CN113780670B - 基于两阶段的区域电网电动汽车调峰优化调度方法 - Google Patents

基于两阶段的区域电网电动汽车调峰优化调度方法 Download PDF

Info

Publication number
CN113780670B
CN113780670B CN202111084409.2A CN202111084409A CN113780670B CN 113780670 B CN113780670 B CN 113780670B CN 202111084409 A CN202111084409 A CN 202111084409A CN 113780670 B CN113780670 B CN 113780670B
Authority
CN
China
Prior art keywords
load
power
representing
stage
peak shaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111084409.2A
Other languages
English (en)
Other versions
CN113780670A (zh
Inventor
秦文萍
杨镜司
姚宏民
景祥
张宇
朱志龙
黄倩
李晓舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202111084409.2A priority Critical patent/CN113780670B/zh
Publication of CN113780670A publication Critical patent/CN113780670A/zh
Application granted granted Critical
Publication of CN113780670B publication Critical patent/CN113780670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Transportation (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于两阶段的区域电网电动汽车调峰优化调度方法,涉及区域智能电网领域。该调度方法根据电动汽车(Electric vehicle,EV)负荷运行特性进行分类,分别建立刚性、可调度、灵活型和智能换电4种EV负荷模型;考虑EV参与调峰的各项成本,基于模糊层次分析法(Fuzzy analytic hierarchy process,FAHP)给出EV调峰定价策略;在第一阶段以负荷峰谷差最小为目标,并在此目标下对EV调峰定价进行决策,以降低电力系统调峰容量调整区域电网负荷分布;在第二阶段依托第一阶段得到的调峰定价曲线,以EV用户充电费用最小为目标安排EV负荷。本发明相比于主流调度策略可以更有效缓解区域电网的调峰压力,降低成本,减少负荷峰谷差,提高风电光伏的消纳水平。

Description

基于两阶段的区域电网电动汽车调峰优化调度方法
技术领域
本发明涉及区域智能电网领域,具体为一种基于两阶段的区域电网电动汽车调峰优化调度方法。
背景技术
随着“双碳目标”的提出以及新能源大规模并网,电力系统发展面临巨大的挑战。目前我国多地供电形势紧张,电力系统等效负荷峰谷差在逐步增大,调峰压力也越来越大,需在用电高峰期实行错峰用电。EV作为一种新型负荷,具有可调度性和灵活性,既能将EV负荷转移到系统低谷时期,实现削峰填谷,又能通过EV馈电增强系统调峰能力。通过合理的激励引导EV充放电参与系统调峰具有重要意义,但是目前还没有成熟的EV参与调峰定价策略,相应的区域电网优化调度策略也有待进一步研究。因此,亟待建立一种电动汽车参与调峰定价策略的区域电网两阶段优化调度方法。
发明内容
本发明为了解决电力系统等效负荷峰谷差与调峰压力逐步增大、EV参与调峰还没有成熟的定价策略以及EV参与调峰积极性不高的问题,提供了一种基于两阶段的区域电网电动汽车调峰优化调度方法。
本发明是通过如下技术方案来实现的:一种基于两阶段的区域电网电动汽车调峰优化调度方法,根据电动汽车(Electric vehicle,EV)负荷运行特性进行分类,分别建立刚性、可调度、灵活型和智能换电4种EV负荷模型;考虑EV参与调峰的各项成本,基于模糊层次分析法(Fuzzy analytic hierarchy process,FAHP)给出EV调峰定价策略;在第一阶段以负荷峰谷差最小为目标,并在此目标下对EV调峰定价进行决策,以降低电力系统调峰容量调整区域电网负荷分布;在第二阶段依托第一阶段得到的调峰定价曲线,以EV用户充电费用最小为目标安排EV负荷。该优化调度方法包括综述为:在对EV负荷进行分类建模的基础上,首先基于模糊层次分析法FAHP,计及各项成本给出EV参与调峰的定价策略及模型;然后利用两阶段优化对区域电网进行优化调度,第一阶段给出定价曲线,第二阶段在定价曲线基础上进行EV调峰优化调度,具体包括如下步骤:
1)将EV负荷分为刚性EV负荷、可调度EV负荷、灵活性EV负荷以及智能换电EV负荷;其中,刚性EV负荷与常规负荷接入电网特性相似,因此将其记为常规负荷;
①可调度EV负荷的数学模型如下:
式中,是在t+1时必须增加的可调度EV负荷,/>表示t+1时刻增加的负荷,表示t+1时刻减少的负荷;Pc表示可调度EV的充电功率;/>表示满足条件T0=t+1和Tb>T的可调度EV数量;/>表示满足条件T0=t+1和Tb<T的可调度EV数量;/>为满足条件T1=t+1或Cb=Cl的可调度EV数量;/>表示EV在下一时刻的实际负荷量;
②灵活性EV负荷:
Pev,c=Cs[P1+P2-P0-Plim]
式中,Pc表示灵活性EV充电功率;Pd表示灵活性EV的放电功率;Cs表示电池容量;Pev,d表示EV的放电容量;Pev,c表示EV充电容量;t0表示EV在停止工作最后一次并网的时间,此时它的荷电状态为P0;tlim表示灵活性EV可参与馈电调度的最大时间点;t2是用户期望离网的时间;P2是在离网时用户的荷电状态期望值;
③智能换电EV负荷的数学模型如下:
式中,xn,t是换电需求,为0时表示不需要换电,为1时表示需要换电;Sn,t表示EV在t时刻的荷电状态;Sth表示EV的荷电状态阈值;SEV,t为t时刻EV换电需求量; 分别表示t时刻开始充电和结束放电的电池数量;Sc,t+1、Sd,t+1分别表示t+1时刻处于C状态和D状态的电池数量;
2)建立计及成本的电动汽车FAHP调峰定价模型:
FAHP是一种将决策问题按照总目标以及评判准则进行求解权重系数的方法,此方法适用于不同的评估对象,但对于不同的决策因素以及目标函数,权重系数会发生改变。该方法对于本文量化需求关系、政府激励以及竞争关系三种评价指标、选择最优权重系数提供了依据,增加了定价的准确性:
①EV参与调峰成本模型:
C=CGi+Cgrid+Cbat+Cs
式中,CGi、Cgrid、Cbat、Cs分别表示火电机组燃料成本、购电成本、锂电池运行与维护成本和场地建设成本;
a.火电机组燃料成本:
式中,表示机组i在t时段的发电功率;ai,bi,ci表示机组i的燃料成本系数;
b.购电成本:
式中,Cbuy,t表示分时购电单价;Pbuy,t表示区域电力系统在t时段的购电功率;
c.锂电池运行与维护成本:
式中,Dod(t)表示锂电池在t时间段的放电深度;Nlife(t)表示锂电池在t时段放电深度为Dod(t)下的循环寿命;Cinv表示锂电池初始投资;Pbat(t)表示锂电池充放电功率;ELB表示锂电池额定容量;KML为锂电池的维护成本系数;
d.场地建设成本:
Cs=Crjzl+Crjgz+Crjsb
式中,Crjzl表示日均场地租赁费用;Crjgz表示聚合商日均服务费用;Crjsb表示日均设备成本;
②EV参与调峰定价模型:
R=KC
式中,D为货币之间的换算系数;Lh为EV参与调峰的补偿价格;R为调峰的单位容量定价,θ(Fi)由FAHP确定;
a.政府激励:
式中,U为单位阶跃函数,当t≥0时,U=1;当t<0时,U=0;PGi,max表示火电机组的最大容量;
b.需求关系:
F2=a-bPLd
式中,PLd表示EV等效负荷量,a,b表示电力市场逆需求函数参数;
c.竞争关系:
3)两阶段优化调度:
①第一阶段:将一天分为24个时间段,以1h为时间尺度,以为负荷峰谷差最小为目标,得到EV参与调峰的定价曲线:
a.目标函数:
式中,Pload,t,PEV,d,t,PEV,c,t分别表示t时段常规负荷量、EV向电网放电功率和负荷功率;PW,t,PPV,t分别表示t时段的风机和光伏发电功率;T为时间周期;
b.约束条件:
Ⅰ、区域电网功率平衡约束:
Pload,t+PEV,c,t=PEV,d,t+PW,t+PPV,t+Pgrid,t+PGi,t
式中,Pload,t表示常规负荷的负荷电量;PGi,t,Pgrid,t分别表示t时段火电机组及外部电网发电功率;
Ⅱ、可调度EV约束:
式中,分别表示可调度EV充电容量上下限;/>表示可调度EV充电容量;/>表示可调度EV总负荷量;
Ⅲ、灵活性EV约束:
式中,表示t时段灵活型EV的放电容量上限;/>表示t时段灵活型EV的充电容量;/>表示t时段灵活型EV放电容量;/>表示灵活性EV总负荷量;
Ⅳ、智能换电EV约束:
0≤Sm,t,Sc,t,Sd,t,Sw,t≤Sb
0≤Sc,t+Sd,t≤kc
式中,kc表示充电机个数;表示满电量电池最小值;
Ⅴ、火电机组爬坡约束:
-PGi,down≤PGi,t-PGi,t-1≤PGi,up
式中,PGi,down,PGi,up分别表示火电机组最大向下和最大向上爬坡速率;
(2)第二阶段:将一天分为96个时间段,时间尺度为15min,以EV用户充电费用最小为优化目标,包含日内BP神经网络模拟调度与日内优化调度,对EV参与区域电网调峰进行优化调度;
a.目标函数:
F2=min{R·(Pev,dp,t+Pev,f,t+Pev,ch,t)}
式中,Pev,dp,t,Pev,f,t,Pev,ch,t分别表示参与调峰的可调度EV、灵活型EV和智能换电EV的负荷量;
b.预测误差:
式中,ΔPS-PV(t)表示t时段预调度阶段模拟光伏功率与日前预测光伏功率差值;ΔPS-W(t)表示t时段预调度阶段模拟风机功率与日前预测风机功率差值;ΔPS-load(t)表示t时段预调度阶段模拟常规负荷功率与日前预测常规负荷功率差值。
与现有技术相比本发明具有以下有益效果:本发明所提供的一种基于两阶段的区域电网电动汽车调峰优化调度方法,将EV引入区域电网参与调峰,考虑预测误差及四种EV负荷实现日内调度并进行日后验证,相比于主流调度策略可以更有效缓解区域电网的调峰压力,降低成本,减少负荷峰谷差,提高风电光伏的消纳水平;将EV参与调峰与电力辅助服务市场结合,设计了基于各项成本和三个决策因素的定价模型。第一阶段以区域电网负荷峰谷差最小,第二阶段计及预测误差,以充电费用最小为目标进行调度与日后验证,可以提升EV参与调峰的积极性。
附图说明
图1是本发明涉及的可调度EV容量预测示意图。
图2是本发明涉及的智能换电EV电池状态转换图。
图3是本发明涉及的区域电网调度模型示意图。
图4是本发明涉及的可调度EV与灵活性EV的充放电容量图。
图5是本发明涉及的智能换电站中电池数量图。
图6是本发明涉及的第一阶段EV参与调峰的定价曲线图。
图7是本发明涉及的可调度EV在第二阶段的优化调度图。
图8是本发明涉及的智能换电EV在第二阶段的优化调度图。
图9是本发明涉及的灵活性EV在第二阶段充电优化调度图。
图10是本发明涉及的灵活性EV在第二阶段放电的优化调度图。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
本实施例中的区域电网系统包含5台火电机组,具体参数如表1所示;16个80MW容量的风电场,1个50MW容量的光伏电站;电动汽车聚合商向大电网购电电价为:谷时段电价0.35元/kWh(00:00-7:00)、平时段电价0.68元/kWh(8:00-10:00,16:00-18:00,22:00-24:00)和峰时段电价1.18元/kWh(11:00-15:00,19:00-21:00);换电站参数如表2所示;政府激励措施、需求关系以及EV负荷与火电机组竞争关系三种因素的权重如表3所示。设置区域电网中有EV11000辆,分别为可调度EV5000辆,灵活性EV5000辆,智能换电EV1000辆,此时的电动汽车负荷量占区域电网总负荷约为14%。为了减少电池损耗,假设EV剩余电量20%-50%时充电,离网时间设置为7h,离网时期望负荷服从(80%-100%)的均匀分布。
表1火电机组基本参数
表2智能换电站基本参数
符号 数值 符号 数值
M 1000 Pc 50kW
kc 250 Td 1h
Ssmin 100 SOC 50/kW
Pd 50kW - -
表3定价模型各决策元素权重系数的确定
系数 θ(F1) θ(F2) θ(F3)
权重 0.3 0.4 0.3
一种基于两阶段的区域电网电动汽车调峰优化调度方法,包括对EV负荷进行分类建模;首先基于模糊层次分析法FAHP,计及各项成本给出EV参与调峰的定价策略及模型;然后利用两阶段优化对区域电网进行优化调度,第一阶段给出定价曲线,第二阶段在定价曲线基础上进行EV调峰优化调度,具体包括如下步骤:
1)将EV负荷分为刚性EV负荷、可调度EV负荷、灵活性EV负荷以及智能换电EV负荷;其中,刚性EV负荷记为常规负荷;
①可调度EV负荷的数学模型如下:
式中,是在t+1时必须增加的可调度EV负荷,/>表示t+1时刻增加的负荷,表示t+1时刻减少的负荷;Pc表示可调度EV的充电功率;/>表示满足条件T0=t+1和Tb>T的可调度EV数量;/>表示满足条件T0=t+1和Tb<T的可调度EV数量;/>为满足条件T1=t+1或Cb=Cl的可调度EV数量;/>表示EV在下一时刻的实际负荷量;
②灵活性EV负荷:
Pev,c=Cs[P1+P2-P0-Plim]
式中,Pc表示灵活性EV充电功率;Pd表示灵活性EV的放电功率;Cs表示电池容量;Pev,d表示EV的放电容量;Pev,c表示EV充电容量;t0表示EV在停止工作最后一次并网的时间,此时它的荷电状态为P0;tlim表示灵活性EV可参与馈电调度的最大时间点;t2是用户期望离网的时间;P2是在离网时用户的荷电状态期望值;
③智能换电EV负荷的数学模型如下:
式中,xn,t是换电需求,为0时表示不需要换电,为1时表示需要换电;Sn,t表示EV在t时刻的荷电状态;Sth表示EV的荷电状态阈值;SEV,t为t时刻EV换电需求量; 分别表示t时刻开始充电和结束放电的电池数量;Sc,t+1、Sd,t+1分别表示t+1时刻处于C状态和D状态的电池数量;
2)建立计及成本的电动汽车FAHP调峰定价模型:
FAHP对于量化需求关系、政府激励以及竞争关系三种评价指标,为选择最优权重系数提供了依据;
①EV参与调峰成本模型:
C=CGi+Cgrid+Cbat+Cs
式中,CGi、Cgrid、Cbat、Cs分别表示火电机组燃料成本、购电成本、锂电池运行与维护成本和场地建设成本;
a.火电机组燃料成本:
式中,表示机组i在t时段的发电功率;ai,bi,ci表示机组i的燃料成本系数;
b.购电成本:
式中,Cbuy,t表示分时购电单价;Pbuy,t表示区域电力系统在t时段的购电功率;
c.锂电池运行与维护成本:
式中,Dod(t)表示锂电池在t时间段的放电深度;Nlife(t)表示锂电池在t时段放电深度为Dod(t)下的循环寿命;Cinv表示锂电池初始投资;Pbat(t)表示锂电池充放电功率;ELB表示锂电池额定容量;KML为锂电池的维护成本系数;
d.场地建设成本:
Cs=Crjzl+Crjgz+Crjsb
式中,Crjzl表示日均场地租赁费用;Crjgz表示聚合商日均服务费用;Crjsb表示日均设备成本;
②EV参与调峰定价模型:
R=KC
式中,D为货币之间的换算系数,本实施例中为D=6.48;Lh为EV参与调峰的补偿价格;R为调峰的单位容量定价,θ(Fi)由FAHP确定;
a.政府激励:
式中,U为单位阶跃函数,当t≥0时,U=1;当t<0时,U=0;PGi,max表示火电机组的最大容量;
b.需求关系:
F2=a-bPLd
式中,PLd表示EV等效负荷量,a,b表示电力市场逆需求函数参数,本实施例中,a=12,b=0.06;
c.竞争关系:
3)两阶段优化调度:
①第一阶段:将一天分为24个时间段,以1h为时间尺度,以为负荷峰谷差最小为目标,得到EV参与调峰的定价曲线:
a.目标函数:
式中,Pload,t,PEV,d,t,PEV,c,t分别表示t时段常规负荷量、EV向电网放电功率和负荷功率;PW,t,PPV,t分别表示t时段的风机和光伏发电功率;T为时间周期;
b.约束条件:
Ⅰ、区域电网功率平衡约束:
Pload,t+PEV,c,t=PEV,d,t+PW,t+PPV,t+Pgrid,t+PGi,t
式中,Pload,t表示常规负荷的负荷电量;PGi,t,Pgrid,t分别表示t时段火电机组及外部电网发电功率;
Ⅱ、可调度EV约束:
式中,分别表示可调度EV充电容量上下限;/>表示可调度EV充电容量;/>表示可调度EV总负荷量;
Ⅲ、灵活性EV约束:
式中,表示t时段灵活型EV的放电容量上限;/>表示t时段灵活型EV的充电容量;/>表示t时段灵活型EV放电容量;/>表示灵活性EV总负荷量;Ⅳ、智能换电EV约束:
0≤Sm,t,Sc,t,Sd,t,Sw,t≤Sb
0≤Sc,t+Sd,t≤kc
式中,kc表示充电机个数;表示满电量电池最小值;
Ⅴ、火电机组爬坡约束:
-PGi,down≤PGi,t-PGi,t-1≤PGi,up
式中,PGi,down,PGi,up分别表示火电机组最大向下和最大向上爬坡速率;
(2)第二阶段:将一天分为96个时间段,时间尺度为15min,以EV用户充电费用最小为优化目标,包含日内BP神经网络模拟调度与日内优化调度,对EV参与区域电网调峰进行优化调度;
a.目标函数:
F2=min{R·(Pev,dp,t+Pev,f,t+Pev,ch,t)}
式中,Pev,dp,t,Pev,f,t,Pev,ch,t分别表示参与调峰的可调度EV、灵活型EV和智能换电EV的负荷量;
b.预测误差:
式中,ΔPS-PV(t)表示t时段预调度阶段模拟光伏功率与日前预测光伏功率差值;ΔPS-W(t)表示t时段预调度阶段模拟风机功率与日前预测风机功率差值;ΔPS-load(t)表示t时段预调度阶段模拟常规负荷功率与日前预测常规负荷功率差值。
图4是可调度EV和灵活性EV的容量上下限图,图5是智能换电EV各个状态的电池数量图,为初始数据。
图6是经过第一阶段优化之后得到的EV定价曲线图,当到达用电高峰期时,即11:00-13:00和19:00-22:00时,相应的EV充电定价最高,为225-389元/MW.h,此时EV参与调峰,充电需求较少,充电费用最低;当到达用电低谷期,即00:00-7:00、16:00-18:00和23:00-24:00时,相应的EV充电定价最低,此时EV有较大的充电需求,相对来说充电费用也会较低。说明本发明的定价策略和模型是可行的。
图7、图8分别表示可调度EV和智能换电EV在第二阶段优化之后得到的日内实际功率和日后最优功率对比图,可调度EV负荷的日内调度功率与日后验证功率曲线大体一致,但是在17:00-18:00和20:00-22:00有较大偏差,这是因为可调度EV的可调度容量较大,在参与调度时允许出现较大误差。智能换电EV的日内调度功率与日后验证曲线基本一致,但在11:00-13:00有较大差别,这是因为换电站既需要满足电池满状态数量要求,又需要在区域电网内用电高峰期时充当放电单元。
图9、图10分别表示灵活性EV的充电、放电在第二阶段优化之后得到的日内实际功率和日后最优功率对比图。灵活性EV的日内充放电调度功率和日后验证曲线基本一致,不仅平抑了充电过程中大部分时段的波动尖峰,还对放电功率进行了调整,在用电高低峰时期的充放电特征明显。
图7-10充分说明了本发明提出的EV参与调峰的策略时可行的,同时该发明的两阶段优化调度方法也是合理的。
本发明要求保护的范围不限于以上具体实施方式,而且对于本领域技术人员而言,本发明可以有多种变形和更改,凡在本发明的构思与原则之内所作的任何修改、改进和等同替换都应包含在本发明的保护范围之内。

Claims (3)

1.一种基于两阶段的区域电网电动汽车调峰优化调度方法,其特征在于:包括对EV负荷进行分类建模;首先基于模糊层次分析法FAHP,计及各项成本给出EV参与调峰的定价策略及模型;然后利用两阶段优化对区域电网进行优化调度,第一阶段给出定价曲线,第二阶段在定价曲线基础上进行EV调峰优化调度,具体包括如下步骤:
1)将EV负荷分为刚性EV负荷、可调度EV负荷、灵活性EV负荷以及智能换电EV负荷;其中,刚性EV负荷记为常规负荷;
①可调度EV负荷的数学模型如下:
式中,是在t+1时必须增加的可调度EV负荷,/>表示t+1时刻增加的负荷,/>表示t+1时刻减少的负荷;Pc表示可调度EV的充电功率;/>表示满足条件T0=t+1和Tb>T的可调度EV数量;/>表示满足条件T0=t+1和Tb<T的可调度EV数量;/>为满足条件T1=t+1或Cb=Cl的可调度EV数量;/>表示EV在下一时刻的实际负荷量;
②灵活性EV负荷:
Pev,c=Cs[P1+P2-P0-Plim]
式中,Pc表示灵活性EV充电功率;Pd表示灵活性EV的放电功率;Cs表示电池容量;Pev,d表示EV的放电容量;Pev,c表示EV充电容量;t0表示EV在停止工作最后一次并网的时间,此时它的荷电状态为P0;tlim表示灵活性EV可参与馈电调度的最大时间点;t2是用户期望离网的时间;P2是在离网时用户的荷电状态期望值;
③智能换电EV负荷的数学模型如下:
式中,xn,t是换电需求,为0时表示不需要换电,为1时表示需要换电;Sn,t表示EV在t时刻的荷电状态;Sth表示EV的荷电状态阈值;SEV,t为t时刻EV换电需求量; 分别表示t时刻开始充电和结束放电的电池数量;Sc,t+1、Sd,t+1分别表示t+1时刻处于C状态和D状态的电池数量;
2)建立计及成本的电动汽车FAHP调峰定价模型:
FAHP对于量化需求关系、政府激励以及竞争关系三种评价指标,为选择最优权重系数提供了依据;
①EV参与调峰成本模型:
C=CGi+Cgrid+Cbat+Cs
式中,CGi、Cgrid、Cbat、Cs分别表示火电机组燃料成本、购电成本、锂电池运行与维护成本和场地建设成本;
a.火电机组燃料成本:
式中,表示机组i在t时段的发电功率;ai,bi,ci表示机组i的燃料成本系数;
b.购电成本:
式中,Cbuy,t表示分时购电单价;Pbuy,t表示区域电力系统在t时段的购电功率;
c.锂电池运行与维护成本:
式中,Dod(t)表示锂电池在t时间段的放电深度;Nlife(t)表示锂电池在t时段放电深度为Dod(t)下的循环寿命;Cinv表示锂电池初始投资;Pbat(t)表示锂电池充放电功率;ELB表示锂电池额定容量;KML为锂电池的维护成本系数;
d.场地建设成本:
Cs=Crjzl+Crjgz+Crjsb
式中,Crjzl表示日均场地租赁费用;Crjgz表示聚合商日均服务费用;Crjsb表示日均设备成本;
②EV参与调峰定价模型:
R=KC
式中,D为货币之间的换算系数;Lh为EV参与调峰的补偿价格;R为调峰的单位容量定价,θ(Fi)由FAHP确定;
a.政府激励:
式中,U为单位阶跃函数,当t≥0时,U=1;当t<0时,U=0;PGi,max表示火电机组的最大容量;
b.需求关系:
F2=a-bPLd
式中,PLd表示EV等效负荷量,a,b表示电力市场逆需求函数参数;
c.竞争关系:
3)两阶段优化调度:
①第一阶段:将一天分为24个时间段,以1h为时间尺度,以为负荷峰谷差最小为目标,得到EV参与调峰的定价曲线:
a.目标函数:
式中,Pload,t,PEV,d,t,PEV,c,t分别表示t时段常规负荷量、EV向电网放电功率和负荷功率;PW,t,PPV,t分别表示t时段的风机和光伏发电功率;T为时间周期;
b.约束条件:
Ⅰ、区域电网功率平衡约束:
Pload,t+PEV,c,t=PEV,d,t+PW,t+PPV,t+Pgrid,t+PGi,t
式中,Pload,t表示常规负荷的负荷电量;PGi,t,Pgrid,t分别表示t时段火电机组及外部电网发电功率;
Ⅱ、可调度EV约束:
式中,分别表示可调度EV充电容量上下限;/>表示可调度EV充电容量;/>表示可调度EV总负荷量;
Ⅲ、灵活性EV约束:
式中,表示t时段灵活型EV的放电容量上限;/>表示t时段灵活型EV的充电容量;/>表示t时段灵活型EV放电容量;/>表示灵活性EV总负荷量;Ⅳ、智能换电EV约束:
0≤Sm,t,Sc,t,Sd,t,Sw,t≤Sb
0≤Sc,t+Sd,t≤kc
式中,kc表示充电机个数;表示满电量电池最小值;
Ⅴ、火电机组爬坡约束:
-PGi,down≤PGi,t-PGi,t-1≤PGi,up
式中,PGi,down,PGi,up分别表示火电机组最大向下和最大向上爬坡速率;
(2)第二阶段:将一天分为96个时间段,时间尺度为15min,以EV用户充电费用最小为优化目标,包含日内BP神经网络模拟调度与日内优化调度,对EV参与区域电网调峰进行优化调度;
a.目标函数:
F2=min{R·(Pev,dp,t+Pev,f,t+Pev,ch,t)}
式中,Pev,dp,t,Pev,f,t,Pev,ch,t分别表示参与调峰的可调度EV、灵活型EV和智能换电EV的负荷量;
b.预测误差:
式中,ΔPS-PV(t)表示t时段预调度阶段模拟光伏功率与日前预测光伏功率差值;ΔPS-W(t)表示t时段预调度阶段模拟风机功率与日前预测风机功率差值;ΔPS-load(t)表示t时段预调度阶段模拟常规负荷功率与日前预测常规负荷功率差值。
2.根据权利要求1所述的一种基于两阶段的区域电网电动汽车调峰优化调度方法,其特征在于:所述货币之间的换算系数D=6.48。
3.根据权利要求1所述的一种基于两阶段的区域电网电动汽车调峰优化调度方法,其特征在于:所述电力市场逆需求函数参数a,b分别取值为12和0.06。
CN202111084409.2A 2021-09-16 2021-09-16 基于两阶段的区域电网电动汽车调峰优化调度方法 Active CN113780670B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111084409.2A CN113780670B (zh) 2021-09-16 2021-09-16 基于两阶段的区域电网电动汽车调峰优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111084409.2A CN113780670B (zh) 2021-09-16 2021-09-16 基于两阶段的区域电网电动汽车调峰优化调度方法

Publications (2)

Publication Number Publication Date
CN113780670A CN113780670A (zh) 2021-12-10
CN113780670B true CN113780670B (zh) 2023-08-15

Family

ID=78844378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111084409.2A Active CN113780670B (zh) 2021-09-16 2021-09-16 基于两阶段的区域电网电动汽车调峰优化调度方法

Country Status (1)

Country Link
CN (1) CN113780670B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744662B (zh) * 2022-06-13 2022-08-26 华北电力大学 一种基于多类型电动汽车的电网调峰方法及系统
CN115549159A (zh) * 2022-10-12 2022-12-30 东南大学溧阳研究院 一种考虑调峰成本的大规模电动汽车分群调度策略
CN116910637B (zh) * 2023-04-03 2024-04-26 山东科技大学 基于改进的iga-rbf神经网络短期负荷预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024432A (zh) * 2015-07-30 2015-11-04 浙江工业大学 一种基于虚拟电价的电动汽车充放电优化调度方法
CN106877339A (zh) * 2017-04-05 2017-06-20 长沙理工大学 一种考虑电动汽车接入配电网后随机模糊潮流的分析方法
CN111626527A (zh) * 2020-06-10 2020-09-04 太原理工大学 计及可调度电动汽车快/慢充放电形式的智能电网深度学习调度方法
AU2020103444A4 (en) * 2020-11-15 2021-01-28 Beijing Kedong Electric Power Control System Co. Ltd. Evaluation method of electric vehicle aggregation transaction value based on the new generation power trade platform

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509176B2 (en) * 2012-04-04 2016-11-29 Ihi Inc. Energy storage modeling and control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024432A (zh) * 2015-07-30 2015-11-04 浙江工业大学 一种基于虚拟电价的电动汽车充放电优化调度方法
CN106877339A (zh) * 2017-04-05 2017-06-20 长沙理工大学 一种考虑电动汽车接入配电网后随机模糊潮流的分析方法
CN111626527A (zh) * 2020-06-10 2020-09-04 太原理工大学 计及可调度电动汽车快/慢充放电形式的智能电网深度学习调度方法
AU2020103444A4 (en) * 2020-11-15 2021-01-28 Beijing Kedong Electric Power Control System Co. Ltd. Evaluation method of electric vehicle aggregation transaction value based on the new generation power trade platform

Also Published As

Publication number Publication date
CN113780670A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN113780670B (zh) 基于两阶段的区域电网电动汽车调峰优化调度方法
CN111738497B (zh) 计及需求侧响应的虚拟电厂双层优化调度方法
CN110188950B (zh) 基于多代理技术的虚拟电厂供电侧和需求侧优化调度建模方法
CN108667052B (zh) 一种面向虚拟电厂优化运行的多类型储能系统规划配置方法及系统
CN111900727B (zh) 基于pso的光储充换一体化充电站协同优化调度方法和装置
CN103296682A (zh) 一种多时空尺度渐进趋优的负荷调度模式设计方法
CN111786422B (zh) 基于bp神经网络的微电网参与上层电网实时优化调度方法
CN113326467B (zh) 基于多重不确定性的多站融合综合能源系统多目标优化方法、存储介质及优化系统
CN110176765A (zh) 一种峰谷电价驱动的储能调峰日前优化调度方法
CN116109076A (zh) 能量和调峰市场下考虑需求响应的虚拟电厂优化调度方法
CN104156789A (zh) 计及储能寿命损耗的孤立微电网最优经济运行方法
CN115549159A (zh) 一种考虑调峰成本的大规模电动汽车分群调度策略
CN117096868A (zh) 一种考虑多种柔性负荷和电动汽车的微电网能量调度方法
CN115473285A (zh) 基于合作博弈论的多类型储能系统最优容量配置方法
CN116167573A (zh) 一种高铁站综合能源需求响应优化调度方法及相关装置
CN103915851B (zh) 一种递进步长和期望输出均可变的储能系统优化控制方法
CN112993992B (zh) 一种基于调峰参数灵活分档的储能辅助调峰运行优化方法
CN111882452A (zh) 综合能源系统参与需求侧响应的边际成本计算方法
CN116131303A (zh) 基于蓄能-储能-光伏电池的综合能源系统协同优化方法
CN114285093B (zh) 一种源网荷储互动调度方法及系统
CN114142517B (zh) 光蓄充一体化系统与电网并网运行的控制方法
CN115940284A (zh) 一种考虑分时电价的新能源制氢系统的运行控制策略
CN115441494A (zh) 基于柔性直流互联系统的换流站容量优化配置方法和装置
CN116191505A (zh) 一种低压台区源荷储充全局动态互动的调节方法及装置
CN114723278A (zh) 一种考虑光伏储能的社区微电网调度方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant