CN113792471B - A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold - Google Patents

A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold Download PDF

Info

Publication number
CN113792471B
CN113792471B CN202110962547.XA CN202110962547A CN113792471B CN 113792471 B CN113792471 B CN 113792471B CN 202110962547 A CN202110962547 A CN 202110962547A CN 113792471 B CN113792471 B CN 113792471B
Authority
CN
China
Prior art keywords
electron
electrons
collision
micro
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110962547.XA
Other languages
Chinese (zh)
Other versions
CN113792471A (en
Inventor
张娜
王瑞
崔万照
胡天存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Institute of Space Radio Technology
Original Assignee
Xian Institute of Space Radio Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Institute of Space Radio Technology filed Critical Xian Institute of Space Radio Technology
Priority to CN202110962547.XA priority Critical patent/CN113792471B/en
Publication of CN113792471A publication Critical patent/CN113792471A/en
Application granted granted Critical
Publication of CN113792471B publication Critical patent/CN113792471B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A method for calculating a multi-particle multi-collision micro-discharge threshold Monte Carlo belongs to the technical field of space microwaves. The invention provides a Monte Carlo method for efficiently and accurately calculating micro-discharge threshold values of a satellite-borne microwave component, which carries out randomization treatment on the emergent energy, angles and phases of a plurality of initial electrons, and the physical process of the occurrence of a micro-discharge effect is more objectively and accurately represented by the multi-particle-multi-collision process according to the number of actual secondary electrons generated by collision electrons and the corresponding energy participating in the micro-discharge process after the collision moment. The calculation result shows that the calculation accuracy of the proposed method is obviously improved compared with the existing Monte Carlo method by taking the commercial particle simulation software result as a reference, and the calculation efficiency of the proposed method is obviously improved compared with that of the particle simulation method.

Description

一种多粒子多碰撞微放电阈值蒙特卡罗计算方法A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold

技术领域Technical field

本发明涉及一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,属于空间微波技术领域。The invention relates to a multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method, belonging to the field of space microwave technology.

背景技术Background technique

微放电效应也称二次电子倍增效应,是指部件处于1×10-3Pa或更低压强时,在承受大功率的情况下发生的谐振放电现象。航天器载荷中大功率微波部件如输出多工器、滤波器、开关矩阵、天线馈源等极易产生微放电效应,微放电效应一旦发生将造成严重后果:噪声电平抬高,输出功率下降;微波传输系统驻波比增大,反射功率增加,信道阻塞;微波部件表面损坏,载荷寿命缩短;航天器载荷永久性失效,因此大功率微波部件的研制过程中微放电是必须要克服的效应之一。The micro-discharge effect, also known as the secondary electron multiplication effect, refers to the resonant discharge phenomenon that occurs when the component is at a pressure of 1×10 -3 Pa or lower and is subjected to high power. High-power microwave components in spacecraft payloads such as output multiplexers, filters, switch matrices, antenna feeds, etc. are prone to micro-discharge effects. Once the micro-discharge effect occurs, it will cause serious consequences: the noise level will increase and the output power will decrease. ; The standing wave ratio of the microwave transmission system increases, the reflected power increases, and the channel is blocked; the surface of microwave components is damaged and the load life is shortened; the spacecraft load permanently fails, so micro-discharge is an effect that must be overcome during the development of high-power microwave components one.

在设计阶段通过微放电敏感区域或分析方法对星载微波部件微放电风险评估是减少反复设计、避免长周期地面试验的有效手段。目前,微放电分析方法方面已经发展出了包括经典理论和统计理论的理论分析方法,以及包括蒙特卡罗(Monte Carlo,MC)和粒子模拟(Particle-in-Cell,PIC)的数值模拟方法。由于理论方法需要电子运动轨迹的解析解,因而难以应用到复杂结构的微波部件微放电阈值计算中。PIC方法模拟粒子在电磁场下的运动以及粒子与部件表面碰撞情况所作的忽略和假设少,既考虑了电子出射表面的速度、方向、相位等齐全的运动参数,又考虑了电子与电磁场间的相互作用,可以实现阻抗变换器、脊波导滤波器以及同轴腔体滤波器等复杂微波部件结构的微放电阈值仿真。然而粒子模拟方法需要在剖分的网格内更新粒子状态和网格节点上的场分布,计算硬件开销大、费时长。MC方法由于不考虑电子与电磁场间的互作用,在时间开销上相对于PIC方法更有优势,然而,目前提出的单粒子-多碰撞、多粒子-单碰撞、伪多粒子-多碰撞三种蒙特卡罗微放电阈值计算方法由于算法本身的问题,在计算精度上仍有待于提高。Microdischarge risk assessment of spaceborne microwave components through microdischarge sensitive areas or analysis methods during the design stage is an effective means to reduce repeated designs and avoid long-term ground tests. At present, microdischarge analysis methods have been developed, including theoretical analysis methods including classical theory and statistical theory, as well as numerical simulation methods including Monte Carlo (MC) and particle simulation (Particle-in-Cell, PIC). Since the theoretical method requires an analytical solution of the electron motion trajectory, it is difficult to apply it to the calculation of the microdischarge threshold of microwave components with complex structures. The PIC method simulates the movement of particles under electromagnetic fields and the collision between particles and component surfaces. It makes few omissions and assumptions. It not only takes into account complete motion parameters such as the speed, direction, and phase of the electron exit surface, but also considers the interaction between electrons and electromagnetic fields. It can realize micro-discharge threshold simulation of complex microwave component structures such as impedance transformers, ridge waveguide filters, and coaxial cavity filters. However, the particle simulation method needs to update the particle state and the field distribution on the grid nodes within the divided grid, which requires a large computational hardware overhead and is time-consuming. Since the MC method does not consider the interaction between electrons and electromagnetic fields, it has an advantage over the PIC method in terms of time cost. However, there are three currently proposed methods: single particle-multiple collisions, multi-particles-single collisions, and pseudo-multiple particles-multiple collisions. The Monte Carlo microdischarge threshold calculation method still needs to be improved in terms of calculation accuracy due to problems in the algorithm itself.

发明内容Contents of the invention

本发明解决的技术问题是:克服现有技术的不足,提供了一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,The technical problem solved by this invention is to overcome the shortcomings of the existing technology and provide a multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method.

本发明的技术解决方案是:一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,包括如下步骤:The technical solution of the present invention is: a multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method, including the following steps:

S1,按照初始电子能量、角度、相位所符合的概率分布,随机生成N个初始电子,N个初始电子状态为:位置ri、能量Ei、角度(θii),相位tiS1, according to the probability distribution consistent with the initial electron energy, angle, and phase, N initial electrons are randomly generated. The N initial electron states are: position r i , energy E i , angle (θ i , Ф i ), phase t i ;

S2,按照输入频率f和输入功率W,计算微波部件内部的电磁场;S2, calculate the electromagnetic field inside the microwave component according to the input frequency f and input power W;

S3,更新电子进入电磁场的状态,电子状态为:位置rin、能量Ein、角度(θinin),相位tin,对于初始电子两者状态相同;S3, update the state of the electron entering the electromagnetic field. The electronic state is: position r in , energy E in , angle (θ in , Ф in ), phase t in . For the initial electron, the two states are the same;

S4,计算时间步长Δt内的电子运动轨迹;S4, calculate the electron motion trajectory within the time step Δt;

S5,判断时间步长Δt内的电子所处位置是否到达部件边界,如果没有到达,重复S4~S5;反之,则记录到达边界处电子碰撞的状态:位置rp、能量Ep、角度(θpp),相位tpS5, determine whether the position of the electron within the time step Δt has reached the component boundary. If it has not arrived, repeat S4~S5; otherwise, record the state of the electron collision at the boundary: position r p , energy E p , angle (θ pp ), phase t p ;

S6,采用碰撞时刻的电子能量Ep和角度(θpp),根据微波部件表面材料特性,计算出二次电子发射系数(δts、δe、δr)、二次电子电子的各能谱分布(f1,e、f1,r、fn,ts)及产生n个电子的概率Pn,并计算出射电子的能量Esi、角度(θsisi);i=0,1,…,n;S6, use the electron energy E p and angle (θ p , Ф p ) at the moment of collision, and calculate the secondary electron emission coefficient (δ ts , δ e , δ r ) and the secondary electron emission coefficient according to the surface material properties of the microwave component. Each energy spectrum distribution (f 1,e , f 1,r , f n,ts ) and the probability P n of generating n electrons, and calculate the energy E si and angle (θ si , Ф si ) of the ejected electron; i= 0,1,…,n;

S7,判断是否达到设定的截止条件,如果达到,则判断是否发生微放电,并结束;如果没有达到,则返回S3。S7, determine whether the set cut-off condition is reached. If it is reached, it is determined whether micro-discharge occurs and ends; if it is not reached, it returns to S3.

进一步地,所述产生n个电子的概率为Further, the probability of generating n electrons is

其中,分别为不产生本征二次电子的概率,产生1个本征二次电子的概率,产生n个本征二次电子的概率。in, They are respectively the probability of not generating intrinsic secondary electrons, the probability of generating 1 intrinsic secondary electron, and the probability of generating n intrinsic secondary electrons.

进一步地,所述计算出射电子的能量Es的方法包括如下步骤:Further, the method for calculating the energy Es of the ejected electron includes the following steps:

产生0~1内的随机数RAND1,比较RAND1与产生n个电子的概率Pn,判断出实际产生的电子个数n;Generate a random number RAND 1 between 0 and 1, compare RAND 1 with the probability P n of generating n electrons, and determine the actual number n of electrons generated;

若n=0,不产生二次电子;If n=0, no secondary electrons are produced;

若n=1,根据X(1)=f1,e+f1,r+f1,ts的概率分布计算出射电子的能量Es1,其中,f1,e为产生1个弹性散射电子的能谱,f1,r为产生1个反射电子的能谱,f1,ts为产生1个本征二次电子的能谱;If n = 1 , calculate the energy E s1 of the ejected electron according to the probability distribution of Energy spectrum, f 1,r is the energy spectrum that produces one reflected electron, f 1,ts is the energy spectrum that produces one intrinsic secondary electron;

若n≥2,根据X(n)=fn,ts的概率分布计算出射电子的能量Es1、Es2…Esn;其中,fn,ts为产生n个本征二次电子的能谱。If n≥2, calculate the energy of the ejected electrons E s1 , E s2 ... E sn according to the probability distribution of .

进一步地,第i个出射电子的出射角度(θsisi)按照如下步骤计算:Further, the exit angle (θ si , Ф si ) of the i-th emitted electron is calculated according to the following steps:

sinθsi为[-1,1]之间抽样的随机数,Фsi为[0,2π]之间抽样的随机数。sinθ si is a random number sampled between [-1,1], Ф si is a random number sampled between [0,2π].

进一步地,所述截止条件为达到最大循环次数,或计算时间,或电子数目,或人为设定的其他条件。Further, the cut-off condition is reaching the maximum number of cycles, or calculation time, or number of electrons, or other artificially set conditions.

进一步地,所述判断是否发生微放电的方法包括如下步骤:Further, the method for determining whether microdischarge occurs includes the following steps:

若以循环次数collsion_num作为判断微放电阈值方法,则计算δequl=(δ12+…+δcollsion_num)/collsion_num;其中,δ1、δ2、…、δcollsion_num分别为第i次碰撞的二次电子发射系数平均值;如果δequl>1,则该计算条件下发生微放电;如果δequl<1,则该计算条件下不发生微放电;如果δequl=1,该电压为微放电阈值电压;If the number of cycles collsion_num is used as the method to determine the micro-discharge threshold, then calculate δ equl = (δ 1 + δ 2 +...+δ collsion_num )/collsion_num; where δ 1 , δ 2 ,..., δ collsion_num are the i-th collision respectively. The average secondary electron emission coefficient of Discharge threshold voltage;

若以随时间演化的电子数目变化趋势作为判断微放电阈值方法,则电子数目随时间而减少,则该计算条件下不发生微放电;如电子数目随时间而增多,则该计算条件下发生微放电;如果电子数目随时间不变,则该电压为微放电阈值。If the change trend of the number of electrons that evolves over time is used as the method to judge the microdischarge threshold, then the number of electrons decreases with time, then microdischarge does not occur under this calculation condition; if the number of electrons increases with time, then microdischarge occurs under this calculation condition. Discharge; if the number of electrons does not change over time, this voltage is the micro-discharge threshold.

进一步地,所述二次电子发射系数δ=δtser,δts为本征二次电子的发射系数,δe为弹性散射电子的发射系数,δr为反射电子的发射系数。Further, the secondary electron emission coefficient δ = δ ts + δ e + δ r , δ ts is the emission coefficient of intrinsic secondary electrons, δ e is the emission coefficient of elastically scattered electrons, and δ r is the emission of reflected electrons. coefficient.

进一步地,电子在电磁场中的运动轨迹求解方法为:Furthermore, the solution method for the trajectory of electrons in the electromagnetic field is:

直角坐标系中,电子的轨迹由决定;In the rectangular coordinate system, the trajectory of the electron is given by Decide;

圆柱坐标系中,电子的轨迹由决定;In the cylindrical coordinate system, the trajectory of the electron is given by Decide;

其中,(x,y,z)为直角坐标系中电子在电磁场中的x、y、z向的位置,为圆柱坐标系中电子在电磁场中的径向、角向、轴向的位置,在电子所处位置上加一点代表了该方向的速度,加两点代表了该方向的加速度,E、B分别为该方向的电场和磁场,q为电子的单位电量,m为电子质量。Among them, (x, y, z) is the position of the electron in the x, y, z direction in the electromagnetic field in the Cartesian coordinate system, is the radial, angular, and axial position of the electron in the electromagnetic field in the cylindrical coordinate system. Adding one point to the position of the electron represents the speed in that direction, and adding two points represents the acceleration in that direction. E and B respectively are the electric and magnetic fields in this direction, q is the unit charge of the electron, and m is the electron mass.

进一步地,电子碰撞到边界后,更新电子进入电磁场的状态为:电子位置rin更新为电子碰撞的位置、能量Ein更新为步骤6中出射电子的能量、角度(θinin)更新为步骤6中出射电子的角度,相位tin更新为电子碰撞到边界的时刻。Further, after the electron collides with the boundary, the state of the electron entering the electromagnetic field is updated as follows: the electron position r in is updated to the position of the electron collision, the energy E in is updated to the energy of the emitted electron in step 6, and the angle (θ in , Ф in ) is updated. is the angle of the emitted electron in step 6, and the phase t in is updated to the moment when the electron collides with the boundary.

一种计算机可读存储介质,所述的计算机可读存储介质存储有计算机程序,所述的计算机程序被处理器执行时实现所述一种多粒子多碰撞微放电阈值蒙特卡罗计算方法的步骤。A computer-readable storage medium. The computer-readable storage medium stores a computer program. When the computer program is executed by a processor, the steps of the multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method are implemented. .

本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:

(1)本发明克服了现有蒙特卡罗方法在计算过程中无论碰撞电子的二次电子发射系数为何值,均仅重新产生一个电子参与下一次碰撞的问题,本发明按照实际中二次电子发射的过程,可能出射实际个数的二次电子,其出射电子个数符合一定的概率分布,但多个相同状态的电子碰撞所产生的电子个数的统计值一定等于二次电子发射系数,提升了计算结果的准确性;(1) The present invention overcomes the problem of the existing Monte Carlo method that during the calculation process, no matter what the secondary electron emission coefficient of the colliding electron is, only one electron is regenerated to participate in the next collision. According to the actual secondary electron emission process, the present invention may emit an actual number of secondary electrons, and the number of emitted electrons conforms to a certain probability distribution. However, the statistical value of the number of electrons generated by the collision of multiple electrons in the same state must be equal to the secondary electron emission coefficient, thereby improving the accuracy of the calculation results;

(2)本发明以多个初始电子的随机状态作为起始状态,计算中又包含了电子碰撞部件表面后的二次电子发射过程中所有能量的电子,显著提升了计算结果的精度;(2) The present invention uses the random state of multiple initial electrons as the starting state, and the calculation also includes electrons with all energies during the secondary electron emission process after the electrons collide with the surface of the component, significantly improving the accuracy of the calculation results;

(3)本发明在电磁场中推进电子运动轨迹的过程中,不需要按照粒子模拟的方法按照时间步长更新剖分网格内的粒子状态和网格节点上的场分布,因而避免了计算硬件开销大、费时长等问题。;(3) In the process of advancing the trajectory of electrons in the electromagnetic field, the present invention does not need to update the particle state in the grid and the field distribution on the grid nodes according to the time step according to the particle simulation method, thus avoiding the need for computing hardware. Problems such as high cost and time consuming. ;

附图说明Description of the drawings

图1为本发明方法流程示意图;Figure 1 is a schematic flow chart of the method of the present invention;

图2为本发明实施例微放电阈值计算与其他计算方法的对比结果。Figure 2 is a comparison result of micro-discharge threshold calculation and other calculation methods according to the embodiment of the present invention.

具体实施方式Detailed ways

为了更好的理解上述技术方案,下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。In order to better understand the above technical solution, the technical solution of the present application is described in detail below through the accompanying drawings and specific embodiments. It should be understood that the embodiments of the present application and the specific features in the embodiments are a detailed description of the technical solution of the present application, and This is not intended to limit the technical solution of the present application. If there is no conflict, the embodiments of the present application and the technical features in the embodiments can be combined with each other.

以下结合说明书附图对本申请实施例所提供的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法做进一步详细的说明,具体实现方式可以包括(如图1~2所示):The multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method provided by the embodiment of the present application will be further described in detail below in conjunction with the accompanying drawings of the description. The specific implementation method may include (as shown in Figures 1 to 2):

(1)按照初始电子能量、角度、相位所符合的概率分布,随机生成N个初始电子,N个初始电子状态为:位置ri、能量Ei、角度(θii),相位ti(1) According to the probability distribution consistent with the initial electron energy, angle, and phase, N initial electrons are randomly generated. The N initial electron states are: position r i , energy E i , angle (θ i , Ф i ), phase t i ;

(2)按照输入频率f,输入功率W,计算微波部件内部的电磁场;(2) Calculate the electromagnetic field inside the microwave component according to the input frequency f and input power W;

(3)更新电子进入电磁场的状态,电子状态为:位置rin、能量Ein、角度(θinin),相位tin,对于初始电子两者状态相同;(3) Update the state of the electron entering the electromagnetic field. The electronic state is: position r in , energy E in , angle (θ in , Ф in ), phase t in . For the initial electron, the two states are the same;

(4)采用四阶龙格-库塔法计算时间步长Δt内的电子运动轨迹;(4) Use the fourth-order Runge-Kutta method to calculate the electron trajectory within the time step Δt;

(5)判断时间步长Δt内的电子所处位置是否到达部件边界,如果没有到达,按照(4)不断推进,如果到达边界,记录到达边界处电子碰撞的状态:位置rp、能量Ep、角度(θpp),相位tp(5) Determine whether the position of the electron within the time step Δt reaches the component boundary. If it does not arrive, continue to advance according to (4). If it reaches the boundary, record the state of the electron collision at the boundary: position r p , energy E p , angle (θ pp ), phase t p ;

(6)采用碰撞时刻的电子能量Ep和角度(θpp),根据微波部件表面材料特性,基于Furman模型计算出二次电子发射系数(δts、δe、δr)、二次电子电子的各能谱分布(f1,e、f1,r、fn,ts)及产生n个电子的概率(6) Using the electron energy E p and angle (θ p , Ф p ) at the moment of collision, and based on the surface material characteristics of the microwave component, calculate the secondary electron emission coefficient (δ ts , δ e , δ r ), and the secondary electron emission coefficient (δ ts , δ e , δ r ) and the Furman model based on the surface material characteristics of the microwave component. Each energy spectrum distribution of subelectronic electrons (f 1,e , f 1,r , f n,ts ) and the probability of generating n electrons

(6a)产生0~1内的随机数RAND1,比较RND1与Pn,判断出实际产生的电子个数n;(6a) Generate a random number RAND 1 within the range of 0 to 1, compare RND 1 and P n , and determine the actual number of electrons generated n;

(6b)若n=0,不产生二次电子;(6b) If n=0, no secondary electrons are produced;

(7)若n=1,根据X(1)=f1,e+f1,r+f1,ts的概率分布计算出射电子的能量Es1,其中,f1,e为产生1个弹性散射电子的能谱,f1,r为产生1个反射电子的能谱,f1,ts为产生1个本征二次电子的能谱;; ( 7 ) If n =1, calculate the energy E s1 of the ejected electron according to the probability distribution of The energy spectrum of scattered electrons, f 1,r is the energy spectrum that produces one reflected electron, f 1,ts is the energy spectrum that produces one intrinsic secondary electron;;

若n≥2,根据X(n)=fn,ts的概率分布计算出射电子的能量Es1、Es2…EsnIf n≥2, calculate the energy of the ejected electron E s1 , E s2 ...E sn according to the probability distribution of X(n)=f n,ts ;

(8)判断是否达到设定的截止条件,如果达到判断是否发生微放电,如果没有达到,返回步骤(3)。(8) Determine whether the set cut-off condition is reached. If it is reached, determine whether micro-discharge occurs. If it is not reached, return to step (3).

具体的,在本申请实施例所提供的方案中,包括如下步骤:平行平板,1mm间隙,表面采用Furman-Ag材料Specifically, the solution provided in the embodiment of this application includes the following steps: parallel flat plates, 1 mm gap, and Furman-Ag material on the surface

(1)产生N=1000个初始电子,1000个初始电子能量E0满足分布σ=3eV,μ=5eV;初始电子角度满足分布f(θ0)-sin2θ0;初始电子方位角/>在[0,2π]随机分布,初始电子相位t0在[0,Twave]随机分布,则出射电子速度为 (1) Generate N = 1000 initial electrons, and the energy E 0 of 1000 initial electrons satisfies the distribution σ=3eV, μ=5eV; the initial electron angle satisfies the distribution f(θ 0 )-sin2θ 0 ; the initial electron azimuth angle/> Randomly distributed in [0, 2π], the initial electron phase t 0 is randomly distributed in [0, T wave ], then the exit electron speed is

(2)计算x=1mm间隙的平行平板电磁场,频率依次设定为f=1.06GHz、2.14GHz、3.71GHz、5.33GHz、7.97GHz,其内部电磁场由下式确定E=[-Vsin(ωt-βz),0,0] (2) Calculate the electromagnetic field of parallel plates with a gap of x=1mm. The frequencies are set to f=1.06GHz, 2.14GHz, 3.71GHz, 5.33GHz, and 7.97GHz. The internal electromagnetic field is determined by the following formula E=[-Vsin(ωt- βz),0,0]

(3)电子进入电磁场的状态初始时刻/> (3) The state of electrons entering the electromagnetic field Initial time/>

(4)电子在电磁场中运动轨迹的推进由四阶龙格-库塔法求解,(4) The advancement of electron motion trajectories in the electromagnetic field is solved by the fourth-order Runge-Kutta method,

设定时间步长Δt=Twave/50,在dt范围内按照上式求解电子轨迹,第一次求解时[vx vy vz]为步骤(1)求解的初始电子初速度;Set the time step Δt = T wave /50, and solve the electron trajectory according to the above formula within the dt range. When solving for the first time, [v x v y v z ] is the initial electron velocity solved in step (1);

(5)每在Δt时间步长内求解一次电子轨迹就判断电子的x向轨迹是否满足x>1mm或者x<0mm,如果不满足,进入步骤(4),[vx vy vz]设定为步骤(4)上一次求解结果;(5) Every time the electron trajectory is solved within the Δt time step, it is judged whether the x-direction trajectory of the electron satisfies x>1mm or x<0mm. If not, go to step (4). [v x v y v z ] Let It is determined as the last solution result of step (4);

(6)电子此时与器件表面发生碰撞,碰撞位置xp,碰撞时刻tp,碰撞次数collsion_num=1(后续每碰撞一次,collsion_num+1),碰撞速度通过步骤(4)求解的结果得到[vpx vpy vpz],则相对于材料表面入射电子能量入射电子角度/>根据Furman模型计算出出射的电子个数、二次电子发射系数δ1及能量,假设出射了2个电子,对应能量为[Es1,Es2],角度/> (6) The electron collides with the device surface at this time, the collision position x p , the collision time t p , the number of collisions collsion_num=1 (for each subsequent collision, collsion_num+1), the collision speed is obtained from the result of step (4) [ v px v py v pz ], then relative to the incident electron energy on the material surface Incident electron angle/> Calculate the number of emitted electrons, secondary electron emission coefficient δ 1 and energy according to the Furman model. Assume that 2 electrons are emitted, and the corresponding energy is [E s1 , E s2 ], angle/>

(7)判断collsion_num<10000,如果没有则返回步骤(3),电子进入电磁场状态分别为/>和/> (7) Determine collsion_num<10000, if not, return to step (3), and the electron enters the electromagnetic field state respectively/> and/>

判断是否发生微放电的方法包括如下步骤:The method to determine whether micro-discharge has occurred includes the following steps:

若以循环次数collsion_num作为判断微放电阈值方法,则当collsion_num>10000时,计算δequl=(δ12+…+δcollsion_num)/collsion_num;其中,δ1、δ2、…、δcollsion_num分别为第i次碰撞的二次电子发射系数平均值;如果δequl>1,则该计算条件下发生微放电;如果δequl<1,则该计算条件下不发生微放电;如果δequl=1,该电压为微放电阈值电压。If the number of cycles collsion_num is used as the method to determine the micro-discharge threshold, then when collsion_num>10000, calculate δ equl = (δ 1 + δ 2 +...+δ collsion_num )/collsion_num; where, δ 1 , δ 2 ,..., δ collsion_num are respectively the average value of the secondary electron emission coefficient of the i-th collision; if δ equl >1, then micro-discharge occurs under this calculation condition; if δ equl <1, then micro-discharge does not occur under this calculation condition; if δ equl =1, this voltage is the micro-discharge threshold voltage.

进一步,二次电子发射系数δ=δtser,δts为本征二次电子的发射系数,δe为弹性散射电子的发射系数,δr为反射电子的发射系数。Further, the secondary electron emission coefficient δ = δ ts + δ e + δ r , δ ts is the emission coefficient of intrinsic secondary electrons, δ e is the emission coefficient of elastically scattered electrons, and δ r is the emission coefficient of reflected electrons.

若以随时间演化的电子数目变化趋势作为判断微放电阈值方法,则电子数目随时间而减少,则该计算条件下不发生微放电;如电子数目随时间而增多,则该计算条件下发生微放电;如果电子数目随时间不变,则该电压为微放电阈值。If the change trend of the number of electrons that evolves over time is used as the method to judge the microdischarge threshold, then the number of electrons decreases with time, then microdischarge does not occur under this calculation condition; if the number of electrons increases with time, then microdischarge occurs under this calculation condition. Discharge; if the number of electrons does not change over time, this voltage is the micro-discharge threshold.

进一步,电子在电磁场中的运动轨迹求解方法为:Furthermore, the solution method for the trajectory of electrons in the electromagnetic field is:

直角坐标系中,电子的轨迹由决定;In the rectangular coordinate system, the trajectory of the electron is given by Decide;

圆柱坐标系中,电子的轨迹由决定;In the cylindrical coordinate system, the trajectory of the electron is given by Decide;

其中,(x,y,z)为直角坐标系中电子在电磁场中的x、y、z向的位置,为圆柱坐标系中电子在电磁场中的径向、角向、轴向的位置,在电子所处位置上加一点代表了该方向的速度,加两点代表了该方向的加速度,E、B分别为该方向的电场和磁场,q为电子的单位电量,m为电子质量。Among them, (x, y, z) is the position of the electron in the x, y, z direction in the electromagnetic field in the Cartesian coordinate system, is the radial, angular, and axial position of the electron in the electromagnetic field in the cylindrical coordinate system. Adding one point to the position of the electron represents the speed in that direction, and adding two points represents the acceleration in that direction. E and B respectively are the electric and magnetic fields in this direction, q is the unit charge of the electron, and m is the electron mass.

可选的,在一种可能实现的方式中,电子碰撞到边界后,更新电子进入电磁场的状态为:电子位置rin更新为电子碰撞的位置、能量Ein更新为步骤6中出射电子的能量、角度(θinin)更新为步骤6中出射电子的角度,相位tin更新为电子碰撞到边界的时刻。Optionally, in a possible way, after the electron collides with the boundary, the state of the electron entering the electromagnetic field is updated as follows: the electron position r in is updated to the position of the electron collision, and the energy E in is updated to the energy of the ejected electron in step 6. , the angle (θ in , Ф in ) is updated to the angle of the emitted electron in step 6, and the phase t in is updated to the moment when the electron collides with the boundary.

基于蒙特卡罗方法的传统MC、单粒子-多碰撞(MC1)、多粒子-单碰撞(MC2)、多粒子-多碰撞(MC3)的计算结果来自文献(林舒,闫杨娇,李永东,刘纯亮2014物理学报63147902),CST软件的计算结果来自文献(王洪广,翟永贵,李记肖,李韵,王瑞,王新波,崔万照,李永东2016物理学报65 237901),本方法计算结果如图2所示,计算效率如表1所示。The calculation results of traditional MC, single particle-multiple collision (MC1), multi-particle-single collision (MC2), and multi-particle-multiple collision (MC3) based on the Monte Carlo method are from the literature (Lin Shu, Yan Yangjiao, Li Yongdong, Liu Chunliang 2014 Acta Physica Sinica 63147902), the calculation results of CST software are from the literature (Wang Hongguang, Zhai Yonggui, Li Jixiao, Li Yun, Wang Rui, Wang Xinbo, Cui Wanzhao, Li Yongdong 2016 Acta Physica Sinica 65 237901), the calculation results of this method are shown in Figure 2 , the calculation efficiency is shown in Table 1.

表1平板传输线微放电阈值计算效率比较Table 1 Comparison of calculation efficiency of micro-discharge threshold of flat plate transmission lines

本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行图1所述的方法。The present application provides a computer-readable storage medium. The computer-readable storage medium stores computer instructions. When the computer instructions are run on a computer, they cause the computer to execute the method described in Figure 1 .

本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will understand that embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, magnetic disk storage and optical storage, etc.) embodying computer-usable program code therein.

本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in one process or multiple processes of the flowchart and/or one block or multiple blocks of the block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions The device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present application without departing from the spirit and scope of the present application. In this way, if these modifications and variations of the present application fall within the scope of the claims of the present application and equivalent technologies, the present application is also intended to include these modifications and variations.

本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。Contents not described in detail in the specification of the present invention are well-known technologies to those skilled in the art.

Claims (9)

1.一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于,包括如下步骤:1. A multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method, which is characterized by including the following steps: S1,按照初始电子能量、角度、相位所符合的概率分布,随机生成N个初始电子,N个初始电子状态为:位置ri、能量Ei、角度(θii),相位tiS1, according to the probability distribution consistent with the initial electron energy, angle, and phase, N initial electrons are randomly generated. The N initial electron states are: position r i , energy E i , angle (θ i , Ф i ), phase t i ; S2,按照输入频率f和输入功率W,计算微波部件内部的电磁场;S2, calculate the electromagnetic field inside the microwave component according to the input frequency f and input power W; S3,更新电子进入电磁场的状态,电子状态为:位置rin、能量Ein、角度(θinin),相位tin,对于初始电子两者状态相同;S3, update the state of the electron entering the electromagnetic field. The electronic state is: position r in , energy E in , angle (θ in , Ф in ), phase t in . For the initial electron, the two states are the same; S4,计算时间步长Δt内的电子运动轨迹;S4, calculate the electron motion trajectory within the time step Δt; S5,判断时间步长Δt内的电子所处位置是否到达部件边界,如果没有到达,重复S4~S5;反之,则记录到达边界处电子碰撞的状态:位置rp、能量Ep、角度(θpp),相位tpS5, determine whether the position of the electron within the time step Δt has reached the component boundary. If it has not arrived, repeat S4~S5; otherwise, record the state of the electron collision at the boundary: position r p , energy E p , angle (θ pp ), phase t p ; S6,采用碰撞时刻的电子能量Ep和角度(θpp),根据微波部件表面材料特性,计算出二次电子发射系数(δts、δe、δr)、二次电子的各能谱分布(f1,e、f1,r、fn,ts)及产生n个电子的概率Pn,并计算出射电子的能量Esi、角度(θsisi);i=0,1,…,n;S6, use the electron energy E p and angle (θ p , Ф p ) at the moment of collision, and calculate the secondary electron emission coefficient (δ ts , δ e , δ r ), and the secondary electron emission coefficients (δ ts , δ e , δ r ) and the secondary electron emission coefficients according to the surface material characteristics of the microwave component. Energy spectrum distribution (f 1,e , f 1,r , f n,ts ) and the probability of generating n electrons P n , and calculate the energy E si and angle (θ si , Ф si ) of the ejected electron; i=0 ,1,…,n; S7,判断是否达到设定的截止条件,如果达到,则判断是否发生微放电,并结束;如果没有达到,则返回S3;S7, determine whether the set cut-off condition is reached. If it is reached, determine whether micro-discharge occurs and end; if it is not reached, return to S3; 所述判断是否发生微放电的方法包括如下步骤:The method for determining whether microdischarge occurs includes the following steps: 若以循环次数collsion_num作为判断微放电阈值方法,则计算δequl=(δ12+…+δcollsion_num)/collsion_num;其中,δ1、δ2、…、δcollsion_num分别为第i次碰撞的二次电子发射系数平均值;如果δequl>1,则该计算条件下发生微放电;如果δequl<1,则该计算条件下不发生微放电;如果δequl=1,则输入电压为微放电阈值电压;If the number of cycles collsion_num is used as the method to determine the micro-discharge threshold, then calculate δ equl = (δ 1 + δ 2 +...+δ collsion_num )/collsion_num; where δ 1 , δ 2 ,..., δ collsion_num are the i-th collision respectively. The average value of the secondary electron emission coefficient of Micro-discharge threshold voltage; 若以随时间演化的电子数目变化趋势作为判断微放电阈值方法,则电子数目随时间而减少,则该计算条件下不发生微放电;如电子数目随时间而增多,则该计算条件下发生微放电;如果电子数目随时间不变,则该电压为微放电阈值。If the change trend of the number of electrons that evolves over time is used as the method to judge the microdischarge threshold, then the number of electrons decreases with time, then microdischarge does not occur under this calculation condition; if the number of electrons increases with time, then microdischarge occurs under this calculation condition. Discharge; if the number of electrons does not change over time, this voltage is the micro-discharge threshold. 2.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于:所述产生n个电子的概率为2. A multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method according to claim 1, characterized in that: the probability of generating n electrons is 其中,分别为不产生本征二次电子的概率,产生1个本征二次电子的概率,产生n个本征二次电子的概率。in, They are respectively the probability of not generating intrinsic secondary electrons, the probability of generating 1 intrinsic secondary electron, and the probability of generating n intrinsic secondary electrons. 3.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于,所述计算出射电子的能量Es的方法包括如下步骤:3. A kind of multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method according to claim 1, characterized in that the method for calculating the energy Es of ejected electrons includes the following steps: 产生0~1内的随机数RAND1,比较RAND1与产生n个电子的概率Pn,判断出实际产生的电子个数n;Generate a random number RAND 1 between 0 and 1, compare RAND 1 with the probability P n of generating n electrons, and determine the actual number n of electrons generated; 若n=0,不产生二次电子;If n=0, no secondary electrons are produced; 若n=1,根据X(1)=f1,e+f1,r+f1,ts的概率分布计算出射电子的能量Es1,其中,f1,e为产生1个弹性散射电子的能谱,f1,r为产生1个反射电子的能谱,f1,ts为产生1个本征二次电子的能谱;If n = 1 , calculate the energy E s1 of the ejected electron according to the probability distribution of Energy spectrum, f 1,r is the energy spectrum that produces one reflected electron, f 1,ts is the energy spectrum that produces one intrinsic secondary electron; 若n≥2,根据X(n)=fn,ts的概率分布计算不同电子个数下出射电子的能量Es1、Es2…Esn;其中,fn,ts为产生n个本征二次电子的能谱。If n≥2, calculate the energy E s1 , E s2 ... E sn of the emitted electrons under different numbers of electrons according to the probability distribution of Energy spectrum of secondary electrons. 4.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于,第i个出射电子的出射角度(θsisi)按照如下步骤计算:4. A multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method according to claim 1, characterized in that the emission angle (θ si , Ф si ) of the i-th emitted electron is calculated according to the following steps: sinθsi为[-1,1]之间抽样的随机数,Фsi为[0,2π]之间抽样的随机数。sinθ si is a random number sampled between [-1,1], Ф si is a random number sampled between [0,2π]. 5.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于:所述截止条件为达到最大循环次数,或计算时间,或电子数目,或人为设定的其他条件。5. The Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold according to claim 1, characterized in that: the cutoff condition is reaching the maximum number of cycles, or the calculation time, or the number of electrons, or other conditions set artificially. 6.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于:所述二次电子发射系数δ=δtser,δts为本征二次电子的发射系数,δe为弹性散射电子的发射系数,δr为反射电子的发射系数。6. A multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method according to claim 1, characterized in that: the secondary electron emission coefficient δ = δ ts + δ e + δ r , δ ts is the basis represents the emission coefficient of secondary electrons, δ e is the emission coefficient of elastically scattered electrons, and δ r is the emission coefficient of reflected electrons. 7.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于:电子在电磁场中的运动轨迹求解方法为:7. A multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method according to claim 1, characterized in that: the method for solving the trajectory of electrons in the electromagnetic field is: 直角坐标系中,电子的轨迹由决定;In the rectangular coordinate system, the trajectory of the electron is given by Decide; 圆柱坐标系中,电子的轨迹由决定;In the cylindrical coordinate system, the trajectory of the electron is given by Decide; 其中,(x,y,z)为直角坐标系中电子在电磁场中的x、y、z向的位置,为圆柱坐标系中电子在电磁场中的径向、角向、轴向的位置,在电子所处位置的符号上加一点代表原符号表示方向的速度,加两点代表原符号表示方向的加速度,E、B分别为其符号下标表示方向的电场和磁场,q为电子的单位电量,m为电子质量。Among them, (x, y, z) is the position of the electron in the x, y, z direction in the electromagnetic field in the Cartesian coordinate system, is the radial, angular, and axial position of the electron in the electromagnetic field in the cylindrical coordinate system. Add one point to the symbol of the electron's position to represent the velocity in the direction represented by the original symbol, and add two points to represent the acceleration in the direction represented by the original symbol. E and B are the electric and magnetic fields whose sign subscripts indicate the direction respectively, q is the unit charge of the electron, and m is the electron mass. 8.根据权利要求1所述的一种多粒子多碰撞微放电阈值蒙特卡罗计算方法,其特征在于,电子碰撞到边界后,更新电子进入电磁场的状态为:电子位置rin更新为电子碰撞的位置、能量Ein更新为步骤6中出射电子的能量、角度(θinin)更新为步骤6中出射电子的角度,相位tin更新为电子碰撞到边界的时刻。8. A multi-particle multi-collision micro-discharge threshold Monte Carlo calculation method according to claim 1, characterized in that after the electron collides with the boundary, the state of the electron entering the electromagnetic field is updated as: the electron position r in is updated as the electron collision The position and energy E in are updated to the energy of the emitted electron in step 6, the angle (θ in , Ф in ) is updated to the angle of the emitted electron in step 6, and the phase t in is updated to the moment when the electron collides with the boundary. 9.一种计算机可读存储介质,所述的计算机可读存储介质存储有计算机程序,其特征在于,所述的计算机程序被处理器执行时实现如权利要求1~权利要求8任一所述方法的步骤。9. A computer-readable storage medium, the computer-readable storage medium stores a computer program, characterized in that, when the computer program is executed by a processor, the computer program implements any one of claims 1 to 8. Method steps.
CN202110962547.XA 2021-08-20 2021-08-20 A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold Active CN113792471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110962547.XA CN113792471B (en) 2021-08-20 2021-08-20 A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110962547.XA CN113792471B (en) 2021-08-20 2021-08-20 A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold

Publications (2)

Publication Number Publication Date
CN113792471A CN113792471A (en) 2021-12-14
CN113792471B true CN113792471B (en) 2024-03-26

Family

ID=79181976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110962547.XA Active CN113792471B (en) 2021-08-20 2021-08-20 A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold

Country Status (1)

Country Link
CN (1) CN113792471B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114004133B (en) * 2022-01-04 2022-05-03 电子科技大学 Non-Equal Weight Macroparticle Correction Method for Electron Collision Ionization Monte Carlo Model
CN114970210B (en) * 2022-06-29 2024-08-16 西安交通大学 A method and system for drawing micro-discharge sensitive areas based on pre-stored trajectory data
CN115099074B (en) * 2022-06-29 2024-05-24 西安交通大学 Microdischarge threshold prediction method and system based on 1D3V statistical theory modeling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567780A (en) * 2011-12-29 2012-07-11 西安空间无线电技术研究所 Space microwave component low pressure discharge value simulation method
CN102930100A (en) * 2012-10-31 2013-02-13 西安空间无线电技术研究所 Method for predicting micro discharge threshold of cavity filter
CN108920732A (en) * 2018-03-28 2018-11-30 西安空间无线电技术研究所 A kind of dielectric material load microwave component micro-discharge threshold fast determination method
DE102018002060A1 (en) * 2018-03-12 2019-09-12 Bernhard Krieg METHOD AND APPARATUS FOR RELEASE OF SURPLUS HEAT IN HYDROGEN METAL SYSTEMS BY DIELECTRIC BARRIER DISCHARGING AND ITS COMBINATION WITH OTHER ACTIVATION PROCEDURES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567780A (en) * 2011-12-29 2012-07-11 西安空间无线电技术研究所 Space microwave component low pressure discharge value simulation method
CN102930100A (en) * 2012-10-31 2013-02-13 西安空间无线电技术研究所 Method for predicting micro discharge threshold of cavity filter
DE102018002060A1 (en) * 2018-03-12 2019-09-12 Bernhard Krieg METHOD AND APPARATUS FOR RELEASE OF SURPLUS HEAT IN HYDROGEN METAL SYSTEMS BY DIELECTRIC BARRIER DISCHARGING AND ITS COMBINATION WITH OTHER ACTIVATION PROCEDURES
CN108920732A (en) * 2018-03-28 2018-11-30 西安空间无线电技术研究所 A kind of dielectric material load microwave component micro-discharge threshold fast determination method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DBD大气压等离子体的数值模拟研究进展;张文静;张梅;钟方川;;江西科学(第03期);42-46 *
基于临界电子密度的多载波微放电全局阈值分析;王新波;李永东;崔万照;李韵;张洪太;张小宁;刘纯亮;;物理学报(第04期);301-310 *
基于频域电磁场的微波器件微放电阈值快速粒子模拟;王洪广;翟永贵;李记肖;李韵;王瑞;王新波;崔万照;李永东;;物理学报(第23期);281-287 *
铁氧体环形器微放电阈值快速粒子模拟;翟永贵;王瑞;王洪广;李记肖;李韵;李永东;;真空电子技术(第02期);17-19+34 *

Also Published As

Publication number Publication date
CN113792471A (en) 2021-12-14

Similar Documents

Publication Publication Date Title
CN113792471B (en) A Monte Carlo calculation method for multi-particle multi-collision micro-discharge threshold
CN110442919B (en) Microwave component micro-discharge numerical simulation method based on GPU (graphics processing Unit) architecture
CN103425864B (en) Analysis of Electromagnetic Scattering method applied to metal complexity inhomogeneous medium compound target
CN110414053B (en) Time domain numerical simulation method for rapidly determining micro-discharge threshold of component
CN110543740B (en) A method based on microdischarge research in rectangular curved waveguide
Kee et al. Optimizing high-frequency PO-SBR on GPU for multiple frequencies
Kissami et al. Manapy: MPI-Based framework for solving partial differential equations using finite-volume on unstructured-grid
KR20200140061A (en) Electromagnetic numerical analysis method
CN116992746A (en) A Monte Carlo macroparticle merging method based on particle simulation
CN115099074B (en) Microdischarge threshold prediction method and system based on 1D3V statistical theory modeling
CN116720409B (en) A method for calculating the electromagnetic scattering field of moving time-varying dispersive medium targets
Cervera-Marín et al. A Genetically Based Algorithm to Improve Execution Speed in Multipactor Simulations in Parallel-Plate Waveguides
Berrutti et al. Multipacting Simulations of SSR2 Cavity at FNAL.
Song et al. Multicarrier multipactor analysis based on branching levy walk hypothesis
Shang et al. The Law of Secondary Electron Multiplication of Aluminum under Different Frequency Microwaves
Mader et al. Experimental validation of fringing field effects for the multipactor phenomenon
Ives et al. Development of 3-D finite-element charged-particle code with adaptive meshing
Du et al. Research on Acceleration of a Electron Gun Simulation Module
Nalecz et al. An Open Platform Tool for 2D Multipactor Simulations in Metallic Microwave Components
Gürel et al. Solutions of extremely large electromagnetics problems involving tens of millions of unknowns using parallel MLFMA and preconditioners
Kronhaus et al. 2D particle-in-cell channel simulation of the narrow channel Hall thruster
Bettencourt et al. Virtual prototyping of directed energy weapons
Raboso A Genetically Based Algorithm to Improve Execution Speed in Multipactor Simulations in Parallel-Plate Waveguides
Romanov Dynamic of one-side multipactor on dielectric
Candel Simulation of electron source for next-generation X-ray free-electron laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant