜索原理,将救生圈、落水者以及湖区水面障碍物设为网格,通过算法得出网格与网格之间的权值,来寻找最短有效路径,权值最小的网格路径则为最短有效路径;
步骤S6、所述工控机通过智能救生圈中的定位模块实时获取智能救生圈所处位置与方向,从而实时引导智能救生圈前进;
步骤S7、通过PID控制算法,工控机预先对智能救生圈下达初步指令,由于水波影响智能救生圈无法完全实现指令动作,再根据智能救生圈的实际航行情况,比较与预先下发指令的差别,由PID控制算法得出调整参数,工控机再次下发指令让智能救生圈做出改变,从而确保智能救生圈沿着所述步骤S4中的最短有效路径行进;
步骤S8、直至智能救生圈来到落水者身边,落水者稳定抓住智能救生圈;
步骤S9、工控机通过高清摄像头与雷达确保落水者已经安全抓牢智能救生圈后,下一步根据智能救生圈所处位置与岸边最近的安全地点,通过A*算法自动规划返回路径,通过2.4G通讯基站将数据传输给智能救生圈;
步骤S10、智能救生圈通过2.4G通讯基站收到数据后,开始返程动作;
步骤S11、通过PID控制算法,工控机对智能救生圈实时控制引导,从而确保智能救生圈沿着工控机规划的返回路径返程;
步骤S12、智能救生圈将落水者安全送回岸边。
进一步的,所述智能救生圈内设置有主控模块,所述主控模块连接有驱动模块、定位模块和通信模块,所述MCU经通信模块与所述2.4G通讯基站进行数据通信。
进一步的,所述通信模块包括2.4G通讯芯片和天线,通过所述天线实现所述2.4G通讯芯片和所述2.4G通讯基站通信畅通,保障所述智能救生圈与所述工控机之间的信息传输。
进一步的,所述驱动模块包括推进器和供电电池,所述推进器由两组无刷电机组成,所述供电电池为所述推进器进行供电,所述推进器为所述智能救生圈提供动力。
进一步的,所述定位模块包括NEO-M8N定位芯片和北微传感AH200电罗经,所述NEO-M8N定位芯片能实时发送智能救生圈位置数据,所述北微传感AH200电罗经能确定所述智能救生圈的航向。
进一步的,所述步骤S4中的A*算法是一种典型的启发式搜索算法,采用最佳优先的启发式搜索算法,寻找一条从起点网格到终点网格的最短路径,A*算法在某一结点的估价函数可以表示为下列所示:
f(n)=g(n)+h(n)
其中评估函数f(n)是从起始节点通过节点n的到达目标节点的最小代价路径的估计值,函数g(n)是从起始节点到n节点的已走过路径的实际代价,函数h(n)是从n节点到目标节点可能的最优路径的估计代价。
进一步的,所述步骤S2中的卷积神经网络算法采用了CNN中的YOLOv3算法,所述YOLOv3算法是通过感知平台采集积累图像样本,经过图像处理,图像标注构建实验数据集,训练深度学习网络并进行优化,以实现落水目标的实时检测;YOLOv3算法将落水者检测任务当作回归问题来处理,直接通过整张图片的所有像素得到目标边界框的坐标、框中包含物体的置信度和类概率;将输入图像划分为S*S的栅格,每个栅格负责检测中心落在该栅格中的物体,每一个栅格预测B个bounding boxes即目标边界框和置信度,这个置信度反映了模型对于这个网格的预测:该网格是否含有落水者,以及这个框的坐标预测的有多准。
本发明的有益效果在于:本发明加入了智能救生圈、高清摄像头、雷达、工控机和2.4G通讯基站,使得通过高清摄像头和雷达的作用,可将湖区湖面上的情况数据发送至工控机内,工控机可对是否有人员落水进行判别,再将数据经2.4G通讯基站传输至智能救生圈,并对智能救生圈进行路径引导,确保智能救生圈能够第一时间抵达救援地点,使救生圈自动前往落水事发现场,从而达到了系统救生的目的;无需营救人员下水进行施救,大大减小了次生灾害的发生;本发明可智能操作、便于推广,且可用于复杂水面救援。
附图说明
图1为本发明的方法流程示意图。
图2为所述PID控制算法的示意图。
图3为所述智能救生圈的电路原理框图。
具体实施方式
下面结合附图对本发明做进一步说明。
请参阅图1所示,本发明提供了一实施例:一种湖区智能救生系统的实现方法,所述湖区智能救生系统包括用于搜寻待救人员并获取待救人员位置的岸基子系统和用于救出待救人员的智能救生圈,所述岸基子系统包括设置在岸上的高清摄像头、雷达和工控机,所述雷达与所述高清摄像头电连接,所述高清摄像头与所述工控机电连接,所述工控机经无线通讯模块与2.4G通讯基站进行无线通信,且所述2.4G通讯基站与所述智能救生圈进行无线通信;智能救生圈上的通讯部分通过2.4G通讯基站实现智能救生圈与工控机之间的数据传输;
所述湖区智能救生系统的实现方法,包括以下步骤:
步骤S1、使用时,高清摄像头检测到湖区水面有人落水,同时雷达扫描湖区水面发现异常情况,工控机接收二者反馈的数据;
步骤S2、工控机再通过卷积神经网络算法,对视频图像数据、雷达扫描数据等融合后的湖区水面环境数据进行学习训练,以实际落水信息作为机器学习的目标值,不断对视频图像识别模型进行监督训练;最终实现卷积神经网络算法对感知目标的准确识别,从而实现自动判别湖区水面是否有人员落水;
步骤S3、当工控机确定湖区水面有人落水时,发出警报,同时通过2.4G通讯基站发送指令给智能救生圈,使智能救生圈保持待命状态;
步骤S4、工控机结合高清摄像头图像内容和雷达扫描情况,确定落水人员的位置,同时检测湖区水面可航行区域,再通过A*算法的启发式搜索原理,将救生圈、落水者以及湖区水面障碍物设为网格,通过算法得出网格与网格之间的权值,来寻找最短有效路径,权值最小的网格路径则为最短有效路径;也就是再可航行区域内寻找到的最短救援路径,实现自动为智能救生圈规划好救援路线;
步骤S6、所述工控机通过智能救生圈中的定位模块实时获取智能救生圈所处位置与方向,从而实时引导智能救生圈前进;
步骤S7、通过PID控制算法,工控机预先对智能救生圈下达初步指令,由于水波影响智能救生圈无法完全实现指令动作,再根据智能救生圈的实际航行情况,比较与预先下发指令的差别,由PID控制算法得出调整参数,工控机再次下发指令让智能救生圈做出改变,从而确保智能救生圈沿着所述步骤S4中的最短有效路径行进;
步骤S8、直至智能救生圈来到落水者身边,落水者稳定抓住智能救生圈;
步骤S9、工控机通过高清摄像头与雷达确保落水者已经安全抓牢智能救生圈后,下一步根据智能救生圈所处位置与岸边最近的安全地点,通过A*算法自动规划返回路径,通过2.4G通讯基站将数据传输给智能救生圈;
步骤S10、智能救生圈通过2.4G通讯基站收到数据后,开始返程动作;
步骤S11、通过PID控制算法,工控机对智能救生圈实时控制引导,从而确保智能救生圈沿着工控机规划的返回路径返程;
步骤S12、智能救生圈将落水者安全送回岸边。
本发明中的PID控制算法:PID是比例(Proportion)、积分(Integral)、微分(Differential coefficient)的缩写,分别代表了三种控制算法,通过这三个算法的组合可有效地纠正被控制对象的偏差,从而使其达到一个稳定的状态,请参阅图2所示,图2中r(t):系统实际上需要的输出值,这是一个标准值,在我们设定了之后让这个系统去逼近的一个值;
y(t):系统当前的输出值,这个值应该需要趋近于我们设定的值,当我们没有增加PID控制模块之前,它是由被控对象通过r(t)输入直接产生的。
e(t):系统由于某些扰动,导致的系统产生的偏差,实际输出的值和想要设定的初始值r(t)的差值。
u(t):系统通过PID控制器输出的新的输入值,实际上他是在r(t)的基础上,针对当前的实际情况做出的改变。
Kp比例模块:系统PID比例因子,Kp能够对于产生的偏差e(t)能够迅速的作出反应,减少偏差。
Ki积分模块:系统PID积分因子,Ki能够用于消除静差,由于前面的误差有正有负,所以当前偏差的加入能够抵消部分,保持系统的稳定性,让系统有记忆功能。
Kd微分模块:系统微分因子,Kd能够体现出当前误差的变化趋势,引入有效早期修正信号,从而加快系统的动作速度,减少调节时间。
请参阅图3所示,本发明一实施例中,所述智能救生圈内设置有主控模块,所述主控模块连接有驱动模块、定位模块和通信模块,所述MCU经通信模块与所述2.4G通讯基站进行数据通信。所述主控模块由搭载STM32F407VGTA芯片为主芯片的高性能电路板组成,经由通讯部分接收来自工控机的数据,主芯片接收数据后,下发操控指令,智能救生圈开始工作;同时工控机通过PID控制算法对智能救生圈进行路径引导,确保智能救生圈沿着规划路径前行。
所述通信模块包括2.4G通讯芯片和天线,通过所述天线实现所述2.4G通讯芯片和所述2.4G通讯基站通信畅通,保障所述智能救生圈与所述工控机之间的信息传输。
所述驱动模块包括推进器和供电电池,所述推进器由两组无刷电机组成,所述供电电池为所述推进器进行供电,所述推进器为所述智能救生圈提供动力。所述智能救生圈上搭载无线充电电池,由于无线充电电池自身重量小,大幅减轻救生圈重量,可提高载运能力,同时在岸端配有无线充电模块XKT801-60,方便智能救生圈随时靠泊充电。
所述定位模块包括NEO-M8N定位芯片和北微传感AH200电罗经,所述NEO-M8N定位芯片能实时发送智能救生圈位置数据,所述北微传感AH200电罗经能确定所述智能救生圈的航向。
本发明中的2.4G通讯芯片、主控模块、2.4G通讯基站、工控机、高清摄像头、雷达和推进器均为现有技术,本领域技术人员已经能够清楚了解,在此不进行详细说明。
所述步骤S4中的A*算法是一种典型的启发式搜索算法,采用最佳优先的启发式搜索算法,寻找一条从起点网格到终点网格的最短路径,A*算法在某一结点的估价函数可以表示为下列所示:
f(n)=g(n)+h(n)
其中评估函数f(n)是从起始节点通过节点n的到达目标节点的最小代价路径的估计值,函数g(n)是从起始节点到n节点的已走过路径的实际代价,函数h(n)是从n节点到目标节点可能的最优路径的估计代价。函数h(n)表明了算法使用的启发信息,它来源于人们对路径规划问题的认识,依赖某种经验估计,根据f(n)可以计算出当前节点的代价,并可以对下一次能够到达的节点进行评估,采用每次搜索都找到代价值最小的点再继续往外搜索的过程,一步一步找到最优路径。
所述步骤S2中的卷积神经网络算法采用了CNN中的YOLOv3算法,所述YOLOv3算法是通过感知平台采集积累图像样本,经过图像处理,图像标注构建实验数据集,训练深度学习网络并进行优化,以实现落水目标的实时检测;YOLOv3算法将落水者检测任务当作回归问题来处理,直接通过整张图片的所有像素得到目标边界框的坐标、框中包含物体的置信度和类概率;将输入图像划分为S*S的栅格,每个栅格负责检测中心落在该栅格中的物体,每一个栅格预测B个bounding boxes即目标边界框和置信度,这个置信度反映了模型对于这个网格的预测:该网格是否含有落水者,以及这个框的坐标预测的有多准。
本发明中的供电系统分为三个部分,分别是雷达、摄像机部分;工控机部分;智能救生圈部分。
雷达、摄像机部分:统一线路,采用固伟开关电源模块PSW80-27供电,提供12V直流电供电。
工控机部分:工控机放置在岸端,可直接采用市电交流电220V供电。
智能救生圈部分:智能救生圈搭载无线充电电池,采用无线充电模块XKT801-60进行充电,可安装在湖边靠泊位,智能救生圈可实时靠泊充电,充满电可运行1小时,电池电量告急可自行返回充电。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种湖区智能救生系统的实现方法,其特征在于:所述湖区智能救生系统包括用于搜寻待救人员并获取待救人员位置的岸基子系统和用于救出待救人员的智能救生圈,所述岸基子系统包括设置在岸上的高清摄像头、雷达和工控机,所述雷达与所述高清摄像头电连接,所述高清摄像头与所述工控机电连接,所述工控机经无线通讯模块与2.4G通讯基站进行无线通信,且所述2.4G通讯基站与所述智能救生圈进行无线通信;
所述湖区智能救生系统的实现方法,包括以下步骤:
步骤S1、使用时,高清摄像头检测到湖区水面有人落水,同时雷达扫描湖区水面发现异常情况,工控机接收二者反馈的数据;
步骤S2、工控机再通过卷积神经网络算法,对视频图像数据、雷达扫描数据融合后的湖区水面环境数据进行学习训练,以实际落水信息作为机器学习的目标值,不断对视频图像识别模型进行监督训练;
步骤S3、当工控机确定湖区水面有人落水时,发出警报,同时通过2.4G通讯基站发送指令给智能救生圈,使智能救生圈保持待命状态;
步骤S4、工控机结合高清摄像头图像内容和雷达扫描情况,确定落水人员的位置,同时检测湖区水面可航行区域,再通过A*算法的启发式搜索原理,将救生圈、落水者以及湖区水面障碍物设为网格,通过算法得出网格与网格之间的权值,来寻找最短有效路径,权值最小的网格路径则为最短有效路径;
步骤S6、所述工控机通过智能救生圈中的定位模块实时获取智能救生圈所处位置与方向,从而实时引导智能救生圈前进;
步骤S7、通过PID控制算法,工控机预先对智能救生圈下达初步指令,由于水波影响智能救生圈无法完全实现指令动作,再根据智能救生圈的实际航行情况,比较与预先下发指令的差别,由PID控制算法得出调整参数,工控机再次下发指令让智能救生圈做出改变,从而确保智能救生圈沿着所述步骤S4中的最短有效路径行进;
步骤S8、直至智能救生圈来到落水者身边,落水者稳定抓住智能救生圈;
步骤S9、工控机通过高清摄像头与雷达确保落水者已经安全抓牢智能救生圈后,下一步根据智能救生圈所处位置与岸边最近的安全地点,通过A*算法自动规划返回路径,通过2.4G通讯基站将数据传输给智能救生圈;
步骤S10、智能救生圈通过2.4G通讯基站收到数据后,开始返程动作;
步骤S11、通过PID控制算法,工控机对智能救生圈实时控制引导,从而确保智能救生圈沿着工控机规划的返回路径返程;
步骤S12、智能救生圈将落水者安全送回岸边。
2.根据权利要求1所述的一种湖区智能救生系统的实现方法,其特征在于:所述智能救生圈内设置有主控模块,所述主控模块连接有驱动模块、定位模块和通信模块,所述主控模块经通信模块与所述2.4G通讯基站进行数据通信。
3.根据权利要求2所述的一种湖区智能救生系统的实现方法,其特征在于:所述通信模块包括2.4G通讯芯片和天线,通过所述天线实现所述2.4G通讯芯片和所述2.4G通讯基站通信畅通,保障所述智能救生圈与所述工控机之间的信息传输。
4.根据权利要求2所述的一种湖区智能救生系统的实现方法,其特征在于:所述驱动模块包括推进器和供电电池,所述推进器由两组无刷电机组成,所述供电电池为所述推进器进行供电,所述推进器为所述智能救生圈提供动力。
5.根据权利要求2所述的一种湖区智能救生系统的实现方法,其特征在于:所述定位模块包括NEO-M8N定位芯片和北微传感AH200电罗经,所述NEO-M8N定位芯片能实时发送智能救生圈位置数据,所述北微传感AH200电罗经能确定所述智能救生圈的航向。
6.根据权利要求1所述的一种湖区智能救生系统的实现方法,其特征在于:所述步骤S4中的A*算法是一种典型的启发式搜索算法,采用最佳优先的启发式搜索算法,寻找一条从起点网格到终点网格的最短路径,A*算法在某一结点的估价函数可以表示为下列所示:
f(n)=g(n)+h(n)
其中评估函数f(n)是从起始节点通过节点n的到达目标节点的最小代价路径的估计值,函数g(n)是从起始节点到n节点的已走过路径的实际代价,函数h(n)是从n节点到目标节点可能的最优路径的估计代价。
7.根据权利要求1所述的一种湖区智能救生系统的实现方法,其特征在于:所述步骤S2中的卷积神经网络算法采用了CNN中的YOLOv3算法,所述YOLOv3算法是通过感知平台采集积累图像样本,经过图像处理,图像标注构建实验数据集,训练深度学习网络并进行优化,以实现落水目标的实时检测;YOLOv3算法将落水者检测任务当作回归问题来处理,直接通过整张图片的所有像素得到目标边界框的坐标、框中包含物体的置信度和类概率;将输入图像划分为S*S的栅格,每个栅格负责检测中心落在该栅格中的物体,每一个栅格预测B个bounding boxes即目标边界框和置信度,这个置信度反映了模型对于这个网格的预测:该网格是否含有落水者,以及这个框的坐标预测的有多准。
CN202010545749.XA 2020-06-16 2020-06-16 一种湖区智能救生系统的实现方法 Active CN113810655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010545749.XA CN113810655B (zh) 2020-06-16 2020-06-16 一种湖区智能救生系统的实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010545749.XA CN113810655B (zh) 2020-06-16 2020-06-16 一种湖区智能救生系统的实现方法

Publications (2)

Publication Number Publication Date
CN113810655A CN113810655A (zh) 2021-12-17
CN113810655B true CN113810655B (zh) 2023-10-31

Family

ID=78944316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010545749.XA Active CN113810655B (zh) 2020-06-16 2020-06-16 一种湖区智能救生系统的实现方法

Country Status (1)

Country Link
CN (1) CN113810655B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967428B (zh) * 2022-07-29 2022-11-22 济南大学 基于改进粒子群算法的无人救生圈最优鲁棒控制方法
CN115503906A (zh) * 2022-09-28 2022-12-23 杭州雅格纳科技有限公司 人员落水智能救生系统
CN117496666A (zh) * 2023-11-16 2024-02-02 成都理工大学 一种智能高效的溺水救援系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990784A (zh) * 2017-04-26 2017-07-28 大连理工大学 一种用于监测控制救援无人车的系统及其方法
CN108536143A (zh) * 2018-03-27 2018-09-14 上海海事大学 一种马蹄型远程遥控智能救生装置
CN110162103A (zh) * 2019-06-13 2019-08-23 河南宙合网络科技有限公司 一种无人机与智能车组自主协同运输系统及方法
CN110348304A (zh) * 2019-06-06 2019-10-18 武汉理工大学 一种可搭载于无人机的海事遇险人员搜索系统以及目标识别方法
CN110515378A (zh) * 2019-08-09 2019-11-29 西安电子科技大学 一种应用于无人艇的智能目标搜索方法
CN110588973A (zh) * 2019-09-27 2019-12-20 江苏科技大学 一种基于两栖无人航行器的青少年溺水预防和救助平台及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990784A (zh) * 2017-04-26 2017-07-28 大连理工大学 一种用于监测控制救援无人车的系统及其方法
CN108536143A (zh) * 2018-03-27 2018-09-14 上海海事大学 一种马蹄型远程遥控智能救生装置
CN110348304A (zh) * 2019-06-06 2019-10-18 武汉理工大学 一种可搭载于无人机的海事遇险人员搜索系统以及目标识别方法
CN110162103A (zh) * 2019-06-13 2019-08-23 河南宙合网络科技有限公司 一种无人机与智能车组自主协同运输系统及方法
CN110515378A (zh) * 2019-08-09 2019-11-29 西安电子科技大学 一种应用于无人艇的智能目标搜索方法
CN110588973A (zh) * 2019-09-27 2019-12-20 江苏科技大学 一种基于两栖无人航行器的青少年溺水预防和救助平台及其方法

Also Published As

Publication number Publication date
CN113810655A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN113810655B (zh) 一种湖区智能救生系统的实现方法
CN203593143U (zh) 一种风光互补型无人海洋监测艇
CN107542073A (zh) 一种基于树莓派的智能混动水面清理和水质监测装置及方法
CN105129063A (zh) 一种风光互补水面机器人
CN110588973B (zh) 一种基于两栖无人航行器的青少年溺水预防和救助平台及其方法
CN111275924B (zh) 一种基于无人机的儿童防溺水监控方法、系统及无人机
CN105226778A (zh) 基于无线充电的无人艇自主充电系统
CN107878669A (zh) 智慧水面监测三体船
CN108205325A (zh) 一种四轮驱动低速全天候无人驾驶巡逻车系统
CN111452939A (zh) 一种用于引水隧洞检测的自主巡线水下直升机
CN108469820A (zh) 一种两轮驱动低速全天候无人驾驶巡逻车系统
CN112960078A (zh) 一种无人帆船自动驾驶系统及其方法
CN106595775A (zh) 海岸带生态环境动态监测与预警系统的实现方法及其装置
CN108413962A (zh) 一种水上搜救机器人快速搜救定位系统
CN211076291U (zh) 一种带原路返航功能的水上救援机器人
CN113759964A (zh) 一种广域海洋监测设备
CN112606973A (zh) 一种水空两栖立体式搜救系统及方法
CN114827217A (zh) 一种海上平台人员落水报警与自动搜救系统
CN105923114A (zh) 一种半潜式无人艇及其使用方法
CN113093737A (zh) 水空两栖式全方位自主搜救舰队
Ennong et al. Design and experiment of a sea-air heterogeneous unmanned collaborative system for rapid inspection tasks at sea
CN109765913A (zh) 一种两轮驱动全天候无人驾驶巡逻车系统
CN108490936A (zh) 一种两轮驱动高速全天候无人驾驶巡逻车系统
CN113050665B (zh) 一种基于slam架构的节能型水下机器人探测方法及系统
CN204937448U (zh) 一种风光互补水面机器人

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant