CN113774048B - Ethyl carbamate hydrolase mutant and preparation method and application thereof - Google Patents

Ethyl carbamate hydrolase mutant and preparation method and application thereof Download PDF

Info

Publication number
CN113774048B
CN113774048B CN202111205058.6A CN202111205058A CN113774048B CN 113774048 B CN113774048 B CN 113774048B CN 202111205058 A CN202111205058 A CN 202111205058A CN 113774048 B CN113774048 B CN 113774048B
Authority
CN
China
Prior art keywords
leu
mutant
ethyl carbamate
ala
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111205058.6A
Other languages
Chinese (zh)
Other versions
CN113774048A (en
Inventor
杨丽娟
张献
冯志平
张耀
刘君
赵金松
袁思棋
刘训
罗惠波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN202111205058.6A priority Critical patent/CN113774048B/en
Publication of CN113774048A publication Critical patent/CN113774048A/en
Application granted granted Critical
Publication of CN113774048B publication Critical patent/CN113774048B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/25Removal of unwanted matter, e.g. deodorisation or detoxification using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01075Urethanase (3.5.1.75)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention discloses an ethyl carbamate hydrolase mutant and a preparation method and application thereof, belonging to the technical field of genetic engineering and enzyme engineering. The optimum temperature of the ethyl carbamate hydrolase mutant N194V is 45 ℃ (40 ℃ for wild type), the half-life period at 40 ℃ is improved from 32.09min of the wild type to 210.04min, and the mutant N194V has better tolerance than the wild type at the temperature of more than 35 ℃. Meanwhile, the mutant N194V has improved pH stability and ethanol tolerance. The urethane hydrolase mutant can be preferably used for degrading urethane in foods and alcoholic beverages.

Description

Ethyl carbamate hydrolase mutant and preparation method and application thereof
Technical Field
The invention relates to the technical field of genetic engineering and enzyme engineering, in particular to an ethyl carbamate hydrolase mutant and a preparation method and application thereof.
Background
Ethyl Carbamate (EC), which is present in various fermented foods and alcoholic beverages, is a substance having carcinogenicity. In 2007, EC was classified as a class 2A carcinogen by International Agency for Research on cancer iarc (the International Agency for Research on cancer). The major methods for eliminating EC currently include fermentation process optimization, physical adsorption, metabolic engineering, and bio-enzymatic methods, with bio-enzymatic methods being considered the most desirable method.
The Urethane Hydrolase (UH) can hydrolyze EC to ethanol, carbon dioxide and ammonia, and has potential application value. Since the enzyme needs better stability for industrial application, the enzymological properties of the purified urethane hydrolase in the former period of the invention show that the stability is poor at 40 deg.C or above or at pH 5. Therefore, the method for carrying out the fixed-point modification on the stability of the ethyl carbamate hydrolase to obtain the ethyl carbamate hydrolase mutant with improved stability and the preparation method and application thereof are very significant.
Disclosure of Invention
In view of the above disadvantages, the present invention aims to provide a mutant of ethyl carbamate hydrolase, a preparation method and applications thereof, which can effectively solve the problem of poor stability of the existing ethyl carbamate hydrolase. The amino acid sequence of the wild type ethyl carbamate hydrolase is shown in SEQ ID No.1 by analyzing the ethyl carbamate hydrolase derived from Candida parapsilosis (China center for type culture Collection, with the collection number of CCTCC AY 2017001), and on the basis, the asparagine at position 194 is mutated into valine to obtain the ethyl carbamate hydrolase mutant with improved stability.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention provides an ethyl carbamate hydrolase mutant, wherein the 194 th asparagine of the mutant is mutated into valine relative to an ethyl carbamate hydrolase parent with an amino acid sequence shown in SEQ ID No. 1.
The invention also provides a preparation method of the ethyl carbamate hydrolase mutant, which comprises the following steps:
step (1): designing a site-directed mutation primer, and carrying out whole plasmid amplification by taking a vector carrying the coding gene of the ethyl carbamate hydrolase as a template to obtain a recombinant plasmid containing the mutant ethyl carbamate hydrolase;
step (2): and (2) treating the recombinant plasmid obtained in the step (1) with Dpn I enzyme, transferring the treated recombinant plasmid into E.coli BL21(DE3), performing induced expression, and purifying to obtain the ethyl carbamate hydrolase mutant.
The invention also provides application of the ethyl carbamate hydrolase mutant in degradation of ethyl carbamate in food and/or fermented alcoholic beverages.
An acid-resistant fermented preparation contains the above mutant of ethyl carbamate hydrolase as main ingredient.
It should be noted that the acid-resistant fermentation preparation provided by the invention means that the pH of the working environment is as low as 5.
An ethanol-resistant fermented preparation contains the above mutant of ethyl carbamate hydrolase as main ingredient.
It should be noted that the acid-resistant fermentation preparation provided by the invention refers to the working environment with ethanol concentration as high as 15 wt%.
A heat-resistant fermented preparation contains the above mutant of ethyl carbamate hydrolase as main ingredient.
It should be noted that the heat-resistant fermentation preparation provided by the invention means that the optimal working environment temperature is 45 ℃.
In summary, the invention has the following advantages:
1. the stability of the ethyl carbamate hydrolase mutant provided by the invention is improved, the optimum temperature of the mutant N194V is 45 ℃ (the wild type is 40 ℃), the half-life period at 40 ℃ is improved from 32.09min of the wild type to 210.04min, and the mutant N194V has better tolerance than the wild type at the temperature of more than 35 ℃. Meanwhile, the mutant N194V has improved pH stability and ethanol tolerance. The ethyl carbamate hydrolase mutant can be better applied to degrading ethyl carbamate in food and alcoholic beverages.
Drawings
FIG. 1: purifying with an affinity chromatography Ni-NTA column to obtain a pure enzyme SDS-PAGE electrophoresis picture, M: protein Marker; 1: wild-type WT; 2: mutant N194V.
FIG. 2: comparison of optimal temperatures before and after mutagenesis.
FIG. 3: influence of temperature before and after mutation on the thermostability of the wild enzyme and the mutant enzyme.
FIG. 4: comparison of optimal pH before and after mutation.
FIG. 5 is a schematic view of: the influence of pH on acid resistance of the wild enzyme and the mutant enzyme before and after mutation.
FIG. 6: ethanol tolerance effects on wild-type and mutant enzymes before and after mutation.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Thus, the following detailed description of the embodiments of the present invention is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments of the present invention without making any creative effort, shall fall within the protection scope of the present invention.
Example 1
In this example, site-directed mutagenesis and expression of the urethane hydrolase gene were carried out. The amino acid at position 194 was selected for mutation by analyzing the sequence and structure of urethane hydrolase, and the mutant primers were designed on-line using PrimerX (Table 1, in which the sequences of N194-R, N194-F and N194V-F are shown as SEQ ID No.3, SEQ ID No.4 and SEQ ID No.5, respectively). Site-directed mutagenesis was performed using the whole plasmid PCR amplification technique with the recombinant plasmid pET-28a-cpUH as template. The amplified recombinant plasmid is treated by Dpn I enzyme (acting for 1 hour at 37 ℃), transformed into E.coli DH5 alpha competence to obtain a positive transformant, and the extracted plasmid is sent to Beijing engine science and technology Limited company (Chengdu) for sequencing verification. Transformation of the correctly mutated plasmids into E.coli BL21(DE3), overnight culture and activation of E.coli BL21/pET-28a-cpUH and E.coli BL21/pET-28a-cpUH (N194V), inoculation of seed solutions at 2% inoculum size into fresh LB medium, cultivation at 37 ℃ and 180r/min to OD 600 0.6-0.8, adding IPTG with the final concentration of 0.25mmol/L, and carrying out induction culture at 25 ℃ for 8 h.
The cultured recombinant bacteria E.coli BL21/pET-28a-cpUH and E.coli BL21/pET-28a-cpUH (N194V) bacterial liquid are collected at 4 ℃ and 7000 r/min. After washing the cells with 20mmol/L PBS (pH 7.4) 2 times, the cells were resuspended and sonicated in an ice bath. The disrupted bacterial solution was centrifuged at 7000r/min at 4 ℃ for 30min, and the supernatant (crude enzyme solution of wild enzyme and mutant N194V) was collected. Before purification, the nickel column was equilibrated with a nickel column equilibration buffer (PBS buffer containing 250mmol/L NaCl, 20mmol/L imidazole, pH 7.4), and then the elution of the protein was carried out using an elution buffer (PBS buffer containing 250mmol/L NaCl, 20mmol/L L, pH 7.4.4 imidazole, 100 mmol/L). The purified protein samples (wild-type and mutant N194V) were then subjected to SDS-PAGE using 5% concentrated gel and 10% separation gel, stained with Coomassie Brilliant blue R250 (FIG. 1); wherein, the sequence of the ethyl carbamate hydrolase mutant is shown as SEQ ID No. 2.
TABLE 1 Ethyl carbamate hydrolase mutant primer sequences (N194V)
Figure BDA0003306515370000041
Figure BDA0003306515370000051
Example 2
In this example, the enzyme activity was measured. The specific process is as follows: accurately sucking 200 mu L of enzyme solution (PBS solution as a control) into a colorimetric tube, adding 800 mu L of 3% EC solution, carrying out water bath at 40 ℃ for 15min, adding 1mL of terminator (10% trichloroacetic acid), and uniformly mixing to terminate the reaction. Then adding 1mL of developer I (15g of phenol, 0.625g of sodium nitroferricyanide and with the constant volume of ultrapure water of 250mL), uniformly mixing, adding 1mL of developer II (13.125g of NaOH and 7.5mL of NaClO solution and with the constant volume of ultrapure water of 250mL), uniformly mixing, carrying out heat preservation in a water bath at 40 ℃ for 20min, finally, with the ultrapure water of 10mL, measuring the absorbance and calculating the enzyme activity under 625 nm. Definition of enzyme activity: decomposition of the substrate EC per minute gave 1. mu. mol NH 4 + The required amount of enzyme is 1 enzyme activity unit (U).
Example 3
In this example, the mutant enzyme (N194V, i.e., the mutant urethane hydrolase) was analyzed for heat resistance and half-life. The specific process is as follows: the purified wild enzyme and mutant enzyme (N194V) were reacted at 25, 30, 35, 40, 45, 50, and 55 ℃ respectively, and the optimum reaction temperature was measured. The optimum temperature of the mutant enzyme was increased from 40 ℃ (wild enzyme) to 45 ℃ (fig. 2). And (3) storing the two purified enzyme solutions at different temperatures for 30min, determining corresponding enzyme activities, and calculating relative enzyme activities by taking the initial enzyme activities of the enzymes at the temperatures as 100%. The mutant enzyme (N194V) has better stability than the wild enzyme at the temperature of more than 35 ℃, and does not change greatly relative to the initial enzyme activity after being preserved for 30min at the temperature of 35-40 ℃, while the enzyme activity of the wild enzyme is reduced to about 50 percent of the initial enzyme activity after being preserved for 30min at the temperature of 40 ℃ (figure 3).
The purified wild enzyme and the mutant enzyme (N194V) thereof are placed at 40 ℃ for heat preservation, and sampling is carried out every 10min to determine the enzyme activity. From formula lnC t =lnC 0 +kt,t 1/2 The half-life of the enzyme was calculated as ln2/k, where C 0 For initial enzyme activity, C t The enzyme activity corresponding to the time t. The half-life of the mutant enzyme (N194V) at 40 ℃ was 210.04min, which is 6.54 times that of the wild enzyme (32.09min) (Table 2). The mutant enzyme (N194V) was found to have a significantly improved thermostability compared to the wild enzyme.
TABLE 2 half-lives of the wild enzyme and the mutant enzyme (N1694V) at 40 ℃
Figure BDA0003306515370000061
Example 4
In this example, the acid resistance of the mutant enzyme (N194V) was analyzed. The specific process is as follows: and (3) reacting the purified wild enzyme and mutant enzyme (N194V) with a substrate EC in buffers with different pH values (3, 4, 5, 6, 7, 8, 9 and 10), and measuring the enzyme activities of the two enzymes under different pH conditions after the reaction is finished so as to determine the optimal reaction pH value. The optimum pH of the mutant enzyme (N194V) was decreased from 8 (wild enzyme) to 7, and the enzyme activity of the mutant enzyme (N194V) was improved compared to the wild enzyme under weakly acidic conditions (pH 5, 6) (fig. 4). And storing the purified enzyme solution in buffer solutions with different pH values (5, 6, 7, 8 and 9), placing the buffer solutions in a refrigerator at 4 ℃ for 4 hours, and calculating the relative enzyme activity corresponding to the pH value by taking the initial enzyme activity of each pH value as 100%. As a result, the mutant enzyme (N194V) was more tolerant than the wild-type enzyme at each pH and was 95% or more (FIG. 5).
Therefore, the acid resistance of the mutant enzyme N194V was also improved compared to the wild enzyme.
Example 5
In this example, ethanol tolerance analysis of the mutant enzyme was performed. The specific process is as follows: adding the purified wild enzyme and the mutant enzyme (N194V) into ethanol solutions with different concentrations, keeping the temperature at 37 ℃ for 1h, and determining the residual enzyme activity of the wild enzyme and the mutant enzyme, wherein the enzyme activity determined by the enzyme which is not treated by ethanol is 100%. The tolerance of the mutant enzyme N194V to ethanol is improved, and when the ethanol concentration is 15 wt%, more than 90% of enzyme activity is retained; when the ethanol concentration reaches 20 wt%, 18.82% of enzyme activity is still retained, and compared with the residual enzyme activity of the wild enzyme, the residual enzyme activity is 4.67%, which is improved by 14.15% (fig. 6).
The foregoing is illustrative and explanatory of the present invention, and it is not intended that the invention be limited to the specific embodiments described, but that modifications, additions, or substitutions in a similar manner will occur to those skilled in the art without inventive faculty.
Sequence listing
<110> Sichuan university of light chemical industry
<120> ethyl carbamate hydrolase mutant and preparation method and application thereof
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 551
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 1
Met Leu Thr Asp Asn Trp Lys Glu Leu Ala Gly Lys Ala Gln Ser Thr
1 5 10 15
Phe Gln Lys Ser Leu Lys Gln Ala Ile Glu Leu Ala Asp Phe Asp Glu
20 25 30
Gly Leu Ala Lys Arg Tyr Gly Ala Leu Pro Ser Ala Ile Gly Ala Asn
35 40 45
Val Glu Asp Phe Gly Ser Pro Ala Gln Phe Pro Leu Glu Glu Tyr Leu
50 55 60
Lys Ala Leu Pro Lys Lys Val Leu Asp Ile Thr Glu Lys Asp Pro Val
65 70 75 80
Glu Leu Leu Lys Asp Leu Lys Ser Arg Lys Val Thr Cys Val Glu Val
85 90 95
Leu Lys Ala Tyr Thr Ala Ala Ser Ile Val Ala Ser Lys Leu Thr Asn
100 105 110
Cys Val Gln Glu Phe Leu Pro Ile Glu Ala Leu Gln Tyr Ala Gln Lys
115 120 125
Leu Asp Ala Asp Tyr Glu Thr Lys Lys His Leu Pro Leu Tyr Gly Leu
130 135 140
Pro Phe Ser Ile Lys Glu Met Ile Pro Phe Val Gly Arg Ser Val Thr
145 150 155 160
His Gly Ser Leu Cys Tyr Leu Asp Arg Ile Val Asp Tyr Asn Ala Asp
165 170 175
Ile Val Asn Ile Leu Ile Ala Asn Gly Ala Tyr Pro Phe Val Arg Thr
180 185 190
Thr Asn Pro Gln Ser Leu Met Met Leu Glu Cys Val Ser Phe Ser His
195 200 205
Gly Arg Thr Val Asn Ala Tyr Asn Gly Met Leu Thr Ser Gly Gly Ser
210 215 220
Ser Gly Gly Glu Gly Ala Leu Asn Gly Met Arg Ala Ser Pro Phe Gly
225 230 235 240
Leu Gly Ser Asp Ile Gly Gly Ser Ile Arg Cys Pro Ala Ala Phe Asn
245 250 255
Gly Ile Tyr Gly Leu Arg Ser Thr Leu Gly Arg Ile Pro Thr Ala Asp
260 265 270
Tyr Phe Ser Cys Asn Arg Gly Ser Glu Ser Ile Leu Ser Val Thr Gly
275 280 285
Pro Leu Ser Arg Ser Leu Asp Thr Val Asn Leu Val Met Lys Thr Val
290 295 300
Ile Glu Ala Lys Pro Trp Leu Ile Asp Pro Thr Leu Val Pro Leu Asp
305 310 315 320
Trp Lys Arg Pro Glu Asn Lys Lys Phe Arg Val Gly Ile Tyr Val Ser
325 330 335
Asp His Ile Val Asn Pro Ser Pro Pro Ile Asn Arg Ala Leu Ser Met
340 345 350
Val Thr Glu Lys Leu Lys Ser Leu Gly Asn Phe Glu Val Val Thr Phe
355 360 365
Glu Pro Tyr Lys Pro Glu Lys Val Thr Glu Ile Leu Gly Lys Leu Tyr
370 375 380
Phe Glu Asp Gly Ala Arg Asp Phe Arg Ala Thr Leu Gln Thr Gly Glu
385 390 395 400
Pro Leu Leu Glu Gln Thr Arg Trp Ala Ile Glu Gly Ala Glu Asp Leu
405 410 415
Asp Met His Asp Gln Trp Tyr Trp Asn Leu Gln Lys Gln Ala Tyr Arg
420 425 430
Lys Glu Phe Leu Lys His Trp Cys Ser Tyr Thr Asp Asn Asp Gly Asn
435 440 445
Val Leu Asp Ala Val Ile Ala Pro Val Phe Pro Asn Val Ala Ala Lys
450 455 460
His Glu Thr Thr Lys Tyr Trp Thr Tyr Thr Ser Gln Trp Asn Leu Leu
465 470 475 480
Asp Tyr Pro Val Leu Ala Phe Pro Val Thr Lys Val Asp Glu Ser Leu
485 490 495
Asp Gln Pro Tyr Lys Asn Tyr Lys Pro Leu Asn Asp Leu Asp Lys Tyr
500 505 510
Phe Tyr Glu Gln Tyr Asp Ser Pro Ser Ser Phe Lys Asn Ala Pro Ala
515 520 525
Asn Leu Cys Leu Val Gly Leu Arg Phe Thr Asp Glu Lys Leu Val Glu
530 535 540
Ile Ala Asn Ile Leu Arg Asn
545 550
<210> 2
<211> 551
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Leu Thr Asp Asn Trp Lys Glu Leu Ala Gly Lys Ala Gln Ser Thr
1 5 10 15
Phe Gln Lys Ser Leu Lys Gln Ala Ile Glu Leu Ala Asp Phe Asp Glu
20 25 30
Gly Leu Ala Lys Arg Tyr Gly Ala Leu Pro Ser Ala Ile Gly Ala Asn
35 40 45
Val Glu Asp Phe Gly Ser Pro Ala Gln Phe Pro Leu Glu Glu Tyr Leu
50 55 60
Lys Ala Leu Pro Lys Lys Val Leu Asp Ile Thr Glu Lys Asp Pro Val
65 70 75 80
Glu Leu Leu Lys Asp Leu Lys Ser Arg Lys Val Thr Cys Val Glu Val
85 90 95
Leu Lys Ala Tyr Thr Ala Ala Ser Ile Val Ala Ser Lys Leu Thr Asn
100 105 110
Cys Val Gln Glu Phe Leu Pro Ile Glu Ala Leu Gln Tyr Ala Gln Lys
115 120 125
Leu Asp Ala Asp Tyr Glu Thr Lys Lys His Leu Pro Leu Tyr Gly Leu
130 135 140
Pro Phe Ser Ile Lys Glu Met Ile Pro Phe Val Gly Arg Ser Val Thr
145 150 155 160
His Gly Ser Leu Cys Tyr Leu Asp Arg Ile Val Asp Tyr Asn Ala Asp
165 170 175
Ile Val Asn Ile Leu Ile Ala Asn Gly Ala Tyr Pro Phe Val Arg Thr
180 185 190
Thr Val Pro Gln Ser Leu Met Met Leu Glu Cys Val Ser Phe Ser His
195 200 205
Gly Arg Thr Val Asn Ala Tyr Asn Gly Met Leu Thr Ser Gly Gly Ser
210 215 220
Ser Gly Gly Glu Gly Ala Leu Asn Gly Met Arg Ala Ser Pro Phe Gly
225 230 235 240
Leu Gly Ser Asp Ile Gly Gly Ser Ile Arg Cys Pro Ala Ala Phe Asn
245 250 255
Gly Ile Tyr Gly Leu Arg Ser Thr Leu Gly Arg Ile Pro Thr Ala Asp
260 265 270
Tyr Phe Ser Cys Asn Arg Gly Ser Glu Ser Ile Leu Ser Val Thr Gly
275 280 285
Pro Leu Ser Arg Ser Leu Asp Thr Val Asn Leu Val Met Lys Thr Val
290 295 300
Ile Glu Ala Lys Pro Trp Leu Ile Asp Pro Thr Leu Val Pro Leu Asp
305 310 315 320
Trp Lys Arg Pro Glu Asn Lys Lys Phe Arg Val Gly Ile Tyr Val Ser
325 330 335
Asp His Ile Val Asn Pro Ser Pro Pro Ile Asn Arg Ala Leu Ser Met
340 345 350
Val Thr Glu Lys Leu Lys Ser Leu Gly Asn Phe Glu Val Val Thr Phe
355 360 365
Glu Pro Tyr Lys Pro Glu Lys Val Thr Glu Ile Leu Gly Lys Leu Tyr
370 375 380
Phe Glu Asp Gly Ala Arg Asp Phe Arg Ala Thr Leu Gln Thr Gly Glu
385 390 395 400
Pro Leu Leu Glu Gln Thr Arg Trp Ala Ile Glu Gly Ala Glu Asp Leu
405 410 415
Asp Met His Asp Gln Trp Tyr Trp Asn Leu Gln Lys Gln Ala Tyr Arg
420 425 430
Lys Glu Phe Leu Lys His Trp Cys Ser Tyr Thr Asp Asn Asp Gly Asn
435 440 445
Val Leu Asp Ala Val Ile Ala Pro Val Phe Pro Asn Val Ala Ala Lys
450 455 460
His Glu Thr Thr Lys Tyr Trp Thr Tyr Thr Ser Gln Trp Asn Leu Leu
465 470 475 480
Asp Tyr Pro Val Leu Ala Phe Pro Val Thr Lys Val Asp Glu Ser Leu
485 490 495
Asp Gln Pro Tyr Lys Asn Tyr Lys Pro Leu Asn Asp Leu Asp Lys Tyr
500 505 510
Phe Tyr Glu Gln Tyr Asp Ser Pro Ser Ser Phe Lys Asn Ala Pro Ala
515 520 525
Asn Leu Cys Leu Val Gly Leu Arg Phe Thr Asp Glu Lys Leu Val Glu
530 535 540
Ile Ala Asn Ile Leu Arg Asn
545 550
<210> 3
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
gcatcatcaa tgattgtgga ttagtggttc taacaaaagg 40
<210> 4
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ccttttgtta gaaccactaa tccacaatca ttgatgatgc 40
<210> 5
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ccttttgtta gaaccactgt tccacaatca ttgatgatgc 40

Claims (6)

1. An ethyl carbamate hydrolase mutant is characterized in that asparagine at position 194 of an ethyl carbamate hydrolase parent with an amino acid sequence shown as SEQ ID No.1 is mutated into valine.
2. The method for producing the mutant ethyl carbamate hydrolase according to claim 1, comprising the steps of:
step (1): designing a site-directed mutation primer, and carrying out whole plasmid amplification by taking a vector carrying the coding gene of the ethyl carbamate hydrolase as a template to obtain a recombinant plasmid containing the mutant ethyl carbamate hydrolase;
step (2): and (2) treating the recombinant plasmid obtained in the step (1) by Dpn I enzyme, transferring the treated recombinant plasmid into E.coliBL21, performing induced expression, and purifying to obtain the ethyl carbamate hydrolase mutant.
3. Use of the mutant ethyl carbamate hydrolase according to claim 1 for degrading ethyl carbamate in food and/or fermented alcoholic beverages.
4. An acid-resistant fermented preparation characterized by comprising the ethyl carbamate hydrolase mutant according to claim 1 as an essential component.
5. An ethanol-resistant fermented preparation, characterized by using the ethyl carbamate hydrolase mutant according to claim 1 as a main ingredient.
6. A heat-resistant fermented preparation characterized by using the ethyl carbamate hydrolase mutant according to claim 1 as a main ingredient.
CN202111205058.6A 2021-10-15 2021-10-15 Ethyl carbamate hydrolase mutant and preparation method and application thereof Active CN113774048B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111205058.6A CN113774048B (en) 2021-10-15 2021-10-15 Ethyl carbamate hydrolase mutant and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111205058.6A CN113774048B (en) 2021-10-15 2021-10-15 Ethyl carbamate hydrolase mutant and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113774048A CN113774048A (en) 2021-12-10
CN113774048B true CN113774048B (en) 2022-09-09

Family

ID=78873151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111205058.6A Active CN113774048B (en) 2021-10-15 2021-10-15 Ethyl carbamate hydrolase mutant and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113774048B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807102B (en) * 2022-05-16 2023-08-04 安徽工程大学 Ethanol-resistant amidase, gene, expression vector, engineering bacterium, preparation method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950596A (en) * 2016-06-20 2016-09-21 江南大学 Difunctional acid urease gene and expression and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300892A (en) * 1988-05-27 1989-12-05 Kyoichi Kobashi Urethanase and production thereof
US20100233146A1 (en) * 2002-09-09 2010-09-16 Reactive Surfaces, Ltd. Coatings and Surface Treatments Having Active Enzymes and Peptides
CN105420210B (en) * 2015-12-21 2018-08-07 江南大学 The ethyl carbamate hydrolase mutant that thermal stability improves
CN110055240A (en) * 2019-04-25 2019-07-26 江南大学 A kind of urase recombinase of degradable low concentration urethanes
CN111254135B (en) * 2020-03-03 2021-09-28 江南大学 Urease mutant with improved application performance
CN112342209B (en) * 2020-11-26 2022-06-14 浙江大学 Ethyl carbamate hydrolase mutant and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950596A (en) * 2016-06-20 2016-09-21 江南大学 Difunctional acid urease gene and expression and application thereof

Also Published As

Publication number Publication date
CN113774048A (en) 2021-12-10

Similar Documents

Publication Publication Date Title
CN108913671B (en) Omega-transaminase mutant and application thereof
CN109971734B (en) PH-insensitive high-temperature-tolerant HSL family lipid hydrolase and application thereof
CN112899258B (en) Heat-resistant beta-mannase mutant ManAK-10 and coding gene and application thereof
CN113774048B (en) Ethyl carbamate hydrolase mutant and preparation method and application thereof
CN110938616A (en) Mutant of nitrile hydratase derived from hot spring thermokalite bacillus
CN111269907A (en) Alginate lyase mutant based on loop region transformation and application thereof
CN115960875A (en) Alginate lyase mutant enzyme with improved thermal stability
CN108118037A (en) The glucose oxidase mutant that a kind of heat resistance improves
CN108118036A (en) Novel grape carbohydrate oxidase mutant
CN110117583B (en) Phytase ECAPPA mutant with heat stability and specific activity improvement and gene and application thereof
CN109182319B (en) Threonine deaminase mutant and preparation method and application thereof
CN115058408B (en) Metagenome-derived high-specific-activity acid-resistant D-psicose 3-epimerase and encoding gene and application thereof
CN114181927B (en) Heparinase I
CN113481186B (en) GH18 chitinase ChiA and application thereof
CN113564151A (en) Method for improving CE enzyme structure isomerization catalytic activity and mutant thereof
CN117230049B (en) Algin lyase mutant with improved thermal stability and application thereof
CN114807088B (en) Method for improving phytase thermal stability, mutant APPAmut6 and application
CN114395543B (en) Trehalose synthase mutant and application thereof
CN111593038B (en) Glutaminase mutant with improved stability
CN114752581B (en) Alpha-galactosidase mutant and application thereof
CN108841805B (en) Lipase mutant with improved heat stability
CN114752588B (en) Heparinase II
CN114250206B (en) Methyltransferase mutant, recombinant vector, recombinant engineering bacterium and application thereof
CN114621944B (en) Arginine deiminase mutant with improved enzyme activity
CN114807089B (en) Method for improving thermal stability of phytase, mutant APPAmut7 and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant