CN113765513B - Impedance correction circuit - Google Patents

Impedance correction circuit Download PDF

Info

Publication number
CN113765513B
CN113765513B CN202010505553.8A CN202010505553A CN113765513B CN 113765513 B CN113765513 B CN 113765513B CN 202010505553 A CN202010505553 A CN 202010505553A CN 113765513 B CN113765513 B CN 113765513B
Authority
CN
China
Prior art keywords
voltage
control signal
correction circuit
transistor
comparison result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010505553.8A
Other languages
Chinese (zh)
Other versions
CN113765513A (en
Inventor
道冈义久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winbond Electronics Corp
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to CN202010505553.8A priority Critical patent/CN113765513B/en
Publication of CN113765513A publication Critical patent/CN113765513A/en
Application granted granted Critical
Publication of CN113765513B publication Critical patent/CN113765513B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

The invention provides an impedance correction circuit. The impedance correction circuit includes a first correction circuit, a second correction circuit, and a control circuit. The first correction circuit is suitable for being coupled to the external resistor through the correction connecting pad and generates a first voltage according to the first control signal and the resistance value of the external resistor. The second correction circuit generates a second voltage according to the first control signal and the second control signal. The control circuit is used for comparing the first voltage with the reference voltage to obtain a first comparison result, comparing the first voltage with the second voltage to obtain a second comparison result, generating a first control signal according to the first comparison result, and generating a second control signal according to the second comparison result.

Description

阻抗校正电路Impedance correction circuit

技术领域Technical field

本发明涉及一种存储器装置,尤其涉及一种阻抗校正电路。The present invention relates to a memory device, and in particular to an impedance correction circuit.

背景技术Background technique

在现有的存储器技术中,当介于存储器装置间的传输线的输出阻抗以及存储器装置的输出电路的输出阻抗无法相互匹配时,传输至输出电路的信号将会发生信号反射的问题,进而影响存储器装置间的信号或数据传输的质量。In existing memory technology, when the output impedance of the transmission line between the memory devices and the output impedance of the output circuit of the memory device cannot match each other, the signal transmitted to the output circuit will suffer from signal reflection, thereby affecting the memory. The quality of signal or data transmission between devices.

因此,存储器装置通常会执行ZQ校正操作,来产生出能够最佳化输出电路的输出阻抗的控制信号,以使输出电路得以通过此控制信号来精准地控制阻抗值,并使存储器装置间的传输线的输出阻抗以及输出电路的输出阻抗能够相互匹配。然而,现有技术通常必须先针对校正电路中的上拉电路进行校正,以获得用以最佳化输出电路的上拉电路的控制信号之后,才能够接着针对校正电路中的下拉电路进行校正,以获得用以最佳化输出电路的下拉电路的控制信号。Therefore, the memory device usually performs a ZQ correction operation to generate a control signal that can optimize the output impedance of the output circuit, so that the output circuit can accurately control the impedance value through this control signal and improve the transmission line between the memory devices. The output impedance of the circuit and the output impedance of the output circuit can match each other. However, in the prior art, the pull-up circuit in the correction circuit must first be calibrated to obtain the control signal for optimizing the pull-up circuit of the output circuit, and then the pull-down circuit in the correction circuit can be calibrated. To obtain the control signal for the pull-down circuit to optimize the output circuit.

在此情况下,现有的存储器装置在执行ZQ校正操作时,将会花费较长的校正时间,进而影响了存储器装置的操作质量。In this case, when the existing memory device performs the ZQ calibration operation, it will take a long calibration time, thereby affecting the operation quality of the memory device.

发明内容Contents of the invention

本发明提供一种阻抗校正电路,能够同时对第一校正电路以及第二校正电路进行校正动作,以获得用以最佳化存储器装置的输出电路的输出阻抗的控制信号,进而有效地降低阻抗校正电路的处理时间。The present invention provides an impedance correction circuit that can simultaneously perform correction operations on a first correction circuit and a second correction circuit to obtain a control signal for optimizing the output impedance of an output circuit of a memory device, thereby effectively reducing the impedance correction circuit processing time.

本发明的阻抗校正电路包括第一校正电路、第二校正电路以及控制电路。第一校正电路适于通过校正接垫耦接至外接电阻,并依据第一控制信号以及外接电阻的电阻值以产生第一电压。第二校正电路依据第一控制信号以及第二控制信号以产生第二电压。控制电路用以比较第一电压以及参考电压以获得第一比较结果,以及比较第一电压以及第二电压以获得第二比较结果,并且依据第一比较结果以产生第一控制信号,并依据第二比较结果以产生第二控制信号。The impedance correction circuit of the present invention includes a first correction circuit, a second correction circuit and a control circuit. The first correction circuit is adapted to be coupled to the external resistor through the correction pad, and generate the first voltage according to the first control signal and the resistance value of the external resistor. The second correction circuit generates a second voltage according to the first control signal and the second control signal. The control circuit is used to compare the first voltage and the reference voltage to obtain a first comparison result, and to compare the first voltage and the second voltage to obtain a second comparison result, and to generate a first control signal according to the first comparison result, and to generate a first control signal according to the first comparison result. The second comparison result is used to generate a second control signal.

基于上述,本发明诸实施例所述阻抗校正电路可利用第一校正电路依据第一控制信号来校正第一晶体管的电阻值,以使第一晶体管的电阻值相同于外接电阻的电阻值,并且同时利用第二校正电路依据第一以及第二控制信号来校正第二以及第三晶体管的电阻值,以使第二以及第三晶体管的电阻值同样能够相同于外接电阻的电阻值。如此一来,阻抗校正电路可以同时将符合第一至第三晶体管的电阻值实质上相同于外接电阻的电阻值所对应的第一以及第二控制信号提供至存储器装置的输出电路,以最佳化所述输出电路的输出阻抗,并有效地降低阻抗校正电路的处理时间。Based on the above, the impedance correction circuit according to the embodiments of the present invention can use the first correction circuit to correct the resistance value of the first transistor according to the first control signal, so that the resistance value of the first transistor is the same as the resistance value of the external resistor, and At the same time, the second correction circuit is used to correct the resistance values of the second and third transistors according to the first and second control signals, so that the resistance values of the second and third transistors can also be the same as the resistance values of the external resistors. In this way, the impedance correction circuit can simultaneously provide the first and second control signals corresponding to the resistance values of the first to third transistors that are substantially the same as the resistance values of the external resistor to the output circuit of the memory device, so as to optimally This reduces the output impedance of the output circuit and effectively reduces the processing time of the impedance correction circuit.

附图说明Description of the drawings

图1是依照本发明一实施例的阻抗校正电路的电路示意图;Figure 1 is a circuit schematic diagram of an impedance correction circuit according to an embodiment of the present invention;

图2是依照本发明一实施例的控制信号的时序图;Figure 2 is a timing diagram of control signals according to an embodiment of the present invention;

图3是依照本发明另一实施例的控制信号的时序图;Figure 3 is a timing diagram of a control signal according to another embodiment of the present invention;

图4是依照本发明另一实施例说明图1所示的阻抗校正电路的局部电路示意图。FIG. 4 is a partial circuit diagram illustrating the impedance correction circuit shown in FIG. 1 according to another embodiment of the present invention.

具体实施方式Detailed ways

现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers are used in the drawings and description to refer to the same or similar parts.

图1是依照本发明一实施例的阻抗校正电路100的电路示意图。请参照图1,阻抗校正电路100包括校正电路110、120以及控制电路130。在本实施例中,阻抗校正电路100可以被设置于存储器装置中,并且阻抗校正电路100所产生的控制信号CODEP、CODEN可以被提供至存储器装置的输出电路,以最佳化所述输出电路的输出阻抗。藉此,所述输出电路的输出阻抗即可通过最佳化的控制信号CODEP、CODEN来调整至最佳值。FIG. 1 is a schematic circuit diagram of an impedance correction circuit 100 according to an embodiment of the present invention. Referring to FIG. 1 , the impedance correction circuit 100 includes correction circuits 110 and 120 and a control circuit 130 . In this embodiment, the impedance correction circuit 100 may be disposed in a memory device, and the control signals CODEP and CODEN generated by the impedance correction circuit 100 may be provided to the output circuit of the memory device to optimize the output circuit. Output impedance. Thereby, the output impedance of the output circuit can be adjusted to the optimal value through the optimized control signals CODEP and CODEN.

在本实施例中,校正电路110包括晶体管M1。晶体管M1的第一端耦接至操作电压VDD,晶体管M1的第二端通过校正接垫ZQPAD耦接至外接电阻RZQ。其中,校正电路110可以依据控制信号CODEP以及外接电阻RZQ的电阻值以产生电压VZQ。In this embodiment, the correction circuit 110 includes a transistor M1. The first terminal of the transistor M1 is coupled to the operating voltage VDD, and the second terminal of the transistor M1 is coupled to the external resistor RZQ through the calibration pad ZQPAD. The correction circuit 110 can generate the voltage VZQ according to the control signal CODEP and the resistance value of the external resistor RZQ.

在本实施例中,校正电路120包括晶体管M2以及晶体管M3。晶体管M2的第一端耦接至操作电压VDD,晶体管M2的控制端接收控制信号CODEP。晶体管M3的第一端耦接至接地电压GND,晶体管M3的第二端耦接至晶体管M2的第二端,晶体管M3的控制端接收控制信号CODEN。其中,校正电路120可以依据控制信号CODEP以及控制信号CODEN来产生电压VNZQ。In this embodiment, the correction circuit 120 includes a transistor M2 and a transistor M3. The first terminal of the transistor M2 is coupled to the operating voltage VDD, and the control terminal of the transistor M2 receives the control signal CODEP. The first terminal of the transistor M3 is coupled to the ground voltage GND, the second terminal of the transistor M3 is coupled to the second terminal of the transistor M2, and the control terminal of the transistor M3 receives the control signal CODEN. The correction circuit 120 may generate the voltage VNZQ according to the control signal CODEP and the control signal CODEN.

特别一提的是,本实施例的校正电路110以及校正电路120可以实质地具有相同于存储器装置的输出电路的设置,并且校正电路110以及校正电路120可以具有等效于存储器装置的输出电路的电压对电流的特性。其中,本实施例的晶体管M1以及晶体管M2可以是以P型晶体管来实施,而晶体管M3可以是以N型晶体管来实施,但本发明并不限于此。此外,本实施例的外接电阻RZQ可以具有满足存储器装置的输出电路的需求的电阻值。In particular, the correction circuit 110 and the correction circuit 120 of this embodiment may have substantially the same configuration as the output circuit of the memory device, and the correction circuit 110 and the correction circuit 120 may have configurations equivalent to the output circuit of the memory device. Voltage versus current characteristics. The transistor M1 and the transistor M2 in this embodiment may be implemented as P-type transistors, and the transistor M3 may be implemented as an N-type transistor, but the invention is not limited thereto. In addition, the external resistor RZQ of this embodiment may have a resistance value that meets the requirements of the output circuit of the memory device.

另一方面,控制电路130耦接至校正接垫ZQPAD以及校正电路120。在本实施例中,控制电路130包括比较器131、132以及运算电路133。比较器131的第一输入端(亦即,非反相输入端)耦接至校正接垫ZQPAD,以接收电压VZQ,比较器131的第二输入端(亦即,反相输入端)接收参考电压VREF。并且,比较器131可通过比较电压VZQ以及参考电压VREF以于其输出端产生比较结果COMP1。其中,本实施例的参考电压VREF的电压值可以被设定为操作电压VDD的电压值的一半,但本发明并不限于此。On the other hand, the control circuit 130 is coupled to the calibration pad ZQPAD and the calibration circuit 120 . In this embodiment, the control circuit 130 includes comparators 131 and 132 and an operation circuit 133. The first input terminal (that is, the non-inverting input terminal) of the comparator 131 is coupled to the calibration pad ZQPAD to receive the voltage VZQ, and the second input terminal (that is, the inverting input terminal) of the comparator 131 receives the reference voltage VREF. Furthermore, the comparator 131 can generate a comparison result COMP1 at its output terminal by comparing the voltage VZQ and the reference voltage VREF. The voltage value of the reference voltage VREF in this embodiment can be set to half of the voltage value of the operating voltage VDD, but the invention is not limited thereto.

比较器132的第一输入端(亦即,非反相输入端)耦接至校正电路120,以接收电压VNZQ,比较器132的第二输入端(亦即,反相输入端)耦接至校正接垫ZQPAD,以接收电压VZQ。并且,比较器132可通过比较电压VZQ以及电压VNZQ以于其输出端产生比较结果COMP2。The first input terminal (ie, the non-inverting input terminal) of the comparator 132 is coupled to the correction circuit 120 to receive the voltage VNZQ, and the second input terminal (ie, the inverting input terminal) of the comparator 132 is coupled to Calibrate pad ZQPAD to receive voltage VZQ. Furthermore, the comparator 132 can generate a comparison result COMP2 at its output terminal by comparing the voltage VZQ and the voltage VNZQ.

另一方面,运算电路133耦接至比较器131的输出端以及比较器132的输出端,以分别接收比较结果COMP1以及比较结果COMP2。并且,运算电路133可依据比较结果COMP1以产生控制信号CODEP,以及依据比较结果COMP2以产生控制信号CODEN。On the other hand, the operation circuit 133 is coupled to the output terminal of the comparator 131 and the output terminal of the comparator 132 to receive the comparison result COMP1 and the comparison result COMP2 respectively. Furthermore, the operation circuit 133 can generate the control signal CODEP according to the comparison result COMP1, and generate the control signal CODEN according to the comparison result COMP2.

关于阻抗校正电路100的操作细节,具体而言,本实施例的阻抗校正电路100具有用以执行ZQ校正操作的校正接垫ZQPAD。由于校正接垫ZQPAD可经由外接电阻RZQ耦接至接地电压GND,且校正电路110的晶体管M1被设置于操作电压VDD以及校正接垫ZQPAD之间,因此,校正电路110可以依据控制信号CODEP,以将校正接垫ZQPAD上的电压VZQ的电压值调整为操作电压VDD的电压值的一半,藉以使得晶体管M1的电阻值可以实质上相等(或近似)于外接电阻RZQ的电阻值。Regarding the operation details of the impedance correction circuit 100, specifically, the impedance correction circuit 100 of this embodiment has a correction pad ZQPAD for performing a ZQ correction operation. Since the correction pad ZQPAD can be coupled to the ground voltage GND through the external resistor RZQ, and the transistor M1 of the correction circuit 110 is disposed between the operating voltage VDD and the correction pad ZQPAD, the correction circuit 110 can be based on the control signal CODEP. The voltage value of the voltage VZQ on the correction pad ZQPAD is adjusted to half of the voltage value of the operating voltage VDD, so that the resistance value of the transistor M1 can be substantially equal to (or approximately) the resistance value of the external resistor RZQ.

进一步来说,当比较器131通过比较电压VZQ以及参考电压VREF而产生指示为电压VZQ的电压值不等于参考电压VREF(亦即,操作电压VDD的电压值的一半)的电压值的比较结果COMP1时,表示晶体管M1的电阻值尚未相等(或近似)于外接电阻RZQ的电阻值。此时,运算电路133会依据此比较结果COMP1来通过执行二分搜索(Binary Search),以进一步的计算出能够使校正接垫ZQPAD上的电压VZQ的电压值相等(或近似)操作电压VDD的电压值的一半所对应的控制信号CODEP。Furthermore, when the comparator 131 compares the voltage VZQ and the reference voltage VREF to generate a comparison result COMP1 indicating that the voltage value of the voltage VZQ is not equal to the voltage value of the reference voltage VREF (that is, half of the voltage value of the operating voltage VDD) , it means that the resistance value of the transistor M1 is not yet equal (or approximately) to the resistance value of the external resistor RZQ. At this time, the operation circuit 133 will further calculate a voltage that can make the voltage value of the voltage VZQ on the correction pad ZQPAD equal (or approximate) to the operating voltage VDD by performing a binary search based on the comparison result COMP1. The control signal CODEP corresponding to half the value.

详细来说,假设本实施例的控制信号CODEP是以7个比特的二进制形式来表示,当比较器131产生指示为电压VZQ的电压值不等于参考电压VREF的电压值的比较结果COMP1时,运算电路133可以依据当前的比较结果COMP1的电压值,而逐比特调整控制信号CODEP的多个比特。In detail, assuming that the control signal CODEP of this embodiment is expressed in a 7-bit binary form, when the comparator 131 generates a comparison result COMP1 indicating that the voltage value of the voltage VZQ is not equal to the voltage value of the reference voltage VREF, the operation The circuit 133 can adjust multiple bits of the control signal CODEP bit by bit based on the voltage value of the current comparison result COMP1.

举例来说,当阻抗校正电路100依据比较结果COMP1而判断出电压VZQ与参考电压VREF之间的电压差值相差较大时,运算电路133可以调整控制信号CODEP的最高有效位(Most Significant Bit,MSB),并将调整后的控制信号CODEP提供至校正电路110。接着,校正电路110可依据调整后的控制信号CODEP,以相对较大的调整幅度来调高或调低电压VZQ的电压值,以使电压VZQ的电压值可以逼近于参考电压VREF的电压值。For example, when the impedance correction circuit 100 determines that the voltage difference between the voltage VZQ and the reference voltage VREF is relatively large based on the comparison result COMP1, the operation circuit 133 can adjust the Most Significant Bit of the control signal CODEP. MSB), and provides the adjusted control signal CODEP to the correction circuit 110 . Then, the correction circuit 110 can adjust the voltage value of the voltage VZQ with a relatively large adjustment range according to the adjusted control signal CODEP, so that the voltage value of the voltage VZQ can be close to the voltage value of the reference voltage VREF.

相对的,当阻抗校正电路100依据比较结果COMP1而判断出电压VZQ与参考电压VREF之间的电压差值相差较小时,运算电路133可以调整控制信号CODEP的最低有效位(Least Significant Bit,LSB),并将调整后的控制信号CODEP提供至校正电路110。接着,校正电路110可依据调整后的控制信号CODEP,以相对较小的调整幅度来调高或调低电压VZQ的电压值,以使电压VZQ的电压值可以实质上相等(或近似)于参考电压VREF的电压值。In contrast, when the impedance correction circuit 100 determines that the voltage difference between the voltage VZQ and the reference voltage VREF is small based on the comparison result COMP1, the operation circuit 133 can adjust the Least Significant Bit (LSB) of the control signal CODEP. , and provide the adjusted control signal CODEP to the correction circuit 110 . Then, the correction circuit 110 can adjust the voltage value of the voltage VZQ with a relatively small adjustment range according to the adjusted control signal CODEP, so that the voltage value of the voltage VZQ can be substantially equal to (or approximately) the reference value. The voltage value of voltage VREF.

换言之,在电压VZQ的电压值尚未实质上相等(或近似)于参考电压VREF的电压值的情况下,本实施例的运算电路133可以视电压VZQ与参考电压VREF之间的电压差值大小,以依序的依据比较结果COMP1而将控制信号CODEP由高比特调整至低比特,使得校正电路110可依据调整后的控制信号CODEP来微调校正接垫ZQPAD上的电压VZQ,直到校正电路110可依据调整后的控制信号CODEP而将电压VZQ的电压值实质上相等(或近似)于参考电压VREF的电压值(亦即,晶体管M1的电阻值调整为实质上相等(或近似)于外接电阻RZQ的电阻值)为止。In other words, when the voltage value of voltage VZQ is not substantially equal (or approximately) to the voltage value of reference voltage VREF, the operation circuit 133 of this embodiment can determine the voltage difference between voltage VZQ and reference voltage VREF. The control signal CODEP is adjusted from the high bit to the low bit according to the comparison result COMP1 in sequence, so that the correction circuit 110 can fine-tune the voltage VZQ on the correction pad ZQPAD according to the adjusted control signal CODEP until the correction circuit 110 can adjust the voltage VZQ on the correction pad ZQPAD according to the adjusted control signal CODEP. The adjusted control signal CODEP makes the voltage value of the voltage VZQ substantially equal to (or approximately) the voltage value of the reference voltage VREF (that is, the resistance value of the transistor M1 is adjusted to be substantially equal to (or approximately) the value of the external resistor RZQ resistance value).

值得一提的是,当电压VZQ的电压值稳定地接近于参考电压VREF的电压值时,运算电路133会固定此状态下的控制信号CODEP,并将此状态下所对应的控制信号CODEP提供至校正电路110的晶体管M1以及校正电路120的晶体管M2,藉以固定晶体管M1以及晶体管M2的电阻值,以使晶体管M1以及晶体管M2的电阻值被固定在外接电阻RZQ的电阻值。It is worth mentioning that when the voltage value of voltage VZQ is stably close to the voltage value of reference voltage VREF, the operation circuit 133 will fix the control signal CODEP in this state and provide the corresponding control signal CODEP in this state to The transistor M1 of the correction circuit 110 and the transistor M2 of the correction circuit 120 thereby fix the resistance values of the transistor M1 and the transistor M2, so that the resistance values of the transistor M1 and the transistor M2 are fixed by the resistance value of the external resistor RZQ.

另一方面,在校正电路120中,由于晶体管M2以及晶体管M3是串联耦接于操作电压VDD以及接地电压GND之间,因此,校正电路120可以依据控制信号CODEP以及控制信号CODEN,以将节点P1上的电压VNZQ的电压值调整为操作电压VDD的电压值的一半,藉以使得晶体管M3的电阻值可以实质上相等(或近似)于晶体管M2的电阻值。On the other hand, in the correction circuit 120, since the transistor M2 and the transistor M3 are coupled in series between the operating voltage VDD and the ground voltage GND, the correction circuit 120 can change the node P1 according to the control signal CODEP and the control signal CODEN. The voltage value of the voltage VNZQ is adjusted to half of the voltage value of the operating voltage VDD, so that the resistance value of the transistor M3 can be substantially equal to (or approximately) the resistance value of the transistor M2.

详细来说,在运算电路133固定控制信号CODEP的状态,以使晶体管M1以及晶体管M2可以共同依据此控制信号CODEP而被调整为相同于外接电阻RZQ的电阻值的同时,比较器132会进一步的通过比较校正接垫ZQPAD上的电压VZQ以及节点P1上的电压VNZQ,以产生比较结果COMP2。Specifically, while the operation circuit 133 fixes the state of the control signal CODEP so that the transistor M1 and the transistor M2 can be adjusted to the same resistance value as the external resistor RZQ based on the control signal CODEP, the comparator 132 will further The comparison result COMP2 is generated by comparing the voltage VZQ on the correction pad ZQPAD and the voltage VNZQ on the node P1.

进一步来说,当比较器132通过比较电压VZQ以及电压VNZQ而产生指示为电压VNZQ的电压值不等于电压VZQ(亦即,操作电压VDD的电压值的一半)的电压值的比较结果COMP2时,表示晶体管M3的电阻值尚未相等(或近似)于晶体管M2的电阻值。此时,运算电路133会依据此比较结果COMP2来通过执行二分搜索,以进一步的计算出能够使电压VNZQ的电压值相等(或近似)电压VZQ的电压值所对应的产生控制信号CODEN。Further, when the comparator 132 generates a comparison result COMP2 indicating that the voltage value of the voltage VNZQ is not equal to the voltage value of the voltage VZQ (that is, half of the voltage value of the operating voltage VDD) by comparing the voltage VZQ and the voltage VNZQ, It means that the resistance value of transistor M3 is not yet equal (or approximately) to the resistance value of transistor M2. At this time, the operation circuit 133 will perform a binary search based on the comparison result COMP2 to further calculate the generated control signal CODEN that can make the voltage value of voltage VNZQ equal to (or approximate) the voltage value of voltage VZQ.

具体而言,假设本实施例的控制信号CODEN是以7个比特的二进制形式来表示,当比较器132产生指示为电压VNZQ的电压值不等于电压VZQ的电压值的比较结果COMP2时,运算电路133可以依据当前的比较结果COMP2的电压值,而逐比特调整控制信号CODEN的多个比特。Specifically, assuming that the control signal CODEN of this embodiment is expressed in a 7-bit binary form, when the comparator 132 generates a comparison result COMP2 indicating that the voltage value of the voltage VNZQ is not equal to the voltage value of the voltage VZQ, the operation circuit 133 can adjust multiple bits of the control signal CODEN bit by bit based on the voltage value of the current comparison result COMP2.

举例来说,当阻抗校正电路100依据比较结果COMP2而判断出电压VNZQ与电压VZQ之间的电压差值相差较大时,运算电路133可以调整控制信号CODEN的最高有效位,并将调整后的控制信号CODEN提供至校正电路120的晶体管M3。接着,晶体管M3可依据调整后的控制信号CODEN,以相对较大的调整幅度来调高或调低电压VNZQ的电压值,以使电压VNZQ的电压值可以逼近于电压VZQ的电压值。For example, when the impedance correction circuit 100 determines that the voltage difference between the voltage VNZQ and the voltage VZQ is relatively large based on the comparison result COMP2, the operation circuit 133 can adjust the most significant bit of the control signal CODEN, and adjust the adjusted The control signal CODEN is provided to the transistor M3 of the correction circuit 120 . Then, the transistor M3 can adjust the voltage value of the voltage VNZQ with a relatively large adjustment range according to the adjusted control signal CODEN, so that the voltage value of the voltage VNZQ can be close to the voltage value of the voltage VZQ.

相对的,当阻抗校正电路100依据比较结果COMP2而判断出电压VNZQ与电压VZQ之间的电压差值相差较小时,运算电路133可以调整控制信号CODEN的最低有效位,并将调整后的控制信号CODEN提供至校正电路120的晶体管M3。接着,晶体管M3可依据调整后的控制信号CODEN,以相对较小的调整幅度来调高或调低电压VNZQ的电压值,以使电压VNZQ的电压值可以实质上相等(或近似)于电压VZQ的电压值。In contrast, when the impedance correction circuit 100 determines that the voltage difference between the voltage VNZQ and the voltage VZQ is small based on the comparison result COMP2, the operation circuit 133 can adjust the least significant bit of the control signal CODEN and use the adjusted control signal CODEN is provided to transistor M3 of correction circuit 120 . Then, the transistor M3 can adjust the voltage value of the voltage VNZQ with a relatively small adjustment range according to the adjusted control signal CODEN, so that the voltage value of the voltage VNZQ can be substantially equal to (or approximately) the voltage VZQ. voltage value.

换言之,在电压VNZQ的电压值尚未实质上相等(或近似)于电压VZQ的电压值的情况下,本实施例的运算电路133可以视电压VNZQ与电压VZQ之间的电压差值大小,以依序的依据比较结果COMP2而将控制信号CODEN由高比特调整至低比特,使得校正电路120可依据调整后的控制信号CODEP以及控制信号CODEN来微调节点P1上的电压VNZQ,直到校正电路120可依据调整后的控制信号CODEP以及控制信号CODEN而将电压VNZQ的电压值实质上相等(或近似)于电压VZQ的电压值(亦即,晶体管M3的电阻值调整为实质上相等(或近似)于晶体管M2的电阻值)为止。In other words, when the voltage value of voltage VNZQ is not substantially equal (or approximately) to the voltage value of voltage VZQ, the operation circuit 133 of this embodiment can determine the voltage value according to the voltage difference between voltage VNZQ and voltage VZQ. In sequence, the control signal CODEN is adjusted from the high bit to the low bit according to the comparison result COMP2, so that the correction circuit 120 can finely adjust the voltage VNZQ at the point P1 according to the adjusted control signal CODEP and the control signal CODEN, until the correction circuit 120 can adjust the voltage VNZQ at the point P1 according to the adjusted control signal CODEP and the control signal CODEN. The adjusted control signal CODEP and the control signal CODEN make the voltage value of voltage VNZQ substantially equal to (or approximately) the voltage value of voltage VZQ (that is, the resistance value of transistor M3 is adjusted to be substantially equal to (or approximately) equal to that of the transistor M3 up to the resistance value of M2).

特别一提的是,当电压VNZQ的电压值稳定地接近于电压VZQ的电压值时,运算电路133会固定此状态下的控制信号CODEN,并将此状态下所对应的控制信号CODEN提供至校正电路120的晶体管M3,藉以固定晶体管M3的电阻值,以使晶体管M2被固定在外接电阻RZQ的电阻值。In particular, when the voltage value of voltage VNZQ is stably close to the voltage value of voltage VZQ, the operation circuit 133 will fix the control signal CODEN in this state, and provide the corresponding control signal CODEN in this state to the correction The transistor M3 of the circuit 120 fixes the resistance value of the transistor M3, so that the resistance value of the transistor M2 is fixed by the external resistor RZQ.

对此,请同时参照图1以及图2,图2是依照本发明一实施例的控制信号CODEP、CODEN的时序图。在本实施例中,阻抗校正电路100可通过外部的时钟发生器(ClockGenerator)或是振荡器(Oscillator)(未示出)来产生时钟信号ZQCLK。并且,阻抗校正电路100可依据时钟信号ZQCLK的时序状态来执行ZQ校正操作。In this regard, please refer to FIG. 1 and FIG. 2 at the same time. FIG. 2 is a timing diagram of the control signals CODEP and CODEN according to an embodiment of the present invention. In this embodiment, the impedance correction circuit 100 can generate the clock signal ZQCLK through an external clock generator (ClockGenerator) or oscillator (Oscillator) (not shown). Furthermore, the impedance correction circuit 100 can perform the ZQ correction operation according to the timing status of the clock signal ZQCLK.

具体而言,阻抗校正电路100可以在存储器装置执行完成ZQ校正操作的设定周期之后,开始进行ZQ校正操作。在图1以及图2的实施例中,由于比较器131的第一输入端(亦即,非反相输入端)以及比较器132的第二输入端(亦即,反相输入端)为共同接收校正接垫ZQPAD上的电压VZQ。因此,在一些设计需求下(在一些实施例中),比较器131以及比较器132可以同时产生出比较结果COMP1以及比较结果COMP2,以使运算电路133可以同时依据比较结果COMP1、COMP2的电压值,来通过二分搜索以对控制信号CODEP、CODEN的多个比特进行调整。Specifically, the impedance correction circuit 100 may start the ZQ correction operation after the memory device performs a set period to complete the ZQ correction operation. In the embodiments of FIG. 1 and FIG. 2 , since the first input terminal of the comparator 131 (that is, the non-inverting input terminal) and the second input terminal of the comparator 132 (that is, the inverting input terminal) are common Receive the voltage VZQ on the correction pad ZQPAD. Therefore, under some design requirements (in some embodiments), the comparator 131 and the comparator 132 can simultaneously generate the comparison results COMP1 and the comparison results COMP2, so that the operation circuit 133 can simultaneously rely on the voltage values of the comparison results COMP1 and COMP2 , to adjust multiple bits of the control signals CODEP and CODEN through binary search.

在此情况下,本实施例的阻抗校正电路100可以同时对校正电路110的晶体管M1以及校正电路120的晶体管M2、M3进行校正动作,以使这些晶体管M1~M3的电阻值可以依据调整后的控制信号CODEN、CODEP而实质上相等(或近似)于外接电阻RZQ的电阻值,进而有效地降低阻抗校正电路100的处理时间。同时,阻抗校正电路100可以将符合晶体管M1~M3的电阻值实质上相等(或近似)于外接电阻RZQ的电阻值所对应的控制信号CODEN、CODEP提供至存储器装置的输出电路,以最佳化所述输出电路的输出阻抗。In this case, the impedance correction circuit 100 of this embodiment can perform correction operations on the transistor M1 of the correction circuit 110 and the transistors M2 and M3 of the correction circuit 120 at the same time, so that the resistance values of these transistors M1 to M3 can be adjusted according to the adjusted values. The control signals CODEN and CODEP are substantially equal (or approximately) to the resistance value of the external resistor RZQ, thereby effectively reducing the processing time of the impedance correction circuit 100 . At the same time, the impedance correction circuit 100 can provide the control signals CODEN and CODEP corresponding to the resistance value of the transistors M1 to M3 that are substantially equal (or approximately) to the resistance value of the external resistor RZQ to the output circuit of the memory device for optimization. The output impedance of the output circuit.

图3是依照本发明另一实施例的控制信号CODEP、CODEN的时序图。请同时参照图1以及图3,在本实施例中,由于校正电路120需依据调整后的控制信号CODEN而将电压VNZQ调整为电压VZQ的电压值,以使晶体管M3的电阻值能够实质上相同于晶体管M2的电阻值,因此,当电压VZQ的电压值被改变时,电压VNZQ的电压值势必会被一定程度的调整。FIG. 3 is a timing diagram of control signals CODEP and CODEN according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 3 at the same time. In this embodiment, since the correction circuit 120 needs to adjust the voltage VNZQ to the voltage value of the voltage VZQ according to the adjusted control signal CODEN, so that the resistance value of the transistor M3 can be substantially the same. Due to the resistance value of transistor M2, therefore, when the voltage value of voltage VZQ is changed, the voltage value of voltage VNZQ is bound to be adjusted to a certain extent.

在此情况下,在校正电路120中,晶体管M3的第二端(亦即,漏极端)以及第一端(亦即,源极端)之间的电压差可能会受到电压VNZQ的电压值变动的影响,而导致所述电压差的设定值发生不正确的现象,进而影响晶体管M3无法操作于线性区。In this case, in the correction circuit 120, the voltage difference between the second terminal (that is, the drain terminal) and the first terminal (that is, the source terminal) of the transistor M3 may be affected by the voltage value of the voltage VNZQ. This affects the setting value of the voltage difference and causes the transistor M3 to be unable to operate in the linear region.

因此,在另一些设计需求下(在另一些实施例中),本实施例的运算电路133可以通过延后产生控制信号CODEN(例如是,等到控制信号CODEP的最高有效位以及第6个比特被输出时,控制信号CODEN才接续的被产生,但本发明并不限于此),以先对晶体管M1、M2的电阻值进行校正之后,再对晶体管M3的电阻值进行校正的方式,来执行ZQ校正操作。Therefore, under other design requirements (in other embodiments), the operation circuit 133 of this embodiment can generate the control signal CODEN by delaying (for example, waiting until the most significant bit and the 6th bit of the control signal CODEP are When outputting, the control signal CODEN is continuously generated (but the invention is not limited thereto), and the resistance value of the transistor M1 and M2 is corrected first, and then the resistance value of the transistor M3 is corrected to execute ZQ. Corrective operation.

相同的,阻抗校正电路100亦可将符合晶体管M1~M3的电阻值实质上相等(或近似)于外接电阻RZQ的电阻值所对应的控制信号CODEN、CODEP提供至存储器装置的输出电路,以最佳化所述输出电路的输出阻抗。Similarly, the impedance correction circuit 100 can also provide the control signals CODEN and CODEP corresponding to the resistance value of the transistors M1 to M3 that are substantially equal (or approximately) to the resistance value of the external resistor RZQ to the output circuit of the memory device, so as to optimize the output circuit of the memory device. Optimize the output impedance of the output circuit.

图4是依照本发明另一实施例说明图1所示的阻抗校正电路100的局部电路示意图。请参照图1以及图4,图1所示的阻抗校正电路100可以还包括信号格式转换器440。其中,本实施例的信号格式转换器440可以为数模转换器(Digital to analog converter,DAC)。FIG. 4 is a partial circuit diagram illustrating the impedance correction circuit 100 shown in FIG. 1 according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 4 . The impedance correction circuit 100 shown in FIG. 1 may further include a signal format converter 440 . The signal format converter 440 in this embodiment may be a digital to analog converter (DAC).

在本实施例中,信号格式转换器440可以耦接至运算电路133,以接收控制信号CODEP、CODEN。不同于图1实施例的是,在本实施例中,在运算电路133执行完成二分搜索之后,信号格式转换器440可以将具有数字形式的控制信号CODEP转换为具有模拟形式的控制信号AP,并且将控制信号AP产生至校正电路110的晶体管M1以及校正电路120的晶体管M2。相对的,信号格式转换器440可以将具有数字形式的控制信号CODEN转换为具有模拟形式的控制信号AN,并且将控制信号AN产生至校正电路120的晶体管M3。In this embodiment, the signal format converter 440 can be coupled to the operation circuit 133 to receive the control signals CODEP and CODEN. What is different from the embodiment of FIG. 1 is that in this embodiment, after the operation circuit 133 completes the binary search, the signal format converter 440 can convert the control signal CODEP in the digital form into the control signal AP in the analog form, and The control signal AP is generated to the transistor M1 of the correction circuit 110 and the transistor M2 of the correction circuit 120 . In contrast, the signal format converter 440 may convert the control signal CODEN in a digital form into a control signal AN in an analog form, and generate the control signal AN to the transistor M3 of the correction circuit 120 .

因此,在本实施例中,校正电路110可依据控制信号AP以及外接电阻RZQ的电阻值以调整电压VZQ的电压值,并且校正电路120可依据控制信号AP、AN以调整电压VNZQ的电压值。Therefore, in this embodiment, the correction circuit 110 can adjust the voltage value of the voltage VZQ according to the control signal AP and the resistance value of the external resistor RZQ, and the correction circuit 120 can adjust the voltage value of the voltage VNZQ according to the control signals AP and AN.

关于运算电路133通过二分搜索以对控制信号CODEP、CODEN的多个比特进行调整的操作细节,可参照图1实施例的相关说明来类推,故不再赘述。Regarding the details of the operation of the operation circuit 133 to adjust the multiple bits of the control signals CODEP and CODEN through binary search, reference can be made to the relevant description of the embodiment in FIG. 1 and will not be described again.

综上所述,本发明所述阻抗校正电路可利用第一校正电路依据第一控制信号来校正第一晶体管的电阻值,以使第一晶体管的电阻值相同于外接电阻的电阻值,并且同时利用第二校正电路依据第一以及第二控制信号来校正第二以及第三晶体管的电阻值,以使第二以及第三晶体管的电阻值同样能够相同于外接电阻的电阻值。如此一来,阻抗校正电路可以同时将符合第一至第三晶体管的电阻值实质上相同于外接电阻的电阻值所对应的第一以及第二控制信号提供至存储器装置的输出电路,以最佳化所述输出电路的输出阻抗,并有效地降低阻抗校正电路的处理时间。In summary, the impedance correction circuit of the present invention can use the first correction circuit to correct the resistance value of the first transistor according to the first control signal, so that the resistance value of the first transistor is the same as the resistance value of the external resistor, and at the same time The second correction circuit is used to correct the resistance values of the second and third transistors according to the first and second control signals, so that the resistance values of the second and third transistors can also be the same as the resistance value of the external resistor. In this way, the impedance correction circuit can simultaneously provide the first and second control signals corresponding to the resistance values of the first to third transistors that are substantially the same as the resistance values of the external resistor to the output circuit of the memory device, so as to optimally This reduces the output impedance of the output circuit and effectively reduces the processing time of the impedance correction circuit.

Claims (10)

1.一种阻抗校正电路,其特征在于,包括:1. An impedance correction circuit, characterized by comprising: 第一校正电路,适于通过校正接垫耦接至外接电阻,并依据第一控制信号以及所述外接电阻的电阻值以产生第一电压;The first correction circuit is adapted to be coupled to the external resistor through the correction pad, and generate the first voltage according to the first control signal and the resistance value of the external resistor; 第二校正电路,依据所述第一控制信号以及第二控制信号以产生第二电压;以及A second correction circuit generates a second voltage based on the first control signal and the second control signal; and 控制电路,用以比较所述第一电压以及参考电压以获得第一比较结果,以及比较所述第一电压以及所述第二电压以获得第二比较结果,并且依据所述第一比较结果以产生所述第一控制信号,并依据所述第二比较结果以产生所述第二控制信号。A control circuit used to compare the first voltage and the reference voltage to obtain a first comparison result, and to compare the first voltage and the second voltage to obtain a second comparison result, and to obtain a second comparison result based on the first comparison result. The first control signal is generated, and the second control signal is generated according to the second comparison result. 2.根据权利要求1所述的阻抗校正电路,其特征在于,其中所述第一校正电路包括:2. The impedance correction circuit according to claim 1, wherein the first correction circuit includes: 第一晶体管,其第一端耦接至操作电压,其第二端耦接至所述校正接垫,其控制端接收所述第一控制信号,并依据所述第一控制信号以调整所述第一晶体管的电阻值。A first transistor has a first terminal coupled to the operating voltage, a second terminal coupled to the correction pad, a control terminal receiving the first control signal, and adjusting the first transistor according to the first control signal. The resistance value of the first transistor. 3.根据权利要求2所述的阻抗校正电路,其特征在于,其中所述第二校正电路包括:3. The impedance correction circuit according to claim 2, wherein the second correction circuit includes: 第二晶体管,其第一端耦接至所述操作电压,其控制端接收所述第一控制信号,并依据所述第一控制信号以调整所述第二晶体管的电阻值;以及A second transistor has a first end coupled to the operating voltage, a control end of which receives the first control signal, and adjusts the resistance value of the second transistor according to the first control signal; and 第三晶体管,其第一端耦接至接地电压,其第二端耦接至所述第二晶体管的第二端,其控制端接收所述第二控制信号,并依据所述第二控制信号以调整所述第三晶体管的电阻值。The third transistor has a first terminal coupled to the ground voltage, a second terminal coupled to the second terminal of the second transistor, a control terminal receiving the second control signal, and a control terminal according to the second control signal. to adjust the resistance value of the third transistor. 4.根据权利要求3所述的阻抗校正电路,其特征在于,其中所述第一晶体管以及所述第二晶体管为P型晶体管,且所述第三晶体管为N型晶体管。4. The impedance correction circuit according to claim 3, wherein the first transistor and the second transistor are P-type transistors, and the third transistor is an N-type transistor. 5.根据权利要求1所述的阻抗校正电路,其特征在于,其中所述参考电压的电压值为操作电压的电压值的一半。5. The impedance correction circuit according to claim 1, wherein the voltage value of the reference voltage is half of the voltage value of the operating voltage. 6.根据权利要求1所述的阻抗校正电路,其特征在于,其中所述控制电路包括:6. The impedance correction circuit according to claim 1, wherein the control circuit includes: 第一比较器,其第一输入端接收所述第一电压,其第二输入端接收所述参考电压,以于所述第一比较器的输出端产生所述第一比较结果;A first comparator, a first input terminal of which receives the first voltage, and a second input terminal of which receives the reference voltage, so as to generate the first comparison result at the output terminal of the first comparator; 第二比较器,其第一输入端接收所述第二电压,其第二输入端接收所述第一电压,以于所述第二比较器的输出端产生所述第二比较结果;a second comparator, the first input terminal of which receives the second voltage, and the second input terminal of which receives the first voltage, so as to generate the second comparison result at the output terminal of the second comparator; 运算电路,接收所述第一比较结果以及所述第二比较结果,并且依据所述第一比较结果以产生所述第一控制信号,以及依据所述第二比较结果以产生所述第二控制信号。An operation circuit receives the first comparison result and the second comparison result, generates the first control signal according to the first comparison result, and generates the second control signal according to the second comparison result. Signal. 7.根据权利要求6所述的阻抗校正电路,其特征在于,其中所述运算电路用以执行二分搜索以依据所述第一比较结果产生所述第一控制信号,以及依据所述第二比较结果产生所述第二控制信号。7. The impedance correction circuit according to claim 6, wherein the operation circuit is used to perform a binary search to generate the first control signal according to the first comparison result, and to generate the first control signal according to the second comparison result. The result is said second control signal. 8.根据权利要求7所述的阻抗校正电路,其特征在于,其中所述运算电路依序依据所述第一比较结果的电压值逐比特调整所述第一控制信号的多个比特,并且依据所述第二比较结果的电压值逐比特调整所述第二控制信号的多个比特。8. The impedance correction circuit according to claim 7, wherein the operation circuit sequentially adjusts the plurality of bits of the first control signal bit by bit according to the voltage value of the first comparison result, and according to The voltage value of the second comparison result adjusts a plurality of bits of the second control signal bit by bit. 9.根据权利要求1所述的阻抗校正电路,其特征在于,还包括:9. The impedance correction circuit according to claim 1, further comprising: 信号格式转换器,耦接至所述控制电路,并用以对所述第一控制信号以及所述第二控制信号进行格式转换。A signal format converter is coupled to the control circuit and used to perform format conversion on the first control signal and the second control signal. 10.根据权利要求9所述的阻抗校正电路,其特征在于,其中所述信号格式转换器为数模转换器。10. The impedance correction circuit according to claim 9, wherein the signal format converter is a digital-to-analog converter.
CN202010505553.8A 2020-06-05 2020-06-05 Impedance correction circuit Active CN113765513B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010505553.8A CN113765513B (en) 2020-06-05 2020-06-05 Impedance correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010505553.8A CN113765513B (en) 2020-06-05 2020-06-05 Impedance correction circuit

Publications (2)

Publication Number Publication Date
CN113765513A CN113765513A (en) 2021-12-07
CN113765513B true CN113765513B (en) 2023-10-13

Family

ID=78784935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010505553.8A Active CN113765513B (en) 2020-06-05 2020-06-05 Impedance correction circuit

Country Status (1)

Country Link
CN (1) CN113765513B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110615A (en) * 2005-10-17 2007-04-26 Elpida Memory Inc Calibration circuit and semiconductor device with its circuit
CN1980057A (en) * 2005-12-01 2007-06-13 瑞昱半导体股份有限公司 Impedance matching device and method for an output drive circuit
CN101145769A (en) * 2006-09-13 2008-03-19 联发科技股份有限公司 Correction circuit for impedance element
US7459930B2 (en) * 2006-11-14 2008-12-02 Micron Technology, Inc. Digital calibration circuits, devices and systems including same, and methods of operation
CN102045054A (en) * 2009-10-13 2011-05-04 晨星软件研发(深圳)有限公司 Method and related device for correcting output/input circuit
CN103312293A (en) * 2012-03-15 2013-09-18 瑞昱半导体股份有限公司 Impedance correction device and impedance correction method
CN104935321A (en) * 2014-03-18 2015-09-23 扬智科技股份有限公司 Input and output impedance correction circuit and method
TW201740376A (en) * 2016-05-11 2017-11-16 三星電子股份有限公司 Impedance calibration circuit of semiconductor memory device, semiconductor memory device and method of operating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110615A (en) * 2005-10-17 2007-04-26 Elpida Memory Inc Calibration circuit and semiconductor device with its circuit
CN1980057A (en) * 2005-12-01 2007-06-13 瑞昱半导体股份有限公司 Impedance matching device and method for an output drive circuit
CN101145769A (en) * 2006-09-13 2008-03-19 联发科技股份有限公司 Correction circuit for impedance element
US7459930B2 (en) * 2006-11-14 2008-12-02 Micron Technology, Inc. Digital calibration circuits, devices and systems including same, and methods of operation
CN102045054A (en) * 2009-10-13 2011-05-04 晨星软件研发(深圳)有限公司 Method and related device for correcting output/input circuit
CN103312293A (en) * 2012-03-15 2013-09-18 瑞昱半导体股份有限公司 Impedance correction device and impedance correction method
CN104935321A (en) * 2014-03-18 2015-09-23 扬智科技股份有限公司 Input and output impedance correction circuit and method
TW201740376A (en) * 2016-05-11 2017-11-16 三星電子股份有限公司 Impedance calibration circuit of semiconductor memory device, semiconductor memory device and method of operating the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一款阻抗自校正5Gbit/s大摆幅电压模发送器;陈玉虎;周玉梅;张锋;;半导体技术(05);全文 *
一种高频阻抗匹配自校准电路;尹勇生;赵鹏程;邓红辉;储松;;微电子学(03);全文 *

Also Published As

Publication number Publication date
CN113765513A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
US6888482B1 (en) Folding analog to digital converter capable of calibration and method thereof
US10418983B1 (en) Duty cycle correction circuit
US9250642B2 (en) Constant current generating circuit using on-chip calibrated resistor and related method thereof
JP2007123987A (en) Zq calibration circuit and semiconductor device having the same
US9087567B2 (en) Method and apparatus for amplifier offset calibration
US6674377B1 (en) Circuit, apparatus and method for improved current distribution of output drivers enabling improved calibration efficiency and accuracy
KR102715777B1 (en) Impedance correction circuit and method
US20150091631A1 (en) Method and Apparatus for Reference Voltage Calibration in a Single-Ended Receiver
CN114641928A (en) Calibration resistor for data driver
US11296698B2 (en) Impedance calibration circuit
CN113765513B (en) Impedance correction circuit
JP2007336119A (en) Semiconductor device, and impedance control method
CN114499459A (en) Electronic equipment and signal driving chip thereof
CN104935321B (en) Input/output impedance correction circuit and method
TWI723887B (en) Impedance calibration circuit
TWI777464B (en) Signal converting apparatus and signal converting method
US20150092889A1 (en) Method and Apparatus for Calibrating an Input Interface
KR20230119098A (en) Impedance calibration circuit
TWI559682B (en) Driving circuit, driving apparatus, and method for adjusting output impedance to match transmission line impedance by current adjusting
CN103853226B (en) Fixed current generating circuit and fixed current generating method
CN113810041B (en) Impedance Correction Circuit
JP7600145B2 (en) Receiving circuit
TWI742694B (en) Impedance calibration circuit
US11418282B2 (en) Transceiver for transmission of BMC data through configurable channel of a USB type-C port
Khachikyan et al. Precise duty cycle variation detection and self-calibration system for high-speed data links

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant