CN113804617B - 一种中间桥支挡效应下的边坡稳定性评价方法 - Google Patents

一种中间桥支挡效应下的边坡稳定性评价方法 Download PDF

Info

Publication number
CN113804617B
CN113804617B CN202111113497.4A CN202111113497A CN113804617B CN 113804617 B CN113804617 B CN 113804617B CN 202111113497 A CN202111113497 A CN 202111113497A CN 113804617 B CN113804617 B CN 113804617B
Authority
CN
China
Prior art keywords
bar
intermediate bridge
area
thrust
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111113497.4A
Other languages
English (en)
Other versions
CN113804617A (zh
Inventor
王东
梁祖超
李广贺
李雪健
周志伟
张岩
王艳婷
刘金尧
贺开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN202111113497.4A priority Critical patent/CN113804617B/zh
Publication of CN113804617A publication Critical patent/CN113804617A/zh
Application granted granted Critical
Publication of CN113804617B publication Critical patent/CN113804617B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开一种中间桥支挡效应下的边坡稳定性评价方法,该方法首先基于中间桥形态参数,根据等效抗剪强度参数的表达式,求解等效黏聚力与等效内摩擦角,接着根据边坡形态参数及岩体力学参数,预先搜索潜在滑面,并对滑体进行垂直条块划分,然后假设初始F=1计算每个条块的剩余推力,最后通过调整折减系数F,使滑体最下条块的剩余推力Dn=0,输出最小的折减系数Fmin,则为最危险滑面对应的稳定系数。本发明有效解决了相邻露天采坑中间桥与边坡组合条件下的边坡稳定性分析和中间桥设计难题,对科学指导工程设计、边坡治理与安全实施,具有重要的实际意义。

Description

一种中间桥支挡效应下的边坡稳定性评价方法
技术领域
本发明涉及露天开采技术领域,尤其涉及一种中间桥支挡效应下的边坡稳定性评价方法。
背景技术
目前,工程中最常用的边坡稳定性计算方法是二维的,最广泛的基于刚体极限平衡理论的是条分法,包括瑞典圆弧法(1927)、简化Bishop法(1955)、Lowe-Karafihat法(1960)、Morgstern-Price法(1965)、简化Janbu法(1957)、Janbu通用条分法(1973)、Spencer法(1967)、剩余推力法(1977)和Sarma法(1973,1979);在边坡三维稳定性计算方法方面,亦有大量的国内外学者展开了研究。Hovland(1977)、Hungr(1987)、Huang(2000)、陈祖煜(2001)、李同录等(2003)、朱大勇等(2007)、卢坤林(2013)等对经典二维极限平衡法进行了扩展,形成了一系列三维方法;总结现有的技术状况,可以认识到相邻露天采坑中间桥与边坡组合而成的地质体具有特殊的空间形态和结构,已有的边坡稳定性分析方法根本无法满足相邻露天采坑中间桥与边坡组合条件下边坡与中间桥参数的协同设计,因此迫切需要对中间桥对边坡的支挡效应及该种效应下的边坡稳定性问题开展深入研究。
发明内容
针对上述现有技术的不足,本发明提供一种中间桥支挡效应下的边坡稳定性评价方法。
为解决上述技术问题,本发明所采取的技术方案是:一种中间桥支挡效应下的边坡稳定性评价方法,包括如下步骤:
步骤1:根据中间桥对边坡的支挡效应的二维分析,得到中间桥各个区域的等效黏聚力、等效内摩擦角或等效内摩擦系数,过程如下:
步骤1.1:对中间桥进行力学分析,得出中间桥对边坡支挡效应的实质是一剪切反力,其决定因素是中间桥的底界面的抗剪力;结合工程地质资料,构建出具有空间形态参数的中间桥三维模型;
步骤1.2:根据构建的中间桥三维模型,沿着边坡倾向切割剖面,得到边坡截面的几何形态;
步骤1.3:根据边坡截面的几何形态,在中间桥三维模型的垂直方向上划分出三个区域,其中,区域Ⅰ由中间桥部分的两个锥体、一个以直角三角形为截面的柱体和非工作帮部分的一个以直角三角形为截面的柱体组成,区域Ⅱ为中间桥部分的以梯形为截面的柱体,区域Ⅲ由中间桥部分的两个锥体和一个以直角三角形为截面的柱体组成;
步骤1.4:分别求出各区域的体积,记为V、V和V,并且根据摩尔-库伦强度准则求出各个区域的抗滑力,记为T、T和T,具体过程如下;
步骤1.4.1:计算区域Ⅰ的体积V,公式如下:
其中,h为中间桥的桥高,α为中间桥的底角,D为采坑总长度,d为中间桥的底宽;
步骤1.4.2:计算区域Ⅱ的体积V,公式如下:
V=bh(d-hcotα)
其中,b为桥长;
步骤1.4.3:计算区域Ⅲ的体积V,公式如下:
步骤1.4.4:根据摩尔-库伦强度准则,计算区域Ⅰ的抗滑力T,公式如下:
其中,S为区域Ⅰ的底界面面积;γ为中间桥各岩层的加权容重;cj为中间桥底板岩层的黏聚力;为中间桥底板岩层的内摩擦角;
步骤1.4.5:根据摩尔-库伦强度准则,计算区域Ⅱ的抗滑力T,公式如下:
其中,S为区域Ⅱ的底界面面积;cj为中间桥底板岩层的黏聚力;
步骤1.4.6:根据摩尔-库伦强度准则,计算区域Ⅲ的抗滑力T,公式如下:
其中,S为区域Ⅲ的底界面面积;
上述步骤1.4.1至步骤1.4.6均为近水平条件下,中间桥对边坡的支挡效应计算过程;
中间桥提供的各区域抗滑力的总和即为中间桥对边坡的三维支挡效应。中间桥提供的总抗滑力T为:
步骤1.5:由于中间桥的支挡效应为底界面的抗剪力,而采用二维刚体极限平衡法时,支挡效应是由贯通整个采坑底界面的抗剪力来提供,因此,将中间桥底界面的抗剪力等效成贯通整个采坑底界面的抗剪力,来实现三维支挡效应的二维等效;即通过合并各区域的抗滑力与对应区域等效抗滑力的数学表达式中的同类项,求出每个区域的等效黏聚力、等效内摩擦角或等效内摩擦系数,具体过程如下:
步骤1.5.1:计算区域Ⅰ二维等效后的底界面的等效抗滑力TⅠd,公式如下:
其中,cⅠd为Ⅰ区等效黏聚力;为Ⅰ区等效内摩擦角;
步骤1.5.2:将步骤4.4中区域Ⅰ的抗滑力T与步骤5.1中区域Ⅰ的等效抗滑力TⅠd进行合并同类项,由于区域Ⅰ的中间桥由非工作帮边坡的一部分与其上部压覆桥体组成,因此该区黏聚力不需要等效,只需要等效内摩擦系数,得到:
步骤1.5.3:计算区域Ⅱ二维等效后的底界面的等效抗滑力TⅡd,公式如下:
其中,cⅡd为Ⅱ区等效黏聚力;为Ⅱ区等效内摩擦角;
步骤1.5.4:将步骤4.5中区域Ⅱ的抗滑力T与步骤5.3中区域Ⅱ的等效抗滑力TⅡd进行合并同类项,得到:
步骤1.5.5:计算区域Ⅲ二维等效后的底界面的等效抗滑力TⅢd,公式如下:
其中,cⅢd为Ⅲ区等效黏聚力,为Ⅲ区等效内摩擦角;
步骤1.5.6:将步骤4.6中区域Ⅲ的抗滑力T与步骤5.5中区域Ⅲ的等效抗滑力TⅢd进行合并同类项,得到:
步骤2:将各个区域等效后的抗剪强度参数引入到剩余推力法中,建立中间桥支挡效应下边坡稳定性的二维计算方法,包括如下步骤:
步骤2.1:假设滑坡模式为圆弧-基底组合滑动,为了保证计算精度,在中间桥附近条块需要加密,边坡台阶拐点处、滑面与岩层相交处需要单独划分条块;由于圆弧滑面上部条块与基底滑面上部条块的底面倾角不同,因此将滑体进行垂直条块划分,整个滑体共划分成n个垂直条块,其中圆弧滑面上部滑体共划分为k个垂直条块,则基底上部滑体共划分为n-k个垂直条块;
步骤2.2:对圆弧滑面上部垂直条块的剩余推力进行分析,计算圆弧滑面上部滑体中各个条块的剩余推力D1,D2,…,Dk,过程如下:
步骤2.2.1:取圆弧滑面上部滑体中的第i个垂直条块为研究对象,i=0,1,2,…,k;
对平行第i个条块底面方向建立平衡方程:
Di-Di-1cos(δi-1i)+Si-Wi sinδi=0
其中,Wi为第i个条块的重量,Di为第i个条块的剩余推力,Di-1为第i-1个条块的剩余推力,Si为第i个条块底面的切向力,δi为第i个条块的底面倾角,δi-1为第i-1个条块的底面倾角;
步骤2.2.2:对垂直第i个条块底面方向建立平衡方程:
Ni-Wicosδi-Di-1sin(δi-1i)=0
其中,Ni为第i个条块底面的法向力;
步骤2.2.3:根据稳定系数的定义和摩尔-库伦强度准则:
结合步骤2.2.1和步骤2.2.2求解,消去Si、Ni,得:
其中,ψi为第i个条块侧面的推力传递系数,Si为第i个条块底面的切向力,ci为第i个条块底面的黏聚力,bi为第i个条块的宽度,为第i个条块底面的内摩擦角,F为折减系数;
步骤2.2.4:假设边界条件为:D0=0,考虑到条块侧面不能提供拉力,当Di<0(i=0,1…k)时,则Di=0,推导求出圆弧滑面上部滑体的剩余推力Dk
其中,Wk为第k个条块的重量,δk为第k个条块的底面倾角,δk-1为第k-1个条块的底面倾角,Dk-1为第k-1个条块的剩余推力,ck为第k个条块的底面的黏聚力,bk为第k个条块的宽度,为第k个条块底面的内摩擦角。
步骤2.3:将基底上部滑体的n-k个垂直条块再分成不含中间桥的部分,共u个垂直条块,则含中间桥的部分为n-k-u个垂直条块;
步骤2.4:对基底上部滑体中不含中间桥的垂直条块的剩余推力进行分析,计算基底上部滑体中不含中间桥滑体中各个条块的剩余推力Dk+1,Dk+2,..,Dk+u,过程如下:
步骤2.4.1:取基底滑面上部第r个不含中间桥的条块作为研究对象,r=1,2,…,u;
步骤2.4.2:当r=1时,条块受到圆弧滑面上部最下第k个条块推力作用,其剩余推力为:
其中,cj为基底黏聚力,为基底内摩擦角,Wr=1为基底滑面上部不含中间桥的第1个条块的重量,br=1为基底滑面上部不含中间桥的第1个条块的宽度;
步骤2.4.3:当r=2,…,u时,对平行基底滑面上部第r个不含中间桥条块底面方向建立平衡方程:
Dr-Dr-1+Sr=0
其中,Dr为第r个条块的剩余推力,Dr-1为第r-1个条块的剩余推力,Sr为第r个条块底面的切向力;
对垂直基底滑面上部第r个不含中间桥条块底面方向建立平衡方程:
Wr-Nr=0
其中,Wr为第r个条块的重量,Nr为第r个条块的底面的法向力;
根据稳定系数的定义和摩尔-库伦强度准则:
其中,cj为基底黏聚力,为基底内摩擦角,Sr为第r个条块底面的切向力,br为第r个条块的宽度;
推导求出第r个不含中间桥条块的剩余推力为:
步骤2.4.4:进一步推导出第k+u个条块的剩余推力为:
其中,Dk+u-1为第k+u-1个条块的剩余推力值,bk+u为第k+u个条块的宽度,Wk+u为第k+u个条块的重量。
步骤2.5:将基底上部滑体含中间桥的部分的n-k-u个垂直条块再按中间桥对边坡的支挡效应的二维分析中的划分方法将含中间桥的部分划分为三个区域,分别为Ⅰ区、Ⅱ区和Ⅲ区,其中Ⅰ区分为s个垂直条块,Ⅱ区分为q个垂直条块,则Ⅲ区分为n-k-u-s-q个垂直条块;
步骤2.6:对Ⅰ区滑体垂直条块的剩余推力进行分析,计算Ⅰ区滑体中各个条块的剩余推力Dk+u+1,Dk+u+2,…,Dk+u+s,过程如下:
步骤2.6.1:取Ⅰ区第p个垂直条块进行受力分析,p=1,2,…,s;
步骤2.6.2:当p=1时,条块受到基底滑面上部不含中间桥的第u个条块推力作用,其剩余推力为:
其中,Wp1为Ⅰ区第1个含中间桥条块的重量,bp1为Ⅰ区第1个含中间桥条块的宽度,为Ⅰ区等效内摩擦角,cj为基底黏聚力;
步骤2.6.3:当p=2,…,s时,根据摩尔-库伦强度准则,则第p个含中间桥条块有:
Np=Wp=Apγp
其中,Ap为第p个含中间桥条块的面积,γp为第p个含中间桥条块的容重,Sp为第p个含中间桥条块底面的切向力,bp为第p个含中间桥条块的宽度,为Ⅰ区等效内摩擦角,cj为基底黏聚力;
推导求出Ⅰ区第p个含中间桥条块的剩余推力Dp为:
其中,Dp-1为第p-1个含中间桥条块的剩余推力,Wp为第p个含中间桥条块的重量;
步骤2.6.4:进一步推导出第k+u+s个条块的剩余推力为:
其中,Dk+u+s-1为第k+u+s-1个条块的剩余推力,bk+u+s为第k+u+s个条块的宽度,Ak+u+s为第k+u+s个条块的面积,γk+u+s为第k+u+s个条块的容重。
步骤2.7:对Ⅱ区滑体垂直条块的剩余推力进行分析,计算Ⅱ区滑体中各个条块的剩余推力Dk+u+s+1,Dk+u+s+2,…,Dk+u+s+q,过程如下:
步骤2.7.1:取Ⅱ区第w个垂直条块进行受力分析,w=1,2,…,q;
步骤2.7.2:当w=1时,条块受到基底滑面上部中间桥Ⅰ区的第s个条块推力作用,其剩余推力为:
其中,bw=1为Ⅰ区第1个条块的宽度,Aw=1为Ⅰ区第1个条块的面积,γw=1为Ⅰ区第1个条块的容重;
步骤2.7.3:当w=2,…,q时,根据摩尔-库伦强度准则有:
Ww=Awγw
其中,Ww为第w个中间桥条块的重量,Nw为第w个中间桥条块的底面的法向力,Aw为第w个条块的面积,γw为第w个条块的容重,cⅡd为Ⅱ区等效黏聚力,bw为第w个条块的宽度,为Ⅱ区等效内摩擦角;
推导求出Ⅱ区第w个中间桥条块的剩余推力Dw为:
步骤2.7.4:进一步推导出第k+u+s+q个条块的剩余推力为:
其中,Dk+u+s+q-1为第k+u+s+q-1个条块的剩余推力,bk+u+s+q为第k+u+s+q个条块的宽度,Ak+u+s+q为第k+u+s+q个条块的面积,γk+u+s+q为第k+u+s+q个条块的容重。
步骤2.8:对Ⅲ区滑体垂直条块的剩余推力进行分析,计算Ⅲ区滑体中各个条块的剩余推力Dk+u+s+q+1,Dk+u+s+q+2,…,Dn,过程如下:
步骤2.8.1:取Ⅲ区第t个垂直条块进行受力分析,t=1,2,…,n-k-u-s-q;
步骤2.8.2:当t=1时,条块受到基底滑面上部中间桥Ⅱ区的第q个条块推力作用,其剩余推力为:
其中,bt=1为Ⅲ区第1个条块的宽度,At=1为Ⅲ区第1个条块的面积,γt=1为Ⅲ区第1个条块的容重;
步骤2.8.3:当t=2,…,n-k-u-s-q时,根据摩尔-库伦强度准则有:
Wt=Atγt
其中,St为第t个条块底面的切向力,bt为第t个条块的宽度,Nt为第t个条块的底面的法向力,为Ⅲ区等效内摩擦角,Wt为第t个条块的重量,At为第t个条块的面积,γt为第t个条块的容重,cⅢd为Ⅲ区等效黏聚力;
推导求出Ⅲ区第t个中间桥条块的剩余推力Dt为:
其中,Dt-1为第t-1个中间桥条块的剩余推力;
步骤2.8.4:进一步推导出第n个条块的剩余推力为:
其中,Dn-1为第n-1个条块的剩余推力,bn为第n个条块的宽度,An第n个条块的面积,γn第n个条块的容重。
步骤2.9:通过调整滑面位置,重新调整折减系数F,使最下条块Dn=0,最小折减系数Fmin则为最危险滑面对应的稳定性系数,即为边坡稳定性系数Fs
采用上述技术方案所产生的有益效果在于:
1、本发明提供的中间桥支挡效应下的边坡稳定性评价方法是在研究相邻露天采坑中间桥对边坡的支挡效应的前提下,提出对中间桥支挡效应下的边坡稳定性的评价方法,本发明的方法研究有效解决相邻露天采坑中间桥与边坡组合条件下的边坡稳定性分析和中间桥设计难题,对科学指导工程设计、边坡治理与安全实施,具有重要的实际意义;
2、本发明还将丰富非规则形态边坡稳定性分析、设计方面的理论和方法,且对于岩土力学、结构力学等学科的发展也有较大的推动作用,科学意义重大。
3、本发明结合中间桥对边坡支挡效应的二维评价,基于极限平衡理论,降维评价中间桥支挡效应下的边坡稳定性,为工程技术人员提供定量的认识。
附图说明
图1为本发明实施例中中间桥支挡效应下的边坡稳定性评价方法的流程图;
图2为本发明实施例中圆弧滑面上部垂直条块的受力分析图;
图3为本发明实施例中基底上部滑体不含中间桥部分的垂直条块受力分析图;
图4为本发明实施例中含中间桥滑体的区域划分示意图;
图5为本发明实施例中Ⅰ区的垂直条块的受力分析图;
图6为本发明实施例中Ⅱ区和Ⅲ区的垂直条块的受力分析图;
图7为本发明实施例中典型工程地质剖面图;
图8为本发明实施例中中间桥不同底宽对应的边坡稳定系数Fs计算结果图;
图9为本发明实施例中中间桥不同桥高对应的边坡稳定系数Fs计算结果图;
图10为本发明实施例中中间桥不同桥长对应的边坡稳定系数Fs计算结果图;
图11为本发明实施例中边坡稳定系数Fs与底宽d的关系曲线图;
图12为本发明实施例中边坡稳定系数Fs与桥高h的关系曲线图;
图13为本发明实施例中边坡稳定系数Fs与桥长b的关系曲线图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本实施例中一种中间桥支挡效应下的边坡稳定性评价方法如下所述。
步骤1:根据中间桥对边坡的支挡效应的二维分析,得到中间桥各个区域的等效黏聚力、等效内摩擦角或等效内摩擦系数,过程如下:
步骤1.1:对中间桥进行力学分析,得出中间桥对边坡支挡效应的实质是一剪切反力,其决定因素是中间桥的底界面的抗剪力;结合工程地质资料,构建出具有空间形态参数的中间桥三维模型;
步骤1.2:根据构建的中间桥三维模型,沿着边坡倾向切割剖面,得到边坡截面的几何形态;
步骤1.3:根据边坡截面的几何形态,在中间桥三维模型的垂直方向上划分出三个区域,如图4所示,其中,区域Ⅰ由中间桥部分的两个锥体、一个以直角三角形为截面的柱体和非工作帮部分的一个以直角三角形为截面的柱体组成,区域Ⅱ为中间桥部分的以梯形为截面的柱体,区域Ⅲ由中间桥部分的两个锥体和一个以直角三角形为截面的柱体组成;
步骤1.4:分别求出各区域的体积,记为V、V和V,并且根据摩尔-库伦强度准则求出各个区域的抗滑力,记为T、T和T,具体过程如下;
步骤1.4.1:计算区域Ⅰ的体积V,公式如下:
其中,h为中间桥的桥高,α为中间桥的底角,D为采坑总长度,d为中间桥的底宽;
步骤1.4.2:计算区域Ⅱ的体积V,公式如下:
V=bh(d-hcotα)
其中,b为桥长;
步骤1.4.3:计算区域Ⅲ的体积V,公式如下:
步骤1.4.4:根据摩尔-库伦强度准则,计算区域Ⅰ的抗滑力T,公式如下:
其中,S为区域Ⅰ的底界面面积;γ为中间桥各岩层的加权容重;cj为中间桥底板岩层的黏聚力;为中间桥底板岩层的内摩擦角;
步骤1.4.5:根据摩尔-库伦强度准则,计算区域Ⅱ的抗滑力T,公式如下:
其中,S为区域Ⅱ的底界面面积;cj为中间桥底板岩层的黏聚力;
步骤1.4.6:根据摩尔-库伦强度准则,计算区域Ⅲ的抗滑力T,公式如下:
其中,S为区域Ⅲ的底界面面积;
上述步骤1.4.1至步骤1.4.6均为近水平条件下,中间桥对边坡的支挡效应计算过程;
中间桥提供的各区域抗滑力的总和即为中间桥对边坡的三维支挡效应。中间桥提供的总抗滑力T为:
步骤1.5:由于中间桥的支挡效应为底界面的抗剪力,而采用二维刚体极限平衡法时,支挡效应是由贯通整个采坑底界面的抗剪力来提供,因此,将中间桥底界面的抗剪力等效成贯通整个采坑底界面的抗剪力,来实现三维支挡效应的二维等效;即通过合并各区域的抗滑力与对应区域等效抗滑力的数学表达式中的同类项,求出每个区域的等效黏聚力、等效内摩擦角或等效内摩擦系数,具体过程如下:
步骤1.5.1:计算区域Ⅰ二维等效后的底界面的等效抗滑力TⅠd,公式如下:
其中,cⅠd为Ⅰ区等效黏聚力;为Ⅰ区等效内摩擦角;
步骤1.5.2:将步骤4.4中区域Ⅰ的抗滑力T与步骤5.1中区域Ⅰ的等效抗滑力TⅠd进行合并同类项,由于区域Ⅰ的中间桥由非工作帮边坡的一部分与其上部压覆桥体组成,因此该区黏聚力不需要等效,只需要等效内摩擦系数,得到:
步骤1.5.3:计算区域Ⅱ二维等效后的底界面的等效抗滑力TⅡd,公式如下:
其中,cⅡd为Ⅱ区等效黏聚力;为Ⅱ区等效内摩擦角;
步骤1.5.4:将步骤4.5中区域Ⅱ的抗滑力T与步骤5.3中区域Ⅱ的等效抗滑力TⅡd进行合并同类项,得到:
步骤1.5.5:计算区域Ⅲ二维等效后的底界面的等效抗滑力TⅢd,公式如下:
其中,cⅢd为Ⅲ区等效黏聚力,为Ⅲ区等效内摩擦角;
步骤1.5.6:将步骤4.6中区域Ⅲ的抗滑力T与步骤5.5中区域Ⅲ的等效抗滑力TⅢd进行合并同类项,得到:
步骤2:将各个区域等效后的抗剪强度参数引入到剩余推力法中,建立中间桥支挡效应下边坡稳定性的二维计算方法,包括如下步骤:
步骤2.1:假设滑坡模式为圆弧-基底组合滑动,为了保证计算精度,在中间桥附近条块需要加密,边坡台阶拐点处、滑面与岩层相交处需要单独划分条块;由于圆弧滑面上部条块与基底滑面上部条块的底面倾角不同,因此将滑体进行垂直条块划分,整个滑体共划分成n个垂直条块,其中圆弧滑面上部滑体共划分为k个垂直条块,则基底上部滑体共划分为n-k个垂直条块;
步骤2.2:对圆弧滑面上部垂直条块的剩余推力进行分析,如图2所示,计算圆弧滑面上部滑体中各个条块的剩余推力D1,D2,…,Dk,过程如下:
步骤2.2.1:取圆弧滑面上部滑体中的第i个垂直条块为研究对象,i=0,1,2,…,k;
对平行第i个条块底面方向建立平衡方程:
Di-Di-1cos(δi-1i)+Si-Wi sinδi=0
其中,Wi为第i个条块的重量,Di为第i个条块的剩余推力,Di-1为第i-1个条块的剩余推力,Si为第i个条块底面的切向力,δi为第i个条块的底面倾角,δi-1为第i-1个条块的底面倾角;
步骤2.2.2:对垂直第i个条块底面方向建立平衡方程:
Ni-Wicosδi-Di-1sin(δi-1i)=0
其中,Ni为第i个条块底面的法向力;
步骤2.2.3:根据稳定系数的定义和摩尔-库伦强度准则:
结合步骤2.2.1和步骤2.2.2求解,消去Si、Ni,得:
其中,ψi为第i个条块侧面的推力传递系数,Si为第i个条块底面的切向力,ci为第i个条块底面的黏聚力,bi为第i个条块的宽度,为第i个条块底面的内摩擦角,F为折减系数;
步骤2.2.4:假设边界条件为:D0=0,考虑到条块侧面不能提供拉力,当Di<0(i=0,1…k)时,则Di=0,推导求出圆弧滑面上部滑体的剩余推力Dk
其中,Wk为第k个条块的重量,δk为第k个条块的底面倾角,δk-1为第k-1个条块的底面倾角,Dk-1为第k-1个条块的剩余推力,ck为第k个条块的底面的黏聚力,bk为第k个条块的宽度,为第k个条块底面的内摩擦角。
步骤2.3:将基底上部滑体的n-k个垂直条块再分成不含中间桥的部分,共u个垂直条块,则含中间桥的部分为n-k-u个垂直条块;
步骤2.4:对基底上部滑体中不含中间桥的垂直条块的剩余推力进行分析,如图3所示,计算基底上部滑体中不含中间桥滑体中各个条块的剩余推力Dk+1,Dk+2,..,Dk+u,过程如下:
步骤2.4.1:取基底滑面上部第r个不含中间桥的条块作为研究对象,r=1,2,…,u;
步骤2.4.2:当r=1时,条块受到圆弧滑面上部最下第k个条块推力作用,其剩余推力为:
其中,cj为基底黏聚力,为基底内摩擦角,Wr=1为基底滑面上部不含中间桥的第1个条块的重量,br=1为基底滑面上部不含中间桥的第1个条块的宽度;
步骤2.4.3:当r=2,…,u时,对平行基底滑面上部第r个不含中间桥条块底面方向建立平衡方程:
Dr-Dr-1+Sr=0
其中,Dr为第r个条块的剩余推力,Dr-1为第r-1个条块的剩余推力,Sr为第r个条块底面的切向力;
对垂直基底滑面上部第r个不含中间桥条块底面方向建立平衡方程:
Wr-Nr=0
其中,Wr为第r个条块的重量,Nr为第r个条块的底面的法向力;
根据稳定系数的定义和摩尔-库伦强度准则:
其中,cj为基底黏聚力,为基底内摩擦角,Sr为第r个条块底面的切向力,br为第r个条块的宽度;
推导求出第r个不含中间桥条块的剩余推力为:
步骤2.4.4:进一步推导出第k+u个条块的剩余推力为:
其中,Dk+u-1为第k+u-1个条块的剩余推力值,bk+u为第k+u个条块的宽度,Wk+u为第k+u个条块的重量。
步骤2.5:将基底上部滑体含中间桥的部分的n-k-u个垂直条块再按中间桥对边坡的支挡效应的二维分析中的划分方法将含中间桥的部分划分为三个区域,如图4所示,分别为Ⅰ区、Ⅱ区和Ⅲ区,其中Ⅰ区分为s个垂直条块,Ⅱ区分为q个垂直条块,则Ⅲ区分为n-k-u-s-q个垂直条块;
步骤2.6:对Ⅰ区滑体垂直条块的剩余推力进行分析,如图5所示,计算Ⅰ区滑体中各个条块的剩余推力Dk+u+1,Dk+u+2,…,Dk+u+s,过程如下:
步骤2.6.1:取Ⅰ区第p个垂直条块进行受力分析,p=1,2,…,s;
步骤2.6.2:当p=1时,条块受到基底滑面上部不含中间桥的第u个条块推力作用,其剩余推力为:
其中,Wp=1为Ⅰ区第1个含中间桥条块的重量,bp=1为Ⅰ区第1个含中间桥条块的宽度,为Ⅰ区等效内摩擦角,cj为基底黏聚力;
步骤2.6.3:当p=2,…,s时,根据摩尔-库伦强度准则,则第p个含中间桥条块有:
Np=Wp=Apγp
其中,Ap为第p个含中间桥条块的面积,γp为第p个含中间桥条块的容重,Sp为第p个含中间桥条块底面的切向力,bp为第p个含中间桥条块的宽度,为Ⅰ区等效内摩擦角,cj为基底黏聚力;
推导求出Ⅰ区第p个含中间桥条块的剩余推力Dp为:
其中,Dp-1为第p-1个含中间桥条块的剩余推力,Wp为第p个含中间桥条块的重量;
步骤2.6.4:进一步推导出第k+u+s个条块的剩余推力为:
其中,Dk+u+s-1为第k+u+s-1个条块的剩余推力,bk+u+s为第k+u+s个条块的宽度,Ak+u+s为第k+u+s个条块的面积,γk+u+s为第k+u+s个条块的容重。
步骤2.7:对Ⅱ区滑体垂直条块的剩余推力进行分析,如图6所示,计算Ⅱ区滑体中各个条块的剩余推力Dk+u+s+1,Dk+u+s+2,…,Dk+u+s+q,过程如下:
步骤2.7.1:取Ⅱ区第w个垂直条块进行受力分析,w=1,2,…,q;
步骤2.7.2:当w=1时,条块受到基底滑面上部中间桥Ⅰ区的第s个条块推力作用,其剩余推力为:
其中,bw=1为Ⅰ区第1个条块的宽度,Aw=1为Ⅰ区第1个条块的面积,γw=1为Ⅰ区第1个条块的容重;
步骤2.7.3:当w=2,…,q时,根据摩尔-库伦强度准则有:
Ww=Awγw
其中,Ww为第w个中间桥条块的重量,Nw为第w个中间桥条块的底面的法向力,Aw为第w个条块的面积,γw为第w个条块的容重,cⅡd为Ⅱ区等效黏聚力,bw为第w个条块的宽度,为Ⅱ区等效内摩擦角;
推导求出Ⅱ区第w个中间桥条块的剩余推力Dw为:
步骤2.7.4:进一步推导出第k+u+s+q个条块的剩余推力为:
其中,Dk+u+s+q-1为第k+u+s+q-1个条块的剩余推力,bk+u+s+q为第k+u+s+q个条块的宽度,Ak+u+s+q为第k+u+s+q个条块的面积,γk+u+s+q为第k+u+s+q个条块的容重。
步骤2.8:对Ⅲ区滑体垂直条块的剩余推力进行分析,如图6所示,计算Ⅲ区滑体中各个条块的剩余推力Dk+u+s+q+1,Dk+u+s+q+2,…,Dn,过程如下:
步骤2.8.1:取Ⅲ区第t个垂直条块进行受力分析,t=1,2,…,n-k-u-s-q;
步骤2.8.2:当t=1时,条块受到基底滑面上部中间桥Ⅱ区的第q个条块推力作用,其剩余推力为:
其中,bt=1为Ⅲ区第1个条块的宽度,At=1为Ⅲ区第1个条块的面积,γt=1为Ⅲ区第1个条块的容重;
步骤2.8.3:当t=2,…,n-k-u-s-q时,根据摩尔-库伦强度准则有:
Wt=Atγt
其中,St为第t个条块底面的切向力,bt为第t个条块的宽度,Nt为第t个条块的底面的法向力,为Ⅲ区等效内摩擦角,Wt为第t个条块的重量,At为第t个条块的面积,γt为第t个条块的容重,cⅢd为Ⅲ区等效黏聚力;
推导求出Ⅲ区第t个中间桥条块的剩余推力Dt为:
其中,Dt-1为第t-1个中间桥条块的剩余推力;
步骤2.8.4:进一步推导出第n个条块的剩余推力为:
其中,Dn-1为第n-1个条块的剩余推力,bn为第n个条块的宽度,An为第n个条块的面积,γn为第n个条块的容重。
步骤2.9:通过调整滑面位置,重新调整折减系数F,使最下条块Dn=0,最小折减系数Fmin则为最危险滑面对应的稳定性系数,即为边坡稳定性系数Fs
本实施例中,以某露天煤矿为例,采场正常作业参数为平盘宽度40m、坡面角70°、台阶高度一般为10m和15m两种。东帮岩层产状近似水平,自上至下主要由第四系和煤系地层组成。在中间桥拆除过程中,两个采坑均出现不同程度的底鼓现象;当中间桥完全拆除,两坑贯通后,非工作帮边坡发生巨型滑坡。工程实践表明,相邻露天采坑中间桥能够提高边坡稳定性,充分利用中间桥对边坡的支挡效应至关重要。为实现矿山经济效益最大化,探讨中间桥形态参数与稳定系数之间的关系是解决问题的关键。
本实施例中,各岩土体物理力学指标如表1所示。
表1岩土体物理力学指标
本实施例中,先假设一个F值,自上而下依次逐条计算每个条块,当出现Dn>0时,说明F值偏高,应适当减小;当Dn<0出现时,说明F值偏低,应适当提高;最终的目的就是通过调整折减系数F,使Dn=0,输出最小的折减系数Fmin即为边坡稳定系数。
结合剥采工程现状,如图7所示,工程示例在底角α=18°、20°、22°三种工况下,采用控制变量法(底宽d=500m,桥高h=70m,桥长b=300m,采坑总长D=1800m),对不同底宽d、桥高h、桥长b与边坡稳定系数Fs之间的关系进行探讨。对于任意给定的底宽d、桥高h、桥长b,通过步骤1可获得不同底宽d、桥高h、桥长b所对应的各区域等效黏聚力cd及等效内摩擦系数从而可利用步骤2的边坡稳定性二维分析确定稳定系数Fs。本实施例中分别列举底角α=20°的工况下不同中间桥形态参数对应的边坡稳定性二维分析结果,分别如图8、9、10所示,分析可得出边坡稳定系数Fs与中间桥底宽d、桥高h、桥长b的关系曲线分别如图11、12、13所示。从曲线图中可以看出,在中间桥支挡作用下,边坡稳定系数Fs随中间桥的桥高h、底角α增大而增大,上升梯度逐渐减小,且与底宽d、桥长b呈正相关一次函数关系。/>

Claims (9)

1.一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于,包括如下步骤:
步骤1:根据中间桥对边坡的支挡效应的二维分析,得到中间桥各个区域的等效黏聚力、等效内摩擦角或等效内摩擦系数;
步骤2:将各个区域等效后的抗剪强度参数引入到剩余推力法中,建立中间桥支挡效应下边坡稳定性的二维计算方法,包括如下步骤:
步骤2.1:假设滑坡模式为圆弧-基底组合滑动,为了保证计算精度,在中间桥附近条块需要加密,边坡台阶拐点处、滑面与岩层相交处需要单独划分条块;由于圆弧滑面上部条块与基底滑面上部条块的底面倾角不同,因此将滑体进行垂直条块划分,整个滑体共划分成n个垂直条块,其中圆弧滑面上部滑体共划分为k个垂直条块,则基底上部滑体共划分为n-k个垂直条块;
步骤2.2:对圆弧滑面上部垂直条块的剩余推力进行分析,计算圆弧滑面上部滑体中各个条块的剩余推力D1,D2,…,Dk
步骤2.3:将基底上部滑体的n-k个垂直条块再分成不含中间桥的部分,共u个垂直条块,则含中间桥的部分为n-k-u个垂直条块;
步骤2.4:对基底上部滑体中不含中间桥的垂直条块的剩余推力进行分析,计算基底上部滑体中不含中间桥滑体中各个条块的剩余推力Dk+1,Dk+2,..,Dk+u
步骤2.5:将基底上部滑体含中间桥的部分的n-k-u个垂直条块再按中间桥对边坡的支挡效应的二维分析中的划分方法将含中间桥的部分划分为三个区域,分别为Ⅰ区、Ⅱ区和Ⅲ区,其中Ⅰ区分为s个垂直条块,Ⅱ区分为q个垂直条块,则Ⅲ区分为n-k-u-s-q个垂直条块;
步骤2.6:对Ⅰ区滑体垂直条块的剩余推力进行分析,计算Ⅰ区滑体中各个条块的剩余推力Dk+u+1,Dk+u+2,…,Dk+u+s
步骤2.7:对Ⅱ区滑体垂直条块的剩余推力进行分析,计算Ⅱ区滑体中各个条块的剩余推力Dk+u+s+1,Dk+u+s+2,…,Dk+u+s+q
步骤2.8:对Ⅲ区滑体垂直条块的剩余推力进行分析,计算Ⅲ区滑体中各个条块的剩余推力Dk+u+s+q+1,Dk+u+s+q+2,…,Dn
步骤2.9:通过调整滑面位置,重新调整折减系数F,使最下条块Dn=0,最小折减系数Fmin则为最危险滑面对应的稳定性系数,即为边坡稳定性系数Fs
2.根据权利要求1所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤1的过程如下:
步骤1.1:对中间桥进行力学分析,得出中间桥对边坡支挡效应的实质是一剪切反力,其决定因素是中间桥的底界面的抗剪力;结合工程地质资料,构建出具有空间形态参数的中间桥三维模型;
步骤1.2:根据构建的中间桥三维模型,沿着边坡倾向切割剖面,得到边坡截面的几何形态;
步骤1.3:根据边坡截面的几何形态,在中间桥三维模型的垂直方向上划分出三个区域,其中,区域Ⅰ由中间桥部分的两个锥体、一个以直角三角形为截面的柱体和非工作帮部分的一个以直角三角形为截面的柱体组成,区域Ⅱ为中间桥部分的以梯形为截面的柱体,区域Ⅲ由中间桥部分的两个锥体和一个以直角三角形为截面的柱体组成;
步骤1.4:分别求出各区域的体积,记为V、V和V,并且根据摩尔-库伦强度准则求出各个区域的抗滑力,记为T、T和T
步骤1.5:由于中间桥的支挡效应为底界面的抗剪力,而采用二维刚体极限平衡法时,支挡效应是由贯通整个采坑底界面的抗剪力来提供,因此,将中间桥底界面的抗剪力等效成贯通整个采坑底界面的抗剪力,来实现三维支挡效应的二维等效;即通过合并各区域的抗滑力与对应区域等效抗滑力的数学表达式中的同类项,求出每个区域的等效黏聚力、等效内摩擦角或等效内摩擦系数。
3.根据权利要求2所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤1.4的过程如下:
步骤1.4.1:计算区域Ⅰ的体积V,公式如下:
其中,h为中间桥的桥高,α为中间桥的底角,D为采坑总长度,d为中间桥的底宽;
步骤1.4.2:计算区域Ⅱ的体积V,公式如下:
V=bh(d-hcotα)
其中,b为桥长;
步骤1.4.3:计算区域Ⅲ的体积V,公式如下:
步骤1.4.4:根据摩尔-库伦强度准则,计算区域Ⅰ的抗滑力T,公式如下:
其中,S为区域Ⅰ的底界面面积;γ为中间桥各岩层的加权容重;cj为中间桥底板岩层的黏聚力;为中间桥底板岩层的内摩擦角;
步骤1.4.5:根据摩尔-库伦强度准则,计算区域Ⅱ的抗滑力T,公式如下:
其中,S为区域Ⅱ的底界面面积;cj为中间桥底板岩层的黏聚力;
步骤1.4.6:根据摩尔-库伦强度准则,计算区域Ⅲ的抗滑力T,公式如下:
其中,S为区域Ⅲ的底界面面积;
上述步骤1.4.1至步骤1.4.6均为近水平条件下,中间桥对边坡的支挡效应计算过程;
中间桥提供的各区域抗滑力的总和即为中间桥对边坡的三维支挡效应。
4.根据权利要求3所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤1.5的过程如下:
步骤1.5.1:计算区域Ⅰ二维等效后的底界面的等效抗滑力TⅠd,公式如下:
其中,cⅠd为Ⅰ区等效黏聚力;为Ⅰ区等效内摩擦角;
步骤1.5.2:将步骤4.4中区域Ⅰ的抗滑力T与步骤5.1中区域Ⅰ的等效抗滑力TⅠd进行合并同类项,由于区域Ⅰ的中间桥由非工作帮边坡的一部分与其上部压覆桥体组成,因此该区黏聚力不需要等效,只需要等效内摩擦系数,得到:
步骤1.5.3:计算区域Ⅱ二维等效后的底界面的等效抗滑力TⅡd,公式如下:
其中,cⅡd为Ⅱ区等效黏聚力;为Ⅱ区等效内摩擦角;
步骤1.5.4:将步骤4.5中区域Ⅱ的抗滑力T与步骤5.3中区域Ⅱ的等效抗滑力TⅡd进行合并同类项,得到:
步骤1.5.5:计算区域Ⅲ二维等效后的底界面的等效抗滑力TⅢd,公式如下:
其中,cⅢd为Ⅲ区等效黏聚力,为Ⅲ区等效内摩擦角;
步骤1.5.6:将步骤4.6中区域Ⅲ的抗滑力T与步骤5.5中区域Ⅲ的等效抗滑力TⅢd进行合并同类项,得到:
5.根据权利要求1所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤2.2的过程如下:
步骤2.2.1:取圆弧滑面上部滑体中的第i个垂直条块为研究对象,i=0,1,2,…,k;
对平行第i个条块底面方向建立平衡方程:
Di-Di-1cos(δi-1i)+Si-Wisinδi=0
其中,Wi为第i个条块的重量,Di为第i个条块的剩余推力,Di-1为第i-1个条块的剩余推力,Si为第i个条块底面的切向力,δi为第i个条块的底面倾角,δi-1为第i-1个条块的底面倾角;
步骤2.2.2:对垂直第i个条块底面方向建立平衡方程:
Ni-Wicosδi-Di-1sin(δi-1i)=0
其中,Ni为第i个条块底面的法向力;
步骤2.2.3:根据稳定系数的定义和摩尔-库伦强度准则:
结合步骤2.2.1和步骤2.2.2求解,消去Si、Ni,得:
其中,ψi为第i个条块侧面的推力传递系数,Si为第i个条块底面的切向力,ci为第i个条块底面的黏聚力,bi为第i个条块的宽度,为第i个条块底面的内摩擦角,F为折减系数;
步骤2.2.4:假设边界条件为:D0=0,考虑到条块侧面不能提供拉力,当Di<0(i=0,1…k)时,则Di=0,推导求出圆弧滑面上部滑体的剩余推力Dk
其中,Wk为第k个条块的重量,δk为第k个条块的底面倾角,δk-1为第k-1个条块的底面倾角,Dk-1为第k-1个条块的剩余推力,ck为第k个条块的底面的黏聚力,bk为第k个条块的宽度,为第k个条块底面的内摩擦角。
6.根据权利要求1所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤2.4的过程如下:
步骤2.4.1:取基底滑面上部第r个不含中间桥的条块作为研究对象,r=1,2,…,u;
步骤2.4.2:当r=1时,条块受到圆弧滑面上部最下第k个条块推力作用,其剩余推力为:
其中,cj为基底黏聚力,为基底内摩擦角,Wr=1为基底滑面上部不含中间桥的第1个条块的重量,br=1为基底滑面上部不含中间桥的第1个条块的宽度;
步骤2.4.3:当r=2,…,u时,对平行基底滑面上部第r个不含中间桥条块底面方向建立平衡方程:
Dr-Dr-1+Sr=0
其中,Dr为第r个条块的剩余推力,Dr-1为第r-1个条块的剩余推力,Sr为第r个条块底面的切向力;
对垂直基底滑面上部第r个不含中间桥条块底面方向建立平衡方程:
Wr-Nr=0
其中,Wr为第r个条块的重量,Nr为第r个条块的底面的法向力;
根据稳定系数的定义和摩尔-库伦强度准则:
其中,cj为基底黏聚力,为基底内摩擦角,Sr为第r个条块底面的切向力,br为第r个条块的宽度;
推导求出第r个不含中间桥条块的剩余推力为:
步骤2.4.4:进一步推导出第k+u个条块的剩余推力为:
其中,Dk+u-1为第k+u-1个条块的剩余推力值,bk+u为第k+u个条块的宽度,Wk+u为第k+u个条块的重量。
7.根据权利要求1所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤2.6的过程如下:
步骤2.6.1:取Ⅰ区第p个垂直条块进行受力分析,p=1,2,…,s;
步骤2.6.2:当p=1时,条块受到基底滑面上部不含中间桥的第u个条块推力作用,其剩余推力为:
其中,Wp=1为Ⅰ区第1个含中间桥条块的重量,bp=1为Ⅰ区第1个含中间桥条块的宽度,为Ⅰ区等效内摩擦角,cj为基底黏聚力;
步骤2.6.3:当p=2,…,s时,根据摩尔-库伦强度准则,则第p个含中间桥条块有:
Np=Wp=Apγp
其中,Ap为第p个含中间桥条块的面积,γp为第p个含中间桥条块的容重,Sp为第p个含中间桥条块底面的切向力,bp为第p个含中间桥条块的宽度,为Ⅰ区等效内摩擦角,cj为基底黏聚力;
推导求出Ⅰ区第p个含中间桥条块的剩余推力Dp为:
其中,Dp-1为第p-1个含中间桥条块的剩余推力,Wp为第p个含中间桥条块的重量;
步骤2.6.4:进一步推导出第k+u+s个条块的剩余推力为:
其中,Dk+u+s-1为第k+u+s-1个条块的剩余推力,bk+u+s为第k+u+s个条块的宽度,Ak+u+s为第k+u+s个条块的面积,γk+u+s为第k+u+s个条块的容重。
8.根据权利要求1所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤2.7的过程如下:
步骤2.7.1:取Ⅱ区第w个垂直条块进行受力分析,w=1,2,…,q;
步骤2.7.2:当w=1时,条块受到基底滑面上部中间桥Ⅰ区的第s个条块推力作用,其剩余推力为:
其中,bw=1为Ⅰ区第1个条块的宽度,Aw=1为Ⅰ区第1个条块的面积,γw=1为Ⅰ区第1个条块的容重;
步骤2.7.3:当w=2,…,q时,根据摩尔-库伦强度准则有:
Ww=Awγw
其中,Ww为第w个中间桥条块的重量,Nw为第w个中间桥条块的底面的法向力,Aw为第w个条块的面积,γw为第w个条块的容重,cⅡd为Ⅱ区等效黏聚力,bw为第w个条块的宽度,为Ⅱ区等效内摩擦角;
推导求出Ⅱ区第w个中间桥条块的剩余推力Dw为:
步骤2.7.4:进一步推导出第k+u+s+q个条块的剩余推力为:
其中,Dk+u+s+q-1为第k+u+s+q-1个条块的剩余推力,bk+u+s+q为第k+u+s+q个条块的宽度,Ak+u+s+q为第k+u+s+q个条块的面积,γk+u+s+q为第k+u+s+q个条块的容重。
9.根据权利要求1所述的一种中间桥支挡效应下的边坡稳定性评价方法,其特征在于:所述步骤2.8的过程如下:
步骤2.8.1:取Ⅲ区第t个垂直条块进行受力分析,t=1,2,…,n-k-u-s-q;
步骤2.8.2:当t=1时,条块受到基底滑面上部中间桥Ⅱ区的第q个条块推力作用,其剩余推力为:
其中,bt=1为Ⅲ区第1个条块的宽度,At=1为Ⅲ区第1个条块的面积,γt=1为Ⅲ区第1个条块的容重;
步骤2.8.3:当t=2,…,n-k-u-s-q时,根据摩尔-库伦强度准则有:
Wt=Atγt
其中,St为第t个条块底面的切向力,bt为第t个条块的宽度,Nt为第t个条块的底面的法向力,为Ⅲ区等效内摩擦角,Wt为第t个条块的重量,At为第t个条块的面积,γt为第t个条块的容重,cⅢd为Ⅲ区等效黏聚力;
推导求出Ⅲ区第t个中间桥条块的剩余推力Dt为:
其中,Dt-1为第t-1个中间桥条块的剩余推力;
步骤2.8.4:进一步推导出第n个条块的剩余推力为:
其中,Dn-1为第n-1个条块的剩余推力,bn为第n个条块的宽度,An为第n个条块的面积,γn为第n个条块的容重。
CN202111113497.4A 2021-09-23 2021-09-23 一种中间桥支挡效应下的边坡稳定性评价方法 Active CN113804617B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111113497.4A CN113804617B (zh) 2021-09-23 2021-09-23 一种中间桥支挡效应下的边坡稳定性评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111113497.4A CN113804617B (zh) 2021-09-23 2021-09-23 一种中间桥支挡效应下的边坡稳定性评价方法

Publications (2)

Publication Number Publication Date
CN113804617A CN113804617A (zh) 2021-12-17
CN113804617B true CN113804617B (zh) 2024-02-09

Family

ID=78940080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111113497.4A Active CN113804617B (zh) 2021-09-23 2021-09-23 一种中间桥支挡效应下的边坡稳定性评价方法

Country Status (1)

Country Link
CN (1) CN113804617B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778435A (zh) * 2022-04-06 2022-07-22 重庆交通大学 一种用于模拟岩石块体滑动的实验装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108867664A (zh) * 2018-09-04 2018-11-23 临沂大学 一种基于逆作法的路改桥段基坑支护结构及其施工方法
CN112487538A (zh) * 2020-12-09 2021-03-12 辽宁工程技术大学 一种煤柱支挡作用下内排土场稳定性分析方法
CN113137234A (zh) * 2021-04-13 2021-07-20 车兆学 露天煤矿坑底自移式内排土场提升运煤系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108867664A (zh) * 2018-09-04 2018-11-23 临沂大学 一种基于逆作法的路改桥段基坑支护结构及其施工方法
CN112487538A (zh) * 2020-12-09 2021-03-12 辽宁工程技术大学 一种煤柱支挡作用下内排土场稳定性分析方法
CN113137234A (zh) * 2021-04-13 2021-07-20 车兆学 露天煤矿坑底自移式内排土场提升运煤系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于车辆荷载的露天矿道路边坡稳定性分析;韦伟;李怀刚;黄军浩;;矿业研究与开发(07);全文 *

Also Published As

Publication number Publication date
CN113804617A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN106326528B (zh) 一种露天矿端帮地下开采诱发地表裂缝分布规律预测方法
CN107066771B (zh) 一种平推式滑坡运动距离计算方法及应用
CN109767136A (zh) 煤层顶板含水层涌突水危险性评价与预测四双工作法
CN107423524B (zh) 一种长埋深隧洞突涌水灾害危险性等级预判的方法
CN108268978A (zh) 一种露天矿端帮边坡形态的优化方法
CN113804617B (zh) 一种中间桥支挡效应下的边坡稳定性评价方法
Liu et al. Water inrush risk zoning and water conservation mining technology in the Shennan mining area, Shaanxi, China
CN106339798A (zh) 一种基于模糊综合评判法的软岩斜井井筒支护体系稳定性评价方法
Fomin et al. Incremental open-pit mining of steeply dipping ore deposits
CN115169948A (zh) 采煤工作面覆岩离层突水风险预测方法及安全采矿方法
Xie et al. Formation mechanism and the height of the water-conducting fractured zone induced by middle deep coal seam mining in a sandy region: a case study from the xiaobaodang coal mine
Fang et al. Stability analysis of the sliding process of the west slope in Buzhaoba Open-Pit Mine
Glandt et al. Coral creek field study: a comprehensive assessment of the potential of high-pressure air injection in a mature waterflood project
CN113435014A (zh) 一种采动覆岩移动变形动态预测方法
Jaiswal et al. Numerical modeling study of asymmetry in the induced stresses over coal mine pillars with advancement of the goaf line
Johnson An assessment of in-place gas resources in low-permeability Upper Cretaceous and lower Tertiary sandstone reservoirs, Wind River basin, Wyoming
CN106284440A (zh) 一种挂帮矿回采扰动下边坡稳定性判别方法
CN112487538A (zh) 一种煤柱支挡作用下内排土场稳定性分析方法
CN110410068A (zh) 一种确定地层破裂压力梯度的测井方法
CN103809215B (zh) 一种厚冲积层矿区土体沉陷响应的获取方法
CN109522612A (zh) 一种基于综采液压支架受力反演直接顶厚度的方法
CN104695949A (zh) 一种复杂油水系统储层含油性综合判识方法
Mielimąka et al. Correlation between the average and forecasted curvatures caused by hard coal exploitation conducted at the great depth in several coal seams
Poulos Observed and predicted behaviour of two embankments on clay
CN114154316A (zh) 基于相似模拟的巨厚砾岩层离层量的计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant