CN113782202B - 一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法 - Google Patents
一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法 Download PDFInfo
- Publication number
- CN113782202B CN113782202B CN202111012471.0A CN202111012471A CN113782202B CN 113782202 B CN113782202 B CN 113782202B CN 202111012471 A CN202111012471 A CN 202111012471A CN 113782202 B CN113782202 B CN 113782202B
- Authority
- CN
- China
- Prior art keywords
- plane
- virtual
- dou
- included angle
- lcc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000001765 aortic valve Anatomy 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000012502 risk assessment Methods 0.000 title claims abstract description 8
- 238000000605 extraction Methods 0.000 claims description 6
- 230000000747 cardiac effect Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 abstract description 2
- 238000013486 operation strategy Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000003709 heart valve Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明公开了一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,包括:基于三维医学图像提取主动脉瓣根部三个窦的窦底坐标;由三个窦的窦底坐标确定虚拟瓣环平面,提取虚拟瓣环平面法向量;计算虚拟瓣环平面与水平面的夹角θ;通过夹角θ评估横位心风险。本发明的技术方案用于自动计算虚拟瓣环平面夹角并基于计算结果提示横位心风险,方便术者在术前更好、更全面地进行手术评估,以便调整、选择合适的手术策略,从而帮助医生更好地开展经导管主动脉瓣置换术。
Description
技术领域
本发明属于医学图像处理技术领域,具体涉及一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法。
背景技术
经导管主动脉瓣置换术(Transcatheter Aortic Valve Replacement,TAVR)是一种全新的微创瓣膜置换手术,在X线透视下通过介入导管将生物瓣膜送入主动脉瓣口,瓣膜到位后形成人工生物瓣,替代损坏的瓣膜。这种术式不需要开胸、心脏停跳及体外循环等传统外科心脏瓣膜置换手术过程。
手术过程中,是否能将生物瓣膜输送到合适的位置,将很大程度上决定手术是否成功。而横位心(在冠状面上测量得到的虚拟瓣环平面与水平线夹角较大)的存在大大增加了生物瓣膜的输送难度,甚至可能影响术者输送策略的选择。
横位心患者并不少见,但通常情况下需要术者通过经验评估并借助医学图像软件通过复杂的手动交互来确定主动脉成角来推断患者横位心风险。这既要求医生有较高的软件操作经验,并且需要花费不少时间,因此需要一种能够自动评估横位心风险的方法,既能帮助医生做好术前评估,又能大大减少术者操作的时间。
发明内容
本发明的目的是针对现有技术存在的不足,提供一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,包括:
步骤1:获取主动脉瓣及相关组织的三维医学图像数据;
步骤2:提取主动脉瓣三个窦的窦底坐标,并表示为:左冠窦窦底坐标LCC(x,y,z),右冠窦窦底坐标RCC(x,y,z),无冠窦窦底坐标NCC(x,y,z);
步骤3:所述三个窦底组成虚拟瓣环平面,计算所述虚拟瓣环平面与水平面的夹角θ;
步骤4:横位心风险评估。
进一步地,所述三维医学图像数据可为任意类型的包含人体主动脉瓣信息的医学图像数据。
进一步地,所述提取主动脉瓣窦底坐标可通过自动提取算法获取,或者通过手动选取。
进一步地,步骤3中的虚拟瓣环平面夹角θ的计算方法为:
a.由左窦窦底坐标和右窦窦底坐标确定一个向量n2:
n2=RCC-LCC
n2x=RCCx-LCCx
n2y=RCCy-LCCy
n2z=RCCz-LCCz
b.由左窦窦底坐标和无窦窦底坐标确定一个向量n3:
n3=NCC-LCC
n3x=NCCx-LCCx
n3y=NCCy--LCCy
n3z=NCCz-LCCz
c.确定所述虚拟瓣环平面法向量为n1(A,B,C):
n1=n2×n3
A=n2y*n3z-n3y*n2z
B=-(n2x*n3z-n3x*n2z)
C=n2x*n3y-n3x*n2y
d.确定所述虚拟瓣环平面与水平面夹角θ,水平面法向量为n4(0,0,1):
进一步地,步骤4中所述的横位心风险评估为:
a.当50°<θ≤60°时,提示为轻度横位心;
b.当60°<θ≤70°时,提示为中度横位心;
c.当70°<θ≤80°时,提示为重度横位心;
d.当θ>80°时,提示为极重度横位心。
本发明的技术效果:
本发明的技术方案用于自动计算虚拟瓣环平面与水平面的夹角并根据计算结果提示横位心风险,方便术者在术前更好、更全面地进行手术评估,以便调整、选择合适的手术策略,从而帮助医生更好地开展经导管主动脉瓣置换术。
附图说明
图1本发明的基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法流程示意图;
图2本发明的实施例中的虚拟瓣环平面与水平面的夹角示意图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,实施例仅用于说明本发明而不用于限制本发明的保护范围。此外,应理解,在阅读了本发明所公开的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的保护范围之内。
如图1所示,本发明的基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法包括以下4个步骤:
步骤1:获取主动脉瓣及相关组织的三维医学图像数据。具体来说,上述三维医学图像数据应包含人体主动脉瓣根部信息,可为任意医学图像数据类型,例如CT、MRI或US等模态。
步骤2:提取主动脉瓣三个窦的窦底坐标。具体地,上述提取主动脉瓣三个窦的窦底坐标的方法可为自动提取算法获取,或者通过手动选取。自动提取算法可为机器学习方法,也可为分水岭算法等传统图像处理算法,手动提取方法可通过三维图像浏览工具,利用多平面重建(MPR)功能,通过手动选择提取三个窦的窦底坐标。将三个窦底坐标表示为:左冠窦窦底坐标LCC(x,y,z),右冠窦窦底坐标RCC(x,y,z),无冠窦窦底坐标NCC(x,y,z)。
步骤3:如图2所示,所述三个窦底组成虚拟瓣环平面,计算虚拟瓣环平面和水平面之间的夹角θ,具体方法为:
a.由左窦窦底坐标和右窦窦底坐标确定一个向量n2:
n2=RCC-LCC
n2x=RCCx-LCCx
n2y=RCCy-LCCy
n2z=RCCz-LCCz
b.由左窦窦底坐标和无窦窦底坐标确定一个向量n3:
n3=NCC-LCC
n3x=NCCx-LCCx
n3y=NCCy-LCCy
n3z=NCCz-LCCz
c.确定所述虚拟瓣环平面法向量为n1(A,B,C):
n1=n2×n3
A=n2y*n3z-n3y*n2z
B=-(n2x*n3z-n3x*n2z)
C=n2x*n3y-n3x*n2y
d.确定所述虚拟瓣环平面与水平面夹角θ,水平面法向量为n4(0,0,1):
步骤4:横位心风险评估,具体方案为:
a.当50°<θ≤60°时,提示为轻度横位心;
b.当60°<θ≤70°时,提示为中度横位心;
c.当70°<θ≤80°时,提示为重度横位心;
d.当θ>80°时,提示为极重度横位心。
以上对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (5)
1.一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,其特征在于,包括:
步骤1:获取主动脉瓣及相关组织的三维医学图像数据;
步骤2:提取主动脉瓣三个窦的窦底坐标,并表示为:左冠窦窦底坐标LCC(x,y,z),右冠窦窦底坐标RCC(x,y,z),无冠窦窦底坐标NCC(x,y,z);
步骤3:所述三个窦底组成虚拟瓣环平面,计算所述虚拟瓣环平面与水平面的夹角θ;
步骤4:通过所述夹角θ评估横位心风险。
2.根据权利要求1所述的基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,其特征在于,步骤3中的虚拟瓣环平面夹角θ的计算方法为:
a.由左窦窦底坐标和右窦窦底坐标确定一个向量n2:
n2=RCC-LCC;
n2x=RCCx-LCCx;
n2y=RCCy--LCCy;
n2z=RCCz-LCCz;
b.由左窦窦底坐标和无窦窦底坐标确定一个向量n3:
n3=NCC-LCC;
n3x=NCCx-LCCx;
n3y=NCCy--LCCy;
n3z=NCCz-LCCz;
c.确定所述虚拟瓣环平面法向量为n1(A,B,C):
n1=n2×n3;
A=n2y*n3z-n3y*n2z;
B=-(n2x*n3z-n3x*n2z);
C=n2x*n3y-n3x*n2y;
d.确定所述虚拟瓣环平面与水平面夹角θ,水平面法向量为n4(0,0,1):
3.根据权利要求1或2所述的基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,其特征在于,所述三维医学图像数据为任意类型的包含人体主动脉瓣信息的医学图像数据。
4.根据权利要求3所述的基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,其特征在于,提取主动脉瓣窦底坐标通过自动提取算法获取,或者通过手动选取。
5.根据权利要求4所述的基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法,其特征在于,步骤4中所述的横位心风险评估为:
a.当50°<θ≤60°时,提示为轻度横位心;
b.当60°<θ≤70°时,提示为中度横位心;
c.当70°<θ≤80°时,提示为重度横位心;
d.当θ>80°时,提示为极重度横位心。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111012471.0A CN113782202B (zh) | 2021-08-31 | 2021-08-31 | 一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111012471.0A CN113782202B (zh) | 2021-08-31 | 2021-08-31 | 一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113782202A CN113782202A (zh) | 2021-12-10 |
CN113782202B true CN113782202B (zh) | 2023-08-01 |
Family
ID=78840388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111012471.0A Active CN113782202B (zh) | 2021-08-31 | 2021-08-31 | 一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113782202B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115619750B (zh) * | 2022-10-27 | 2023-09-22 | 拓微摹心数据科技(南京)有限公司 | 一种以无冠窦为基准的tavr术中造影投照角度的计算方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103189868A (zh) * | 2011-11-02 | 2013-07-03 | 株式会社东芝 | 图像处理装置 |
US8560968B1 (en) * | 2009-03-26 | 2013-10-15 | Vinod Nair | Method and apparatus for evaluating a heart patient |
CN110473208A (zh) * | 2019-07-31 | 2019-11-19 | 上海联影智能医疗科技有限公司 | 结构形态判别方法、计算机设备和存储介质 |
CN110974318A (zh) * | 2019-11-25 | 2020-04-10 | 西安马克医疗科技有限公司 | 一种经导管主动脉瓣置换术的体外模拟装置与模拟系统 |
CN112336497A (zh) * | 2020-12-18 | 2021-02-09 | 陈宏伟 | 一种主动脉根部支架系统 |
CN112674872A (zh) * | 2020-12-22 | 2021-04-20 | 中国人民解放军陆军军医大学 | 一种主动脉复合体解剖特征测量方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058997A2 (en) * | 2005-11-11 | 2007-05-24 | The University Of Houston System | Scoring method for imaging-based detection of vulnerable patients |
US11464639B2 (en) * | 2018-01-31 | 2022-10-11 | Oregon Health & Science University | Methods for creating sinus-matched aortic valves |
GB201905335D0 (en) * | 2019-04-16 | 2019-05-29 | Sonck Jeroen | Means and devices for assessing coronary artery disease |
-
2021
- 2021-08-31 CN CN202111012471.0A patent/CN113782202B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8560968B1 (en) * | 2009-03-26 | 2013-10-15 | Vinod Nair | Method and apparatus for evaluating a heart patient |
CN103189868A (zh) * | 2011-11-02 | 2013-07-03 | 株式会社东芝 | 图像处理装置 |
CN110473208A (zh) * | 2019-07-31 | 2019-11-19 | 上海联影智能医疗科技有限公司 | 结构形态判别方法、计算机设备和存储介质 |
CN110974318A (zh) * | 2019-11-25 | 2020-04-10 | 西安马克医疗科技有限公司 | 一种经导管主动脉瓣置换术的体外模拟装置与模拟系统 |
CN112336497A (zh) * | 2020-12-18 | 2021-02-09 | 陈宏伟 | 一种主动脉根部支架系统 |
CN112674872A (zh) * | 2020-12-22 | 2021-04-20 | 中国人民解放军陆军军医大学 | 一种主动脉复合体解剖特征测量方法 |
Non-Patent Citations (3)
Title |
---|
Interventricular septum angle obtained from cardiac computed tomography for origin differentiation of outflow tract ventricular arrhythmia between left and right;Xiaomei Zhu等;Pacing Clin Electrophysiol;第45卷(第11期);第1279–1287页 * |
三维CT在经心尖主动脉瓣置换术围手术期评估中的应用-华西医院经验;王思梦;程巍;孙家瑜;朱达;陈玉成;石应康;郭应强;;中国胸心血管外科临床杂志;23(03);第258-263页 * |
主动脉Valsalva氏窦及主动脉瓣;陈锡昌;张友云;丁成萦;曾庆云;杨家齐;;解剖学杂志(04);第359-363页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113782202A (zh) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220401151A1 (en) | Dynamic planning method for needle insertion | |
US9886756B2 (en) | Method, a graphic user interface, a system and a computer program for optimizing workflow of a medical intervention | |
JP5718820B2 (ja) | 心臓弁置換術に対する自動ロードマッピング | |
JP7019694B2 (ja) | 医療処置で使用するための医療装置の選択 | |
JP5134316B2 (ja) | 医用画像診断装置 | |
US20200113636A1 (en) | Robotically-assisted surgical device, robotically-assisted surgery method, and system | |
US20130155064A1 (en) | Method and System for Aortic Valve Calcification Evaluation | |
Varnavas et al. | Increasing the automation of a 2D-3D registration system | |
John et al. | System to guide transcatheter aortic valve implantations based on interventional C-arm CT imaging | |
CN111374688B (zh) | 用于校正医学扫描的系统和方法 | |
CN113782202B (zh) | 一种基于主动脉瓣根部的虚拟瓣环平面夹角的横位心风险评估方法 | |
CN111523549A (zh) | 一种主动脉瓣评估方法、装置和计算机设备 | |
US11771508B2 (en) | Robotically-assisted surgical device, robotically-assisted surgery method, and system | |
IL260084A (en) | Adjustable registration structure | |
EP3422226A1 (en) | Device and method for predicting an unfolded state of a foldable implant in cardiovascular tissue | |
US11657519B2 (en) | Method for deformation correction | |
CN113749766B (zh) | 一种经导管主动脉瓣置换术中造影建议投射角度的计算方法 | |
JP6058454B2 (ja) | 医用画像処理装置及び医用画像処理プログラム | |
Gessat et al. | A planning system for transapical aortic valve implantation | |
EP2956065A1 (en) | Method and apparatus for image fusion based planning of c-arm angulation for structural heart disease | |
Paolucci et al. | Ultrasound based planning and navigation for non-anatomical liver resections–an Ex-Vivo study | |
Karar et al. | Towards a new image guidance system for assisting transapical minimally invasive aortic valve implantation | |
Di Perna et al. | Patient-specific access planning in minimally invasive mitral valve surgery | |
CN115619750B (zh) | 一种以无冠窦为基准的tavr术中造影投照角度的计算方法 | |
Van Linden et al. | Examining the use of imaging during T-AVI: focus on online 3D DynaCT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240115 Address after: Room 1707-1711, convention and Exhibition Center, No. 9, Yaogu Avenue, Jiangbei new area, Nanjing, Jiangsu 211899 Patentee after: Tuowei moxin data technology (Nanjing) Co.,Ltd. Patentee after: WEST CHINA HOSPITAL OF SICHUAN University Address before: Room 1707-1711, convention and Exhibition Center, No. 9, Yaogu Avenue, Jiangbei new area, Nanjing, Jiangsu 211899 Patentee before: Tuowei moxin data technology (Nanjing) Co.,Ltd. |
|
TR01 | Transfer of patent right |