CN113759834A - Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument - Google Patents

Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument Download PDF

Info

Publication number
CN113759834A
CN113759834A CN202010509949.XA CN202010509949A CN113759834A CN 113759834 A CN113759834 A CN 113759834A CN 202010509949 A CN202010509949 A CN 202010509949A CN 113759834 A CN113759834 A CN 113759834A
Authority
CN
China
Prior art keywords
chaotic
scale
gabor
polymerization process
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010509949.XA
Other languages
Chinese (zh)
Inventor
陈旭
张红星
慕雪梅
马文辉
谢昕
刘小燕
马艳萍
竺栋荣
许云波
吴冬
张长军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202010509949.XA priority Critical patent/CN113759834A/en
Publication of CN113759834A publication Critical patent/CN113759834A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33273DCS distributed, decentralised controlsystem, multiprocessor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种混沌多尺度智能最优丙烯聚合过程测量仪表,用于对聚丙烯生产产品进行质量检测,所述的一种混沌多尺度智能最优丙烯聚合过程测量仪表包括混沌重构模块、Gabor多尺度分析模块、极端随机树测量模型模块、系统更新模块、混沌人工蜂群优化模块。本发明对丙烯聚合过程重要质量指标熔融指数进行在线测量,克服传统的化工仪表测量时间滞后大,测量精度低的缺点,所述混沌多尺度智能最优丙烯聚合过程测量仪表实现重要质量指标在线测量、兼顾聚合过程多尺度特性与混沌特性、系统应用推广能力强、精度高。

Figure 202010509949

The invention discloses a chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument, which is used for quality inspection of polypropylene production products. The chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument comprises a chaotic reconstruction module , Gabor multi-scale analysis module, extreme random tree measurement model module, system update module, chaotic artificial bee colony optimization module. The invention measures the melt index, an important quality index of the propylene polymerization process, on-line, and overcomes the shortcomings of large measurement time lag and low measurement accuracy of traditional chemical instruments, and the chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument realizes the online measurement of important quality indexes. , Taking into account the multi-scale characteristics and chaotic characteristics of the aggregation process, the system has strong application and promotion ability and high precision.

Figure 202010509949

Description

一种混沌多尺度智能最优丙烯聚合过程测量仪表A Chaos Multi-scale Intelligent Optimal Propylene Polymerization Process Measuring Instrument

技术领域technical field

本发明涉及聚合过程测量仪表领域、机器学习领域和智能优化领域,尤其涉及一种混沌多尺度智能最优丙烯聚合过程测量仪表。The invention relates to the fields of polymerization process measuring instruments, machine learning and intelligent optimization, in particular to a chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument.

背景技术Background technique

聚丙烯是由丙烯聚合而制得的一种热塑性树脂,丙烯最重要的下游产品,世界丙烯的50%,我国丙烯的65%都是用来制聚丙烯,是五大通用塑料之一,与我们的日常生活密切相关。聚丙烯是世界上增长最快的通用热塑性树脂,总量仅仅次于聚乙烯和聚氯乙烯。为使我国聚丙烯产品具有市场竞争力,开发刚性、韧性、流动性平衡好的抗冲共聚产品、无规共聚产品、BOPP和CPP薄膜料、纤维、无纺布料,及开发聚丙烯在汽车和家电领域的应用,都是今后重要的研究课题。Polypropylene is a thermoplastic resin obtained by the polymerization of propylene. The most important downstream product of propylene, 50% of the world's propylene and 65% of our country's propylene are used to make polypropylene. It is one of the five general-purpose plastics. daily life is closely related. Polypropylene is the fastest growing general-purpose thermoplastic resin in the world, second only to polyethylene and polyvinyl chloride in total. In order to make our polypropylene products have market competitiveness, develop impact copolymer products, random copolymer products, BOPP and CPP film materials, fibers and non-woven materials with good rigidity, toughness and fluidity balance, and develop polypropylene in automobiles. It is an important research topic in the future.

熔融指数是聚丙烯产品确定产品牌号的重要质量指标之一,它决定了产品的不同用途,对熔融指数的测量是聚丙烯生产中产品质量控制的一个重要环节,对生产和科研,都有非常重要的作用和指导意义。Melt index is one of the important quality indicators for determining the grade of polypropylene products. It determines the different uses of the product. The measurement of melt index is an important part of product quality control in polypropylene production. It is very important for production and scientific research. important role and guiding significance.

然而,熔融指数的在线分析测量目前很难做到,一方面是在线熔融指数分析仪的缺乏,另一方面是现有的在线分析仪由于经常会堵塞而测量不准甚至无法正常使用所导致的使用上的困难。因此,目前工业生产中MI的测量,主要是通过人工取样、离线化验分析获得,而且一般每2-4小时只能分析一次,时间滞后大,给丙烯聚合生产的质量控制带来了困难,成为生产中急需解决的一个瓶颈问题。However, online analysis and measurement of melt index is currently difficult to achieve. On the one hand, there is a lack of online melt index analyzers. Difficulty in use. Therefore, at present, the measurement of MI in industrial production is mainly obtained by manual sampling and off-line laboratory analysis, and generally can only be analyzed once every 2-4 hours, and the time lag is large, which brings difficulties to the quality control of propylene polymerization production. A bottleneck problem that needs to be solved urgently in production.

发明内容SUMMARY OF THE INVENTION

为了克服目前已有的丙烯聚合生产过程的测量精度不高、易受人为因素的影响的不足,本发明的目的在于提供一种在线测量、兼顾聚合过程多尺度特性与混沌特性、系统应用推广能力强、精度高的一种混沌多尺度智能最优丙烯聚合过程测量仪表。In order to overcome the shortcomings of the existing propylene polymerization production process that the measurement accuracy is not high and is easily affected by human factors, the purpose of the present invention is to provide an online measurement, taking into account the multi-scale characteristics and chaotic characteristics of the polymerization process, and the ability of system application and promotion. A chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument with high strength and high precision.

本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:

本发明提供了一种聚丙烯质量检测系统,用于对聚丙烯产品质量进行在线检测,其特征在于,包括混沌重构模块、Gabor多尺度分析模块和极端随机树测量模型模块。The invention provides a polypropylene quality detection system for online detection of polypropylene product quality, which is characterized in that it includes a chaos reconstruction module, a Gabor multi-scale analysis module and an extreme random tree measurement model module.

本发明提供的聚丙烯质量检测系统,其中,所述混沌重构模块用于将从DCS数据库的模型的输入变量依据其混沌特性重构为动态混沌系统信号。In the polypropylene quality detection system provided by the present invention, the chaotic reconstruction module is used to reconstruct the input variables of the model from the DCS database into dynamic chaotic system signals according to its chaotic characteristics.

本发明提供的聚丙烯质量检测系统,其中,所述Gabor多尺度分析模块用于将所述动态混沌系统信号以频率为基准分析其多尺度特性,通过Gabor核函数对动态混沌系统信号进行多尺度重构,得到其在不同频率下各尺度的局部纹理特征信息。In the polypropylene quality detection system provided by the present invention, the Gabor multi-scale analysis module is used to analyze the multi-scale characteristics of the dynamic chaotic system signal based on the frequency, and perform multi-scale analysis on the dynamic chaotic system signal through the Gabor kernel function. Reconstruction to obtain the local texture feature information of each scale at different frequencies.

本发明提供的聚丙烯质量检测系统,其中,所述极端随机树测量模型模块用于建立混沌多尺度特征信息与熔融指数的映射关系,建立丙烯聚合过程测量系统,进而预测出聚丙烯熔融指数。In the polypropylene quality detection system provided by the present invention, the extreme random tree measurement model module is used to establish a mapping relationship between chaotic multi-scale feature information and melt index, establish a propylene polymerization process measurement system, and then predict polypropylene melt index.

本发明提供的聚丙烯质量检测系统,其中,优选的是,所述输入变量为第一股丙烯进料流率、第二股丙烯进料流率、第三股丙烯进料流率、主催化剂流率、辅催化剂流率、搅拌釜内温度、釜内压强、釜内液位以及釜内氢气体积浓度。The polypropylene quality detection system provided by the present invention, wherein, preferably, the input variables are the first propylene feed flow rate, the second propylene feed flow rate, the third propylene feed flow rate, the main catalyst Flow rate, co-catalyst flow rate, temperature in the stirred tank, pressure in the tank, liquid level in the tank and volume concentration of hydrogen in the tank.

本发明提供的聚丙烯质量检测系统,其中,优选的是,输入变量的混沌系统表达为z(n)=[s(n),s(n+T1),s(n+T2),...,s(n+Td-1)],其中s(n)为丙烯聚合过程的第n个采样点信号,T1,T2,...,Td-1分别为第n个采样点之后的采样时刻。In the polypropylene quality detection system provided by the present invention, preferably, the chaotic system of input variables is expressed as z(n)=[s(n), s(n+T 1 ), s(n+T 2 ), ...,s(n+T d-1 )], where s(n) is the signal at the nth sampling point in the propylene polymerization process, and T 1 , T 2 ,...,T d-1 are the nth signal, respectively sampling time after sampling points.

本发明提供的聚丙烯质量检测系统,其中,优选的是,Gabor核函数的表达式为:The polypropylene quality detection system provided by the invention, wherein, preferably, the expression of Gabor kernel function is:

Figure BDA0002527309620000031
Figure BDA0002527309620000031

其中,z表示重构变量的坐标信息,u表示Gabor滤波器的方向,v表示Gabor滤波器的尺度,i为复数符号,exp(iku,vz)为复指数形式的震荡函数,σ2为核函数宽度,ku,v表示Gabor滤波器在各个尺度各个方向上的响应。Among them, z represents the coordinate information of the reconstructed variable, u represents the direction of the Gabor filter, v represents the scale of the Gabor filter, i is the complex symbol, exp(ik u, v z) is the oscillatory function in complex exponential form, σ 2 is the kernel function width, and k u, v represents the response of the Gabor filter in all directions at each scale.

本发明提供的聚丙烯质量检测系统,其中,优选的是,Gabor特征由核函数卷积得到,表达式如下:The polypropylene quality detection system provided by the present invention, wherein, preferably, the Gabor feature is obtained by convolution of the kernel function, and the expression is as follows:

Gu,v(z)=f(z)*ψu,v(z)G u,v (z)=f(z)*ψ u,v (z)

其中,Gu,v(z)表示坐标z附近对应尺度v和方向u的卷积函数,ψ为Gabor核函数;利用Gabor函数对输入变量分析得到复数形式的输入特征信号:Among them, Gu,v (z) represents the convolution function of the corresponding scale v and direction u near the coordinate z, and ψ is the Gabor kernel function; the input variable is analyzed by the Gabor function to obtain the complex input feature signal:

Gu,v(z)=Re(Gu,v(z))+jIm(Gu,v(z))Gu ,v (z)=Re(Gu ,v (z))+jIm(Gu ,v (z))

Gabor特征信号的幅值与相位分别为:The amplitude and phase of the Gabor characteristic signal are:

Figure BDA0002527309620000032
Figure BDA0002527309620000032

本发明提供的聚丙烯质量检测系统,其中,优选的是,所述映射关系的建立是以一组极端随机树的输入信号为单一尺度下的局部纹理特征信息,多组极端随机树基于集成学习框架来完成输入到输出的混沌多尺度映射建模。The polypropylene quality detection system provided by the present invention, wherein, preferably, the establishment of the mapping relationship takes the input signal of a group of extreme random trees as the local texture feature information under a single scale, and the multiple groups of extreme random trees are based on ensemble learning. A framework to model chaotic multiscale mapping from input to output.

本发明提供的聚丙烯质量检测系统,其中,优选的是,还包括混沌人工蜂群优化模块,其采用混沌人工蜂群算法对所述极端随机树测量模型模块的分叉阈值参数进行优化。The polypropylene quality detection system provided by the present invention, preferably, further includes a chaotic artificial bee colony optimization module, which uses a chaotic artificial bee colony algorithm to optimize the bifurcation threshold parameter of the extreme random tree measurement model module.

本发明提供的聚丙烯质量检测系统,其中,优选的是,所述优化包括以下步骤:The polypropylene quality detection system provided by the present invention, wherein, preferably, the optimization comprises the following steps:

(1)初始化人工蜂群算法的参数,设蜜源数p,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,在相关向量测量系统中pi的维度为2维,置初始迭代次数iter=0;(1) Initialize the parameters of the artificial bee colony algorithm, set the number of nectar sources p, the maximum number of iterations iter max , the minimum and maximum values of the initial search space L d and U d ; the position of the nectar source represents the feasible solution of the problem, measured in the correlation vector The dimension of p i in the system is 2 dimensions, and the initial iteration number iter=0;

(2)为蜜源pi分配一只引领蜂,基于混沌映射产生新蜜源Vi(2) assign a leading bee to the nectar source p i , and generate a new nectar source V i based on the chaotic mapping;

Figure BDA0002527309620000041
Figure BDA0002527309620000041

其中,

Figure BDA0002527309620000042
为混沌因子,由混沌映射动态系统产生。in,
Figure BDA0002527309620000042
is the chaotic factor, which is generated by the chaotic mapping dynamic system.

(3)计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;(3) Calculate the fitness value of Vi , and determine the retained nectar source according to the method of greedy selection;

(4)计算引领蜂找到的蜜源被更随的概率;(4) Calculate the probability that the nectar source found by the leading bee is followed up;

(5)跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;(5) The following bees search in the same way as the leading bees, and determine the reserved nectar source according to the method of greedy selection;

(6)判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到步骤(8);(6) judging whether the nectar source V i satisfies the abandoned condition, if satisfied, the corresponding leading bee role becomes the scout bee, otherwise directly go to step (8);

(7)侦察蜂随机产生新蜜源;(7) Scout bees randomly generate new nectar sources;

(8)iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,选取适应度值最优的解作为算法的最优解,否则转到步骤(2);(8) iter=iter+1, judge whether the maximum number of iterations has been reached, if so, output the optimal parameters, and select the solution with the optimal fitness value as the optimal solution of the algorithm, otherwise go to step (2);

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

本发明提供的聚丙烯质量检测系统,其中,优选的是,还包括系统更新模块,用于将离线化验数据输入到训练集中,以在线更新极端随机树测量模型。The polypropylene quality inspection system provided by the present invention, preferably, further includes a system update module for inputting the offline assay data into the training set to update the extreme random tree measurement model online.

根据本发明一些实施例,本发明还可以陈述如下:According to some embodiments of the present invention, the present invention can also be stated as follows:

本发明提供一种混沌多尺度智能最优丙烯聚合过程测量仪表,用于对聚丙烯生产产品进行质量检测,所述的一种混沌多尺度智能最优丙烯聚合过程测量仪表包括混沌重构模块、Gabor多尺度分析模块、极端随机树测量模型模块、系统更新模块、混沌人工蜂群优化模块。其中:The invention provides a chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument, which is used for quality inspection of polypropylene production products. The chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument comprises a chaotic reconstruction module, Gabor multi-scale analysis module, extreme random tree measurement model module, system update module, chaotic artificial bee colony optimization module. in:

(1)混沌重构模块:用于将从DCS数据库输入的模型输入变量依据其混沌特性进行重构,丙烯聚合过程测量仪表的输入信号为工业丙烯聚合过程的9个操作变量,分别为第一股丙烯进料流率、第二股丙烯进料流率、第三股丙烯进料流率、主催化剂流率、辅催化剂流率、搅拌釜内温度、釜内压强、釜内液位以及釜内氢气体积浓度。其输入信号的混沌系统表达为z(n)=[s(n),s(n+T1),s(n+T2),...,s(n+Td-1)],其中s(n)为丙烯聚合过程的第n个采样点信号,T1,T2,...,Td-1分别为第n个采样点之后的采样时刻。在混沌系统中,延迟时间满足Tm=mτ条件,其中τ为延迟时间,Tm表示第m个采样时刻,因此,丙烯过程输入信号可以由嵌入维数和延迟时间重构为动态混沌系统信号z(n)=[s(n),s(n+τ),s(n+2τ),...,s(n+(d-1)τ)],其中,z(n)为第n时刻的混沌重构信号,τ是延迟时间,d为输入信号的嵌入维数。混沌重构的延迟时间和嵌入维数分别由互信息法和伪最邻近法得到。(1) Chaos reconstruction module: It is used to reconstruct the model input variables input from the DCS database according to its chaotic characteristics. The input signals of the propylene polymerization process measuring instrument are 9 operational variables of the industrial propylene polymerization process, which are the first Propylene feed flow rate, second propylene feed flow rate, third propylene feed flow rate, main catalyst flow rate, auxiliary catalyst flow rate, temperature in the stirred tank, pressure in the tank, liquid level in the tank, and tank The volume concentration of hydrogen inside. The chaotic system of its input signal is expressed as z(n)=[s(n),s(n+T 1 ),s(n+T 2 ),...,s(n+T d-1 )], Wherein s(n) is the signal of the nth sampling point in the propylene polymerization process, and T 1 , T 2 , . . . , T d-1 are the sampling moments after the nth sampling point, respectively. In the chaotic system, the delay time satisfies the condition of T m =mτ, where τ is the delay time, and T m represents the mth sampling time. Therefore, the input signal of the propylene process can be reconstructed into a dynamic chaotic system signal by the embedded dimension and delay time z(n)=[s(n),s(n+τ),s(n+2τ),...,s(n+(d-1)τ)], where z(n) is the nth is the chaotic reconstruction signal at time, τ is the delay time, and d is the embedding dimension of the input signal. The delay time and embedding dimension of chaotic reconstruction are obtained by mutual information method and pseudo-nearest neighbor method, respectively.

(2)Gabor多尺度分析模块:用于将混沌重构后的输入变量以频率为基准分析其多尺度特性,通过Gabor核函数对变量进行多尺度重构,实现提取输入变量在不同频率下各尺度各方向的局部纹理特征信息,Gabor核函数定义如下:(2) Gabor multi-scale analysis module: It is used to analyze the multi-scale characteristics of the input variables after chaotic reconstruction based on the frequency, and perform multi-scale reconstruction of the variables through the Gabor kernel function, so as to extract the input variables at different frequencies. The local texture feature information in each direction of the scale, the Gabor kernel function is defined as follows:

Figure BDA0002527309620000061
Figure BDA0002527309620000061

其中,z表示重构变量的坐标信息,u表示Gabor滤波器的方向,v表示Gabor滤波器的尺度,i为复数符号,exp(iku,vz)为复指数形式的震荡函数,σ2为核函数宽度,ku,v表示Gabor滤波器在各个尺度各个方向上的响应。Gabor核函数的部分函数作用如下:ku,v 2z2/2σ2是一个高斯包络函数,ku,v 22用以补偿能量谱衰弱,包络函数通常通过加窗的方法可以限制震荡函数的范围,保持波的局部性,抽取坐标附近的特征信息。exp(iku,vz)是震荡函数,它的实部是余弦函数为偶对称,虚部是正弦函数为奇对称。exp(-σ2/2)表示滤波的直流分量,[exp(iku,vz)-exp(-σ2/2)]运算的目的是消除直流分量对滤波效果的影响,核函数宽度σ2用以确定Gabor滤波器的带宽尺寸。ku,v表示Gabor滤波器在各个尺度各个方向上的响应,每个ku,v都代表一个Gabor滤波器,所以当选用多个不同的ku,v时,可以得到多个不同的滤波器组。Among them, z represents the coordinate information of the reconstructed variable, u represents the direction of the Gabor filter, v represents the scale of the Gabor filter, i is the complex symbol, exp(ik u, v z) is the oscillatory function in complex exponential form, σ 2 is the kernel function width, and k u, v represents the response of the Gabor filter in all directions at each scale. The partial functions of the Gabor kernel function are as follows: ku,v 2 z 2 /2σ 2 is a Gaussian envelope function, ku,v 22 is used to compensate for the weakening of the energy spectrum, and the envelope function is usually windowed The range of the oscillation function can be limited, the locality of the wave can be maintained, and the feature information near the coordinates can be extracted. exp(ik u, v z) is an oscillatory function whose real part is a cosine function that is even symmetric, and whose imaginary part is a sine function that is odd symmetric. exp(-σ 2 /2) represents the DC component of the filter. The purpose of the [exp(ik u,v z)-exp(-σ 2 /2)] operation is to eliminate the influence of the DC component on the filtering effect. The width of the kernel function is σ 2 is used to determine the bandwidth size of the Gabor filter. k u, v represents the response of the Gabor filter in all directions at various scales, each k u, v represents a Gabor filter, so when multiple different k u, v are selected, multiple different filters can be obtained device group.

Gabor特征由核函数卷积得到,表达式如下:The Gabor feature is obtained by convolution of the kernel function, and the expression is as follows:

Gu,v(z)=f(z)*ψu,v(z)G u,v (z)=f(z)*ψ u,v (z)

其中,Gu,v(z)表示坐标z附近对应尺度v和方向u的卷积函数,ψ为Gabor核函数。利用Gabor函数对输入变量分析得到复数形式的输入特征信号:Among them, Gu,v (z) represents the convolution function of the corresponding scale v and direction u near the coordinate z, and ψ is the Gabor kernel function. Use the Gabor function to analyze the input variables to obtain the complex input feature signal:

Gu,v(z)=Re(Gu,v(z))+jIm(Gu,v(z))Gu ,v (z)=Re(Gu ,v (z))+jIm(Gu ,v (z))

Gabor特征信号的幅值与相位分别为:The amplitude and phase of the Gabor characteristic signal are:

Figure BDA0002527309620000071
Figure BDA0002527309620000071

Figure BDA0002527309620000072
Figure BDA0002527309620000072

(3)极端随机树测量模型模块:用于建立丙烯聚合过程测量系统,采用极端随机树、基于集成学习框架来完成输入到输出的映射建模。极端随机树训练分裂规则,通过引入超参数赋予权重向量零均值的高斯先验分布来确保模型的稀疏性,超参数可以采用最大化边缘似然函数的方法来估计。整个模型的目的是根据样本集和先验知识设计一个系统,使系统对新数据能预测聚丙烯熔融指数输出。(3) Extreme random tree measurement model module: used to establish a measurement system for the propylene polymerization process, using extreme random trees and an integrated learning framework to complete the input-to-output mapping modeling. The extreme random tree training splitting rule ensures the sparsity of the model by introducing a hyperparameter to assign a Gaussian prior distribution with zero mean to the weight vector. The hyperparameter can be estimated by maximizing the edge likelihood function. The purpose of the whole model is to design a system based on the sample set and prior knowledge, so that the system can predict the polypropylene melt index output on new data.

(4)混沌人工蜂群优化模块:采用混沌人工蜂群算法对极端随机测量仪表的分叉阈值参数进行优化,采用如下过程完成:(4) Chaos artificial bee colony optimization module: The chaotic artificial bee colony algorithm is used to optimize the bifurcation threshold parameters of the extreme random measuring instrument, and the following process is used to complete:

(4.1)初始化人工蜂群算法的参数,设蜜源数P,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,在相关向量测量系统中pi的维度为2维,置初始迭代次数iter=0;(4.1) Initialize the parameters of the artificial bee colony algorithm, set the number of nectar sources P, the maximum number of iterations iter max , the minimum and maximum values of the initial search space L d and U d ; the position of the nectar source represents the feasible solution of the problem, measured in the correlation vector The dimension of p i in the system is 2 dimensions, and the initial iteration number iter=0;

(4.2)为蜜源pi分配一只引领蜂,基于混沌映射产生新蜜源Vi(4.2) assign a leading bee to the nectar source p i , and generate a new nectar source V i based on the chaotic map;

Figure BDA0002527309620000081
Figure BDA0002527309620000081

其中,

Figure BDA0002527309620000082
为混沌因子,由混沌映射动态系统产生。in,
Figure BDA0002527309620000082
is the chaotic factor, which is generated by the chaotic mapping dynamic system.

(4.3)计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;(4.3) Calculate the fitness value of Vi , and determine the retained nectar source according to the method of greedy selection;

(4.4)计算引领蜂找到的蜜源被更随的概率;(4.4) Calculate the probability that the nectar source found by the leading bee will be followed;

(4.5)跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;(4.5) The follower bee searches in the same way as the leader bee, and determines the reserved nectar source according to the method of greedy selection;

(4.6)判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到(4.8);(4.6) Judging whether the nectar source V i satisfies the condition of being abandoned, if so, the corresponding leading bee role becomes a scout bee, otherwise, go directly to (4.8);

(4.7)侦察蜂随机产生新蜜源;(4.7) Scout bees randomly generate new nectar sources;

(4.8)iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,选取适应度值最优的解作为算法的最优解,否则转到步骤(4.2)。(4.8) iter=iter+1, judge whether the maximum number of iterations has been reached, if so, output the optimal parameters, and select the solution with the optimal fitness value as the optimal solution of the algorithm, otherwise go to step (4.2).

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

(5)系统更新模块,所述一种混沌多尺度智能最优丙烯聚合过程测量仪表还包括系统更新模块,用于系统的在线更新,定期将离线化验数据输入到训练集中,更新极端随机树测量模型。(5) System update module, the chaotic multi-scale intelligent optimal propylene polymerization process measurement instrument also includes a system update module, which is used for online update of the system, regularly inputs offline test data into the training set, and updates extreme random tree measurements Model.

本发明的技术构思为:对丙烯聚合过程的重要质量指标熔融指数进行在线预报,为克服已有的聚丙烯熔融指数测量仪表测量精度不高、非线性特征提取不足,引入混沌相空间重构与多尺度分析方法进行特征提取与序列重构,引入智能化方法不需要人为经验或多次测试来调整系统参数,从而得到丙烯聚合生产过程混沌多尺度智能最优测量仪表。为了克服目前已有的丙烯聚合生产过程的测量精度不高的问题,本发明的目的在于提供一种混沌多尺度智能最优丙烯聚合过程测量仪表。The technical idea of the present invention is as follows: online prediction of the melt index, an important quality index of the propylene polymerization process, is introduced in order to overcome the low measurement accuracy and insufficient extraction of nonlinear features of the existing polypropylene melt index measuring instruments. The multi-scale analysis method is used for feature extraction and sequence reconstruction, and the introduction of intelligent methods does not require human experience or multiple tests to adjust the system parameters, thereby obtaining the chaotic multi-scale intelligent optimal measuring instrument in the propylene polymerization production process. In order to overcome the problem that the measurement accuracy of the existing propylene polymerization production process is not high, the purpose of the present invention is to provide a chaotic multi-scale intelligent optimal propylene polymerization process measurement instrument.

本发明的有益效果主要表现在:The beneficial effects of the present invention are mainly manifested in:

1、丙烯聚合生产过程混沌重构分析与Gabor多尺度分析有效表征了实际工业聚合过程中在不同尺度下的动态特性和非线性,实现了产品质量指标熔融指数的高精度测量;1. The chaos reconstruction analysis and Gabor multi-scale analysis of the propylene polymerization production process effectively characterize the dynamic characteristics and nonlinearity at different scales in the actual industrial polymerization process, and realize the high-precision measurement of the product quality index melt index;

2、混沌人工蜂群优化相关向量系统实现了检测系统的在线测量与匹配,提升了系统的应用推广能力。2. The chaotic artificial bee colony optimization correlation vector system realizes the online measurement and matching of the detection system, and improves the application and promotion ability of the system.

附图说明Description of drawings

图1为本发明的一实施例的聚丙烯质量检测系统的整体架构图;FIG. 1 is an overall structural diagram of a polypropylene quality inspection system according to an embodiment of the present invention;

图2为本发明的一实施例的聚丙烯质量检测系统的功能结构图。FIG. 2 is a functional structural diagram of a polypropylene quality detection system according to an embodiment of the present invention.

具体实施方式Detailed ways

下面根据附图具体说明本发明。The present invention will be specifically described below with reference to the accompanying drawings.

实施例Example

参照图1,一实施例的聚丙烯质量检测系统的整体架构图,涉及丙烯聚合生产过程1、用于测量易测变量的现场智能仪表2、用于测量操作变量的控制站3、存放数据的DCS数据库4以及熔融指数软测量值显示仪6,所述现场智能仪表2、控制站3与丙烯聚合生产过程1连接,所述现场智能仪表2、控制站3与DCS数据库4连接,此外还涉及一种混沌多尺度智能最优丙烯聚合过程测量仪表5,所述DCS数据库4与所述一种混沌多尺度智能最优丙烯聚合过程测量仪表5的输入端连接,所述一种混沌多尺度智能最优丙烯聚合过程测量仪表5的输出端与熔融指数软测量值显示仪6连接。上述操作变量和易测变量均可作为输入变量。Referring to FIG. 1, the overall structure diagram of a polypropylene quality inspection system of an embodiment involves a propylene polymerization production process 1, an on-site intelligent instrument for measuring easily measurable variables 2, a control station for measuring operational variables 3, and a data storage device. The DCS database 4 and the melt index soft-measurement value display device 6, the on-site intelligent instrument 2 and the control station 3 are connected with the propylene polymerization production process 1, and the on-site intelligent instrument 2 and the control station 3 are connected with the DCS database 4, and also involve A chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument 5, the DCS database 4 is connected with the input end of the chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument 5, the chaotic multi-scale intelligent The output end of the optimal propylene polymerization process measuring instrument 5 is connected to the melt index soft-measurement value display instrument 6 . Both the manipulated variables and the measurable variables mentioned above can be used as input variables.

根据反应机理以及流程工艺分析,考虑到聚丙烯生产过程中对熔融指数产生影响的各种因素,取实际生产过程中常用的九个操作变量和易测变量作为建模变量,分别为:三股丙稀进料流率,主催化剂流率,辅催化剂流率,釜内温度、压强、液位,釜内氢气体积浓度。表1列出了作为混沌多尺度智能最优丙烯聚合过程测量仪表所需的9个建模变量,分别为釜内温度(T)、釜内压力(p)、釜内液位(L)、釜内氢气体积浓度(Xv)、3股丙烯进料流率(第一股丙稀进料流率f1,第二股丙稀进料流率f2,第三股丙稀进料流率f3)、2股催化剂进料流率(主催化剂流率f4,辅催化剂流率f5)。反应釜中的聚合反应是反应物料反复混合后参与反应的,因此模型输入变量涉及物料的过程变量采用前若干时刻的平均值。此例中数据采用前一小时的平均值。熔融指数离线化验值作为混沌多尺度智能最优丙烯聚合过程测量仪表5的输出变量。通过人工取样、离线化验分析获得,每4小时分析采集一次。According to the analysis of the reaction mechanism and process technology, taking into account various factors that affect the melt index in the production process of polypropylene, the nine operational variables and easily measurable variables commonly used in the actual production process are taken as modeling variables, which are: Dilute feed flow rate, main catalyst flow rate, auxiliary catalyst flow rate, temperature, pressure, liquid level in the kettle, and volume concentration of hydrogen in the kettle. Table 1 lists the 9 modeling variables required as a chaotic multi-scale intelligent optimal propylene polymerization process measurement instrument, which are the temperature (T) in the kettle, pressure (p) in the kettle, liquid level (L) in the kettle, Hydrogen volume concentration in the kettle (Xv), 3 propylene feed flow rates (the first propylene feed flow rate f1, the second propylene feed flow rate f2, the third propylene feed flow rate f3) , 2 streams of catalyst feed flow rate (main catalyst flow rate f4, auxiliary catalyst flow rate f5). The polymerization reaction in the reaction kettle is that the reaction materials participate in the reaction after repeated mixing, so the process variables of the model input variables involving materials use the average value of the previous several moments. The data in this example are averaged over the previous hour. The offline assay value of the melt index is used as the output variable of the chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument 5 . Obtained by manual sampling, offline assay analysis, and analysis and collection every 4 hours.

表1混沌多尺度智能最优丙烯聚合过程测量仪表所需建模变量Table 1. Modeling variables required for the chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument

Figure BDA0002527309620000101
Figure BDA0002527309620000101

Figure BDA0002527309620000111
Figure BDA0002527309620000111

参照图2,一实施例的聚丙烯质量检测系统的功能结构图,包括:2, a functional structure diagram of a polypropylene quality inspection system according to an embodiment, including:

(1)混沌重构模块7,用于将从DCS数据库输入的模型输入变量依据其混沌特性进行重构,丙烯聚合生产过程输入信号的混沌系统表达为z(n)=[s(n),s(n+T1),s(n+T2),...,s(n+Td-1)],其中s(n)为丙烯聚合过程的第n个采样点信号,T1,T2,...,Td-1分别为第n个采样点之后的采样时刻。在混沌系统中,延迟时间满足Tm=mτ条件,其中τ为延迟时间,Tm表示第m个采样时刻,因此,丙烯过程输入信号可以由嵌入维数和延迟时间重构为动态混沌系统信号z(n)=[s(n),s(n+τ),s(n+2τ),...,s(n+(d-1)τ)],其中,z(n)为第n时刻的混沌重构信号,τ是延迟时间,d为输入信号的嵌入维数。混沌重构的延迟时间和嵌入维数分别由互信息法和伪最邻近法得到。(1) Chaos reconstruction module 7, which is used to reconstruct the model input variables input from the DCS database according to its chaotic characteristics. The chaotic system of the input signal in the propylene polymerization production process is expressed as z(n)=[s(n), s(n+T 1 ),s(n+T 2 ),...,s(n+T d-1 )], where s(n) is the signal of the nth sampling point in the propylene polymerization process, T 1 , T 2 ,...,T d-1 are the sampling moments after the nth sampling point, respectively. In the chaotic system, the delay time satisfies the condition of T m =mτ, where τ is the delay time, and T m represents the mth sampling time. Therefore, the input signal of the propylene process can be reconstructed into a dynamic chaotic system signal by the embedded dimension and delay time z(n)=[s(n),s(n+τ),s(n+2τ),...,s(n+(d-1)τ)], where z(n) is the nth is the chaotic reconstruction signal at time, τ is the delay time, and d is the embedding dimension of the input signal. The delay time and embedding dimension of chaotic reconstruction are obtained by mutual information method and pseudo-nearest neighbor method, respectively.

(2)Gabor多尺度分析模块8,用于将输入变量以频率为基准分析其多尺度特性,通过Gabor核函数对变量进行多尺度重构实现,表征输入变量在不同频率下各尺度各方向的局部纹理信息,Gabor核函数定义如下:(2) Gabor multi-scale analysis module 8, which is used to analyze the multi-scale characteristics of the input variables based on the frequency, and realize the multi-scale reconstruction of the variables through the Gabor kernel function to characterize the input variables at different frequencies. For local texture information, the Gabor kernel function is defined as follows:

Figure BDA0002527309620000112
Figure BDA0002527309620000112

其中,z表示重构变量坐标信息,u表示Gabor滤波器的方向,v表示Gabor滤波器的尺度,,i为复数符号,exp(iku,vz)为复指数形式的震荡函数,σ2为核函数宽度,ku,v表示Gabor滤波器在各个尺度各个方向上的响应。Gabor核函数的部分函数作用如下:ku,v 2z2/2σ2是一个高斯包络函数,ku,v 22用以补偿能量谱衰弱,包络函数通常通过加窗的方法可以限制震荡函数的范围,保持波的局部性,抽取坐标附近的特征信息。exp(iku,vz)是震荡函数,它的实部是余弦函数为偶对称,虚部是正弦函数为奇对称。exp(-σ2/2)表示滤波的直流分量,[exp(iku,vz)-exp(-σ2/2)]运算的目的是消除直流分量对滤波效果的影响,核函数宽度σ2用以确定Gabor滤波器的带宽尺寸。ku,v表示Gabor滤波器在各个尺度各个方向上的响应,每个ku,v都代表一个Gabor滤波器,所以当选用多个不同的ku,v时,可以得到多个不同的滤波器组。Among them, z represents the coordinate information of the reconstructed variable, u represents the direction of the Gabor filter, v represents the scale of the Gabor filter, i is the complex symbol, exp(ik u, v z) is the oscillatory function in complex exponential form, σ 2 is the kernel function width, and k u, v represents the response of the Gabor filter in all directions at each scale. The partial functions of the Gabor kernel function are as follows: ku,v 2 z 2 /2σ 2 is a Gaussian envelope function, ku,v 22 is used to compensate for the weakening of the energy spectrum, and the envelope function is usually windowed The range of the oscillation function can be limited, the locality of the wave can be maintained, and the feature information near the coordinates can be extracted. exp(ik u, v z) is an oscillatory function whose real part is a cosine function for even symmetry, and its imaginary part is a sine function for odd symmetry. exp(-σ 2 /2) represents the DC component of the filter. The purpose of the [exp(ik u,v z)-exp(-σ 2 /2)] operation is to eliminate the influence of the DC component on the filtering effect. The width of the kernel function is σ 2 is used to determine the bandwidth size of the Gabor filter. k u, v represents the response of the Gabor filter in all directions at various scales, each k u, v represents a Gabor filter, so when multiple different k u, v are selected, multiple different filters can be obtained device group.

Gabor特征由核函数卷积得到,表达式如下:The Gabor feature is obtained by convolution of the kernel function, and the expression is as follows:

Gu,v(z)=f(z)*ψu,v(z)G u,v (z)=f(z)*ψ u,v (z)

其中,Gu,v(z)表示坐标z附近对应尺度v和方向u的卷积函数,ψ为Gabor核函数。利用Gabor函数对输入变量分析得到复数形式的输入特征信号:Among them, Gu,v (z) represents the convolution function of the corresponding scale v and direction u near the coordinate z, and ψ is the Gabor kernel function. Use the Gabor function to analyze the input variables to obtain the complex input feature signal:

Gu,v(z)=Re(Gu,v(z))+jIm(Gu,v(z))Gu ,v (z)=Re(Gu ,v (z))+jIm(Gu ,v (z))

Gabor特征信号的幅值与相位分别为:The amplitude and phase of the Gabor characteristic signal are:

Figure BDA0002527309620000121
Figure BDA0002527309620000121

Figure BDA0002527309620000122
Figure BDA0002527309620000122

(3)极端随机树测量模型模块9,用于采用极端随机树、基于集成学习框架来完成输入到输出的映射建模。极端随机树训练分裂规则,通过引入超参数赋予权重向量零均值的高斯先验分布来确保模型的稀疏性,超参数可以采用最大化边缘似然函数的方法来估计。整个模型的目的是根据样本集和先验知识设计一个系统,使系统对新数据能预测聚丙烯熔融指数输出。(3) The extreme random tree measurement model module 9 is used to complete the input-to-output mapping modeling based on the ensemble learning framework by using the extreme random tree. The extreme random tree training splitting rule ensures the sparsity of the model by introducing a hyperparameter to assign a Gaussian prior distribution with zero mean to the weight vector. The hyperparameter can be estimated by maximizing the edge likelihood function. The purpose of the whole model is to design a system based on the sample set and prior knowledge, so that the system can predict the polypropylene melt index output on new data.

(4)混沌人工蜂群优化模块10,采用混沌人工蜂群算法对测量系统的分叉阈值参数进行优化,采用如下过程完成:(4) The chaotic artificial bee colony optimization module 10 adopts the chaotic artificial bee colony algorithm to optimize the bifurcation threshold parameter of the measurement system, and adopts the following process to complete:

(4.1)初始化人工蜂群算法的参数,设蜜源数P,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,在相关向量测量系统中pi的维度为2维,置初始迭代次数iter=0;(4.1) Initialize the parameters of the artificial bee colony algorithm, set the number of nectar sources P, the maximum number of iterations iter max , the minimum and maximum values of the initial search space L d and U d ; the position of the nectar source represents the feasible solution of the problem, measured in the correlation vector The dimension of p i in the system is 2 dimensions, and the initial iteration number iter=0;

(4.2)为蜜源pi分配一只引领蜂,基于混沌映射产生新蜜源Vi(4.2) assign a leading bee to the nectar source p i , and generate a new nectar source V i based on the chaotic map;

Figure BDA0002527309620000131
Figure BDA0002527309620000131

其中,

Figure BDA0002527309620000132
为混沌因子,由混沌映射动态系统产生。in,
Figure BDA0002527309620000132
is the chaotic factor, which is generated by the chaotic mapping dynamic system.

(4.3)计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;(4.3) Calculate the fitness value of Vi , and determine the retained nectar source according to the method of greedy selection;

(4.4)计算引领蜂找到的蜜源被更随的概率;(4.4) Calculate the probability that the nectar source found by the leading bee will be followed;

(4.5)跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;(4.5) The follower bee searches in the same way as the leader bee, and determines the reserved nectar source according to the method of greedy selection;

(4.6)判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到(4.8);(4.6) Judging whether the nectar source V i satisfies the condition of being abandoned, if so, the corresponding leading bee role becomes a scout bee, otherwise, go directly to (4.8);

(4.7)侦察蜂随机产生新蜜源;(4.7) Scout bees randomly generate new nectar sources;

(4.8)iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,选取适应度值最优的解作为算法的最优解,否则转到步骤(4.2)。(4.8) iter=iter+1, judge whether the maximum number of iterations has been reached, if so, output the optimal parameters, and select the solution with the optimal fitness value as the optimal solution of the algorithm, otherwise go to step (4.2).

其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.

(5)系统更新模块11,所述一种混沌多尺度智能最优丙烯聚合过程测量仪表还包括系统更新模块,用于系统的在线更新,定期将离线化验数据输入到训练集中,更新极端随机树测量模型。(5) System update module 11, the chaotic multi-scale intelligent optimal propylene polymerization process measuring instrument also includes a system update module, which is used for online update of the system, regularly inputs offline test data into the training set, and updates the extreme random tree measurement model.

以具体数据为例:本实施例提取DCS系统中采集的所需的9个建模变量,得到变量输入矩阵:Taking the specific data as an example: the present embodiment extracts the required 9 modeling variables collected in the DCS system, and obtains the variable input matrix:

Figure BDA0002527309620000141
Figure BDA0002527309620000141

将数据输入丙烯聚合过程测量仪表5,混沌多尺度检测模块得到熔融指数预报值为[2.4439,2.4011,2.4525,2.4796,2.4872]。熔融指数离线化验值[2.42,2.37,2.46,2.48,2.51]作为丙烯聚合过程测量仪表5的校验值,用于计算预报误差来评价聚丙烯生产质量测量系统5的预报精度,预报误差选用均方根误差(Root Mean Square Error,RMSE),其计算公式为

Figure BDA0002527309620000142
其中,
Figure BDA0002527309620000143
为丙烯聚合过程测量仪表5输出值,yi为熔融指数离线化验值,则丙烯聚合过程测量仪表5的预报偏差为[0.0239,0.0311,-0.0075,-0.0004,-0.0228],其均方根误差为0.0239,得到测量系统的熔融指数预报值与其预报精度。Input the data into the propylene polymerization process measuring instrument 5, and the chaotic multi-scale detection module obtains the predicted value of the melt index [2.4439, 2.4011, 2.4525, 2.4796, 2.4872]. The melt index offline assay value [2.42, 2.37, 2.46, 2.48, 2.51] is used as the calibration value of the propylene polymerization process measuring instrument 5, which is used to calculate the forecast error to evaluate the forecast accuracy of the polypropylene production quality measurement system 5. Root Mean Square Error (RMSE), its calculation formula is
Figure BDA0002527309620000142
in,
Figure BDA0002527309620000143
is the output value of the propylene polymerization process measuring instrument 5, and y i is the offline assay value of the melt index, then the prediction deviation of the propylene polymerization process measuring instrument 5 is [0.0239, 0.0311, -0.0075, -0.0004, -0.0228], and its root mean square error is 0.0239, and the predicted value of the melt index of the measurement system and its prediction accuracy are obtained.

上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The above-mentioned embodiments are used to explain the present invention, rather than limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications and changes made to the present invention all fall into the protection scope of the present invention.

Claims (9)

1.一种聚丙烯质量检测系统,用于对聚丙烯产品质量进行在线检测,其特征在于,包括:1. a polypropylene quality detection system is used to carry out on-line detection to polypropylene product quality, it is characterised in that comprising: 混沌重构模块,用于将从DCS数据库的模型的输入变量依据其混沌特性重构为动态混沌系统信号;The chaotic reconstruction module is used to reconstruct the input variables of the model from the DCS database into dynamic chaotic system signals according to their chaotic characteristics; Gabor多尺度分析模块,用于将所述动态混沌系统信号以频率为基准分析其多尺度特性,通过Gabor核函数对动态混沌系统信号进行多尺度重构,得到其在不同频率下各尺度的局部纹理特征信息;The Gabor multi-scale analysis module is used to analyze the multi-scale characteristics of the dynamic chaotic system signal based on the frequency, and perform multi-scale reconstruction of the dynamic chaotic system signal through the Gabor kernel function to obtain the local parts of each scale at different frequencies. texture feature information; 极端随机树测量模型模块,用于建立混沌多尺度特征信息与熔融指数的映射关系,建立丙烯聚合过程测量系统,进而预测出聚丙烯熔融指数。The extreme random tree measurement model module is used to establish the mapping relationship between the chaotic multi-scale feature information and the melt index, establish a measurement system for the propylene polymerization process, and then predict the polypropylene melt index. 2.根据权利要求1所述的聚丙烯质量检测系统,其特征在于:所述输入变量为第一股丙烯进料流率、第二股丙烯进料流率、第三股丙烯进料流率、主催化剂流率、辅催化剂流率、搅拌釜内温度、釜内压强、釜内液位以及釜内氢气体积浓度。2. The polypropylene quality inspection system according to claim 1, wherein the input variable is the first propylene feed flow rate, the second propylene feed flow rate, and the third propylene feed flow rate , the flow rate of the main catalyst, the flow rate of the auxiliary catalyst, the temperature in the stirred tank, the pressure in the tank, the liquid level in the tank and the volume concentration of hydrogen in the tank. 3.根据权利要求1所述的聚丙烯质量检测系统,其特征在于:输入变量的混沌系统表达为z(n)=[s(n),s(n+T1),s(n+T2),...,s(n+Td-1)],其中s(n)为丙烯聚合过程的第n个采样点信号,T1,T2,...,Td-1分别为第n个采样点之后的采样时刻。3. The polypropylene quality detection system according to claim 1, wherein the chaotic system of the input variable is expressed as z(n)=[s(n), s(n+T 1 ), s(n+T 2 ),...,s(n+T d-1 )], where s(n) is the signal of the nth sampling point in the propylene polymerization process, T 1 , T 2 ,..., T d-1 are respectively is the sampling time after the nth sampling point. 4.根据权利要求1所述的聚丙烯质量检测系统,其特征在于:Gabor核函数的表达式为:4. polypropylene quality detection system according to claim 1 is characterized in that: the expression of Gabor kernel function is:
Figure FDA0002527309610000011
Figure FDA0002527309610000011
其中,z表示重构变量的坐标信息,u表示Gabor滤波器的方向,v表示Gabor滤波器的尺度,i为复数符号,exp(iku,vz)为复指数形式的震荡函数,σ2为核函数宽度,ku,v表示Gabor滤波器在各个尺度各个方向上的响应。Among them, z represents the coordinate information of the reconstructed variable, u represents the direction of the Gabor filter, v represents the scale of the Gabor filter, i is the complex symbol, exp(ik u, v z) is the oscillatory function in complex exponential form, σ 2 is the kernel function width, and k u, v represents the response of the Gabor filter in all directions at each scale.
5.根据权利要求4所述的聚丙烯质量检测系统,其特征在于:Gabor特征由核函数卷积得到,表达式如下:5. polypropylene quality detection system according to claim 4 is characterized in that: Gabor feature is obtained by kernel function convolution, and expression is as follows: Gu,v(z)=f(z)*ψu,v(z)G u,v (z)=f(z)*ψ u,v (z) 其中,Gu,v(z)表示坐标z附近对应尺度v和方向u的卷积函数,ψ为Gabor核函数;利用Gabor函数对输入变量分析得到复数形式的输入特征信号:Among them, Gu,v (z) represents the convolution function of the corresponding scale v and direction u near the coordinate z, and ψ is the Gabor kernel function; the input variable is analyzed by the Gabor function to obtain the complex input feature signal: Gu,v(z)=Re(Gu,v(z))+jIm(Gu,v(z))Gu ,v (z)=Re(Gu ,v (z))+jIm(Gu ,v (z)) Gabor特征信号的幅值与相位分别为:The amplitude and phase of the Gabor characteristic signal are:
Figure FDA0002527309610000021
Figure FDA0002527309610000021
6.根据权利要1所述的聚丙烯质量检测系统,其特征在于,所述映射关系的建立是以一组极端随机树的输入信号为单一尺度下的局部纹理特征信息,多组极端随机树基于集成学习框架来完成输入到输出的混沌多尺度映射建模。6. The polypropylene quality detection system according to claim 1, wherein the establishment of the mapping relationship is that the input signal of a group of extreme random trees is the local texture feature information under a single scale, and multiple groups of extreme random trees are The chaotic multi-scale mapping modeling of input to output is completed based on the ensemble learning framework. 7.根据权利要求1所述的聚丙烯质量检测系统,其特征在于,还包括混沌人工蜂群优化模块,其采用混沌人工蜂群算法对所述极端随机树测量模型模块的分叉阈值参数进行优化。7. The polypropylene quality detection system according to claim 1, further comprising a chaotic artificial bee colony optimization module, which adopts a chaotic artificial bee colony algorithm to perform the bifurcation threshold parameter of the extreme random tree measurement model module. optimization. 8.根据权利要求7所述的聚丙烯质量检测系统,其特征在于:所述优化包括以下步骤:8. The polypropylene quality detection system according to claim 7, wherein the optimization comprises the following steps: (1)初始化人工蜂群算法的参数,设蜜源数p,最大迭代数itermax,初始搜索空间的最小值和最大值Ld和Ud;蜜源的位置表示问题的可行解,在相关向量测量系统中pi的维度为2维,置初始迭代次数iter=0;(1) Initialize the parameters of the artificial bee colony algorithm, set the number of nectar sources p, the maximum number of iterations iter max , the minimum and maximum values of the initial search space L d and U d ; the position of the nectar source represents the feasible solution of the problem, measured in the correlation vector The dimension of p i in the system is 2 dimensions, and the initial iteration number iter=0; (2)为蜜源pi分配一只引领蜂,基于混沌映射产生新蜜源Vi(2) assign a leading bee to the nectar source p i , and generate a new nectar source V i based on the chaotic mapping;
Figure FDA0002527309610000031
Figure FDA0002527309610000031
其中,
Figure FDA0002527309610000032
为混沌因子,由混沌映射动态系统产生。
in,
Figure FDA0002527309610000032
is the chaotic factor, which is generated by the chaotic mapping dynamic system.
(3)计算Vi的适应度值,根据贪婪选择的方法确定保留的蜜源;(3) Calculate the fitness value of Vi , and determine the retained nectar source according to the method of greedy selection; (4)计算引领蜂找到的蜜源被更随的概率;(4) Calculate the probability that the nectar source found by the leading bee is followed up; (5)跟随蜂采用与引领蜂相同的方式进行搜索,根据贪婪选择的方法确定保留的蜜源;(5) The following bees search in the same way as the leading bees, and determine the reserved nectar source according to the method of greedy selection; (6)判断蜜源Vi是否满足被放弃的条件,如满足,对应的引领蜂角色变为侦察蜂,否则直接转到步骤(8);(6) judging whether the nectar source V i satisfies the abandoned condition, if satisfied, the corresponding leading bee role becomes the scout bee, otherwise directly go to step (8); (7)侦察蜂随机产生新蜜源;(7) Scout bees randomly generate new nectar sources; (8)iter=iter+1,判断是否已经达到最大迭代次数,若满足则输出最优参数,选取适应度值最优的解作为算法的最优解,否则转到步骤(2);(8) iter=iter+1, judge whether the maximum number of iterations has been reached, if so, output the optimal parameters, and select the solution with the optimal fitness value as the optimal solution of the algorithm, otherwise go to step (2); 其中,蜜源数为100,初始搜索空间的最小值和最大值0和100,最大迭代次数100。Among them, the number of nectar sources is 100, the minimum and maximum values of the initial search space are 0 and 100, and the maximum number of iterations is 100.
9.根据权利要求1所述的聚丙烯质量检测系统,其特征在于,还包括系统更新模块,用于将离线化验数据输入到训练集中,以在线更新极端随机树测量模型。9 . The polypropylene quality inspection system according to claim 1 , further comprising a system update module for inputting offline assay data into the training set to update the extreme random tree measurement model online. 10 .
CN202010509949.XA 2020-06-05 2020-06-05 Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument Pending CN113759834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010509949.XA CN113759834A (en) 2020-06-05 2020-06-05 Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010509949.XA CN113759834A (en) 2020-06-05 2020-06-05 Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument

Publications (1)

Publication Number Publication Date
CN113759834A true CN113759834A (en) 2021-12-07

Family

ID=78785267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010509949.XA Pending CN113759834A (en) 2020-06-05 2020-06-05 Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument

Country Status (1)

Country Link
CN (1) CN113759834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950251A (en) * 2022-01-21 2022-08-30 昆明理工大学 Chaotic stirrer based on speed reference control and chaotic stirring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001244A1 (en) * 2011-03-14 2012-09-20 Contitech Ag Method for testing dispersion quality of fillers e.g. soot, of viscoelastic material i.e. unvulcanized thermoplastic rubber mixture for manufacturing article, involves locating test piece of viscoelastic material in chamber of rheometer
CN108804851A (en) * 2018-06-28 2018-11-13 浙江大学 A kind of high-precision propylene polymerization production process optimal soft survey instrument of chaos gunz optimizing
CN108982576A (en) * 2018-06-28 2018-12-11 浙江大学 A kind of high-precision propylene polymerization production process optimal soft survey instrument of chaos
CN109445398A (en) * 2018-12-28 2019-03-08 浙江大学 Propylene polymerization production process optimal online forecasting system based on weighted array study
CN109507888A (en) * 2018-12-28 2019-03-22 浙江大学 Propylene polymerization production process optimal online forecasting system based on integrated study
CN109711628A (en) * 2018-12-28 2019-05-03 浙江大学 An online calibration adaptive multi-scale forecasting system for propylene polymerization production process
CN109726474A (en) * 2018-12-28 2019-05-07 浙江大学 An online calibration multi-scale forecasting system for propylene polymerization production process
WO2021239351A1 (en) * 2020-05-29 2021-12-02 Endress+Hauser Flowtec Ag Measurement sensor of a coriolis flow meter, and coriolis flow meter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001244A1 (en) * 2011-03-14 2012-09-20 Contitech Ag Method for testing dispersion quality of fillers e.g. soot, of viscoelastic material i.e. unvulcanized thermoplastic rubber mixture for manufacturing article, involves locating test piece of viscoelastic material in chamber of rheometer
CN108804851A (en) * 2018-06-28 2018-11-13 浙江大学 A kind of high-precision propylene polymerization production process optimal soft survey instrument of chaos gunz optimizing
CN108982576A (en) * 2018-06-28 2018-12-11 浙江大学 A kind of high-precision propylene polymerization production process optimal soft survey instrument of chaos
CN109445398A (en) * 2018-12-28 2019-03-08 浙江大学 Propylene polymerization production process optimal online forecasting system based on weighted array study
CN109507888A (en) * 2018-12-28 2019-03-22 浙江大学 Propylene polymerization production process optimal online forecasting system based on integrated study
CN109711628A (en) * 2018-12-28 2019-05-03 浙江大学 An online calibration adaptive multi-scale forecasting system for propylene polymerization production process
CN109726474A (en) * 2018-12-28 2019-05-07 浙江大学 An online calibration multi-scale forecasting system for propylene polymerization production process
WO2021239351A1 (en) * 2020-05-29 2021-12-02 Endress+Hauser Flowtec Ag Measurement sensor of a coriolis flow meter, and coriolis flow meter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
夏陆岳,潘海天,周猛飞,蔡亦军,孙小方: "基于改进多尺度主元分析的丙烯聚合过程监测与故障诊断", 《化工学报》 *
张艳: "基于Gabor滤波器的纹理特征提取研究及应用", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
程吉锋: "基于多尺度主元分析的丙烯聚合过程故障诊断研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950251A (en) * 2022-01-21 2022-08-30 昆明理工大学 Chaotic stirrer based on speed reference control and chaotic stirring method
CN114950251B (en) * 2022-01-21 2023-12-22 昆明理工大学 Chaotic stirrer based on speed reference control and chaotic stirring method

Similar Documents

Publication Publication Date Title
CN101315557B (en) Propylene polymerization production process optimal soft survey instrument and method based on genetic algorithm optimization BP neural network
CN108804851A (en) A kind of high-precision propylene polymerization production process optimal soft survey instrument of chaos gunz optimizing
CN109507888B (en) Optimal online forecasting system for propylene polymerization production process based on ensemble learning
CN103674778B (en) The industrial melt index soft measurement instrument of RBF particle group optimizing and method
CN101382801A (en) Optimal soft sensor instrument and method for propylene polymerization production process based on EGA optimization
CN108982576A (en) A kind of high-precision propylene polymerization production process optimal soft survey instrument of chaos
CN103675011B (en) The industrial melt index soft measurement instrument of optimum support vector machine and method
CN108872032A (en) Grain size of sediment data processing method and device
CN103226728B (en) High density polyethylene polymerization cascade course of reaction Intelligent Measurement and yield optimization method
CN103823964A (en) Global optimum soft measurement instrument and method applied to propylene polymerization production
CN115293424A (en) A new energy maximum power generation capacity calculation method, terminal and storage medium
CN101017374A (en) Polypropylene melting index softsensoring instrument based on blind signal analysis and method thereof
CN113759834A (en) Chaos multi-scale intelligent optimal propylene polymerization process measuring instrument
CN109711628B (en) Online-correction self-adaptive multi-scale forecasting system for propylene polymerization production process
CN109507889A (en) The propylene polymerization production process optimal online forecasting system of convolutional neural networks
CN109445398B (en) Propylene polymerization production process optimal online forecasting system based on weighted combination learning
CN103675005B (en) The industrial melt index soft measurement instrument of optimum FUZZY NETWORK and method
CN113764048A (en) An online measurement system for polypropylene production quality
CN108958181A (en) A kind of propylene polymerization production process optimal soft survey instrument of agility
CN103824121A (en) Propylene polymerization production process optimal prediction system based on multimode crowd-sourcing and method
CN103675009B (en) The industrial melt index soft measurement instrument of fuzzifying equation and method
CN103838955A (en) Optimum soft measurement instrument and method for optimum mixing in propylene polymerization production process
CN113759103A (en) Propylene polymerization quality on-line measuring system
CN103838958B (en) Vague intelligent optimal soft measuring instrument and method used in propylene polymerization production process
CN109829197A (en) The propylene polymerization production process optimal soft survey instrument of improved cuckoo optimizing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20211207