CN103675009B - The industrial melt index soft measurement instrument of fuzzifying equation and method - Google Patents

The industrial melt index soft measurement instrument of fuzzifying equation and method Download PDF

Info

Publication number
CN103675009B
CN103675009B CN201310435088.5A CN201310435088A CN103675009B CN 103675009 B CN103675009 B CN 103675009B CN 201310435088 A CN201310435088 A CN 201310435088A CN 103675009 B CN103675009 B CN 103675009B
Authority
CN
China
Prior art keywords
mrow
msub
fuzzy
mfrac
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310435088.5A
Other languages
Chinese (zh)
Other versions
CN103675009A (en
Inventor
刘兴高
张明明
李见会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310435088.5A priority Critical patent/CN103675009B/en
Publication of CN103675009A publication Critical patent/CN103675009A/en
Application granted granted Critical
Publication of CN103675009B publication Critical patent/CN103675009B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention discloses a kind of industrial melt index soft measurement instrument and method of fuzzifying equation.Least square method supporting vector machine processes training sample as the local equation of fuzzifying equation system, the result of support vector machine through Fuzzy processing to obtain more accurate hard measurement predicted value.In the present invention, for measure easily survey variable field intelligent instrument, be connected with DCS database for the control station measuring performance variable, hard measurement value display instrument comprises the industrial melt index soft measurement model of fuzzifying equation, DCS database is connected with the input end of soft-sensing model, and the output terminal of the industrial melt index soft measurement model of described fuzzifying equation is connected with melt index flexible measured value display instrument.The present invention has on-line measurement, forecast precision is high, noise resisting ability is strong, promote the good feature of performance.

Description

Fuzzy equation-based industrial melt index soft measuring instrument and method
Technical Field
The invention designs a soft measuring instrument and a method, and particularly relates to an industrial melt index soft measuring instrument and a method of a fuzzy equation.
Background
Polypropylene is a semi-crystalline thermoplastic polymerized from propylene, has high impact resistance, strong mechanical properties, resistance to various organic solvents and acid and alkali corrosion, is widely applied in the industry, and is one of the most common high polymer materials. The Melt Index (MI) is one of the important quality indicators in polypropylene production that determines the grade of the final product, and it determines the different uses of the product. The accurate and timely measurement of the melt index plays an important role and a very important guiding significance for production and scientific research. However, the online analysis and measurement of the melt index are still difficult to achieve at present, and the lack of an online analyzer of the melt index is a major problem which limits the quality of polypropylene products. MI can be obtained only by manual sampling and offline assay analysis, and is generally analyzed once every 2-4 hours, so that the time lag is large, and the requirement of real-time production control is difficult to meet.
Most of the recent research on online prediction of MI has focused on artificial neural networks, which has achieved good results. However, artificial neural networks have their own drawbacks, such as overfitting, the number of nodes in the hidden layer, and poor parameter determination. Secondly, noise, manual operation errors and the like of DCS data acquired in an industrial field have certain uncertain errors, so that a forecasting model using an artificial neural network with strong certainty is not strong in popularization capability generally.
Zadeh first proposed the concept of fuzzy aggregation in 1965 by american mathematician l. Fuzzy logic then begins to replace the classical logic that persists in that everything can be represented in terms of binary terms in a way that it more closely resembles the question and semantic statement of everyday people. Fuzzy logic has been successfully applied in various fields of industry, such as home appliances, industrial control, etc. In 2003, Demirci proposed the concept of fuzzy equations by constructing a new input matrix using fuzzy membership matrices and their variants, and then deriving the analytic values as final outputs in local equations by the centroid method in the inverse fuzzy method. For soft measurement of melt index in propylene polymerization production, considering noise effects and operational errors in industrial production, the effect of fuzzy performance of fuzzy logic on overall prediction accuracy can be reduced.
Support vector machines, introduced by Vapnik in 1998, are widely used in pattern recognition, fitting and classification problems due to their good generalization ability. Since the standard support vector machine has the defects of low convergence speed, low precision and the like when processing mass data, a least square support vector machine is proposed afterwards. The least squares support vector machine is better able to handle large batches of sample data than the standard support vector machine, and is chosen here as the local equation in the fuzzy equation.
Disclosure of Invention
In order to overcome the defects of low measurement precision, low noise sensitivity and poor popularization performance in the conventional propylene polymerization production process, the invention provides the industrial melt index soft measurement instrument and method of the fuzzy equation, which have the advantages of online measurement, high calculation speed, automatic model updating, strong noise resistance and good popularization performance.
The soft measurement instrument for the industrial melt index of the fuzzy equation comprises a field intelligent instrument for measuring easily-measured variables, a control station for measuring operation variables, a DCS (distributed control system) database for storing data and a soft measurement value display instrument for the melt index, wherein the field intelligent instrument and the control station are connected with the DCS database, the soft measurement instrument further comprises a soft measurement model for the industrial melt index of the fuzzy equation, the DCS database is connected with the input end of the soft measurement model for the industrial melt index of the fuzzy equation, the output end of the soft measurement model for the industrial melt index of the fuzzy equation is connected with the soft measurement value display instrument for the melt index, and the soft measurement model for the industrial melt index of the fuzzy equation comprises:
the data preprocessing module is used for preprocessing the model training samples input from the DCS database, centralizing the training samples, namely subtracting the average value of the samples, and then normalizing the training samples:
calculating an average value: <math><mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
calculating the variance: <math><mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
and (3) standardization: <math><mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math>
wherein, TXiIs the ith training sample, N is the number of training samples,is the mean of the training samples, and X is the normalized training sample. SigmaxRepresenting the standard deviation, σ, of the training samples2 xRepresenting the variance of the training samples.
And the fuzzy equation module is used for fuzzifying the standardized training sample X transmitted from the data preprocessing module. Let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math><mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is usually taken as 2, | | · |, as a norm expression.
Using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik)Xi] (5)
wherein func (. mu.)ik) Is a membership value muikDeformation function of, in general, takeexp(μik) Equal, phiik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix.
And the least square support vector machine is used as a local equation of the fuzzy equation system and performs optimal fitting on each fuzzy group. Let the ith target output of the model training sample be OiThe weighted support vector machine equates the fitting problem to the following quadratic programming problem by transformation:
<math><mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ = { ξ =1,…,ξNIs the relaxation variable, ξiIs the i-th component of the relaxation variable, αiI =1, …, N being the i-th component of the corresponding lagrange multiplier, w being the normal vector of the hyperplane of the support vector machine, b being the corresponding offset, and ω beingiI =1, …, N and γ being the weights and penalty factors of the least squares support vector machine, respectively, the superscript T representing the transpose of the matrix, μikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix. From equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo><</mo> <msub> <mi>&Phi;</mi> <mi>im</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Taking the linear kernel function, mumkRepresents the m-th training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Denotes the m-th input variable XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix. Alpha is alphamM =1, …, N is the mth component of the corresponding lagrange multiplier.
The output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,is the output of the fuzzy group k at the training sample i.
Preferably, the industrial melt index soft measurement model of the fuzzy equation further comprises: and the model updating module is used for updating the model on line, inputting offline experimental data into a training set regularly and updating the fuzzy equation model.
A soft measurement method for an industrial melt index of a fuzzy equation comprises the following specific implementation steps:
1) selecting an operation variable and an easily-measured variable as input of a model for a propylene polymerization production process object according to process analysis and operation analysis, wherein the operation variable and the easily-measured variable are obtained by a DCS (distributed control system) database;
2) preprocessing a model training sample input from a DCS database, centralizing the training sample, namely subtracting the average value of the sample, and then normalizing the training sample so that the average value is 0 and the variance is 1. The processing is accomplished using the following mathematical process:
2.1) calculating the mean value: <math><mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
2.2) calculating the variance: <math><mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
2.3) standardization: <math><mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math> wherein, TXiIs the ith training sample, N is the number of training samples,is the mean of the training samples, and X is the normalized training sample. SigmaxRepresenting the standard deviation, σ, of the training samples2 xRepresenting the variance of the training samples.
3) And fuzzifying the training sample transmitted from the data preprocessing module. Let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math><mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is usually taken as 2, | | · |, as a norm expression.
Using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik)Xi] (5)
wherein func (. mu.)ik) Is a membership value muikDeformation function of, in general, takeexp(μik) Equal, phiik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix.
And the least square support vector machine is used as a local equation of the fuzzy equation system and performs optimal fitting on each fuzzy group. Let the ith target output of the model training sample be OiThe weighted support vector machine equates the fitting problem to the following quadratic programming problem by transformation:
<math><mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ = { ξ =1,…,ξNIs the relaxation variable, ξiIs the i-th component of the relaxation variable, αiI =1, …, N being the i-th component of the corresponding lagrange multiplier, w being the normal vector of the hyperplane of the support vector machine, b being the corresponding offset, and ω beingiI =1, …, N and γ being the weights and penalty factors of the least squares support vector machine, respectively, the superscript T representing the transpose of the matrix, μikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix. From equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo><</mo> <msub> <mi>&Phi;</mi> <mi>im</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Taking the linear kernel function, mumkRepresents the m-th training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Denotes the m-th input variable XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix. Alpha is alphamM =1, …, N is the mth component of the corresponding lagrange multiplier.
The output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,is the output of the fuzzy group k at the training sample i.
As a preferred solution: the soft measurement method further comprises the following steps: 4) and inputting the offline experimental data into a training set regularly, and updating the fuzzy equation model.
The technical conception of the invention is as follows: the melt index of important quality index in propylene polymerization production process is subjected to online soft measurement, and the defects of low measurement precision, low noise sensitivity and poor popularization performance of the conventional polypropylene melt index measuring instrument are overcome. Compared with the existing melt index soft measurement model, the model has the following advantages: (1) the influence of noise and manual operation errors on the model forecasting precision is reduced; (2) the popularization performance of the model is enhanced, and overfitting is effectively inhibited.
The invention has the following beneficial effects: 1. online measurement; 2. the model is automatically updated; 3. the anti-noise interference capability is strong, 4, and the precision is high; 5. the popularization capability is strong.
Drawings
FIG. 1 is a schematic diagram of the basic structure of an industrial melt index soft measurement instrument and method of fuzzy equation;
FIG. 2 is a schematic diagram of the structure of an industrial melt index soft measurement model of a fuzzy equation.
Detailed Description
The invention is further described below with reference to the accompanying drawings. The examples are intended to illustrate the invention, but not to limit the invention, and any modifications and variations of the invention within the spirit and scope of the claims are intended to fall within the scope of the invention.
Example 1
Referring to fig. 1 and 2, the industrial melt index soft measuring instrument of the fuzzy equation comprises a propylene polymerization production process 1, an on-site intelligent instrument 2 for measuring easily-measured variables, a control station 3 for measuring operation variables, a DCS database 4 for storing data and a melt index soft measurement value display instrument 6, the on-site intelligent instrument 2 and the control station 3 are connected with the propylene polymerization production process 1, the on-site intelligent instrument 2 and the control station 3 are connected with the DCS database 4, the soft measurement instrument further comprises a soft measurement model 5 of a least squares support vector machine fuzzy equation, the DCS database 4 is connected with the input end of an industrial melt index soft measurement model 5 of the fuzzy equation, the output end of the industrial melt index soft measurement model 5 of the fuzzy equation is connected with a melt index soft measurement value display instrument 6, and the industrial melt index soft measurement model of the fuzzy equation comprises:
the data preprocessing module is used for preprocessing the model training samples input from the DCS database, centralizing the training samples, namely subtracting the average value of the samples, and then normalizing the training samples:
calculating an average value: <math><mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
calculating the variance: <math><mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
and (3) standardization: <math><mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math>
wherein, TXiIs the ith training sample, N is the number of training samples,is the mean of the training samples, and X is the normalized training sample. SigmaxRepresenting the standard deviation, σ, of the training samples2 xRepresenting the variance of the training samples.
And the fuzzy equation module is used for fuzzifying the standardized training sample X transmitted from the data preprocessing module. Let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math><mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is usually taken as 2, | | · |, as a norm expression.
Using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik)Xi] (5)
wherein func (. mu.)ik) Is a membership value muikDeformation function of, in general, takeexp(μik) Equal, phiik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix.
Least squares support vector machine operationFor the local equations of the fuzzy equation system, an optimal fit is performed for each fuzzy cluster. Let the ith target output of the model training sample be OiThe weighted support vector machine equates the fitting problem to the following quadratic programming problem by transformation:
<math><mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ = { ξ =1,…,ξNIs the relaxation variable, ξiIs thatThe ith component, a, of the relaxation variableiI =1, …, N being the i-th component of the corresponding lagrange multiplier, w being the normal vector of the hyperplane of the support vector machine, b being the corresponding offset, and ω beingiI =1, …, N and γ being the weights and penalty factors of the least squares support vector machine, respectively, the superscript T representing the transpose of the matrix, μikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix. From equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo><</mo> <msub> <mi>&Phi;</mi> <mi>im</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Taking the linear kernel function, mumkRepresents the m-th training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Denotes the m-th input variable XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix. Alpha is alphamM =1, …, N is the mth component of the corresponding lagrange multiplier.
The output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,is the output of the fuzzy group k at the training sample i.
Preferably, the industrial melt index soft measurement model of the fuzzy equation further comprises: and the model updating module is used for updating the model on line, inputting offline experimental data into a training set regularly and updating the fuzzy equation system model.
According to the reaction mechanism and the process analysis, in consideration of various factors influencing the melt index in the production process of polypropylene, nine commonly used operation variables and easily-measured variables in the actual production process are taken as modeling variables, including: three propylene feed flow rates, main catalyst flow rate, auxiliary catalyst flow rate, temperature, pressure, liquid level in the kettle, and hydrogen volume concentration in the kettle. Table 1 lists 9 modeling variables input as the soft measurement model 5, which are the temperature in the kettle (T), the pressure in the kettle (p), the liquid level in the kettle (L), and the volume concentration of hydrogen in the kettle (X)v) 3 propylene feed flow rates (first propylene feed flow rate f1, second propylene feed flow rate f2, third propylene feed flow rate f 3), 2 catalyst feed flow rates (main catalyst flow rate f4, cocatalyst flow rate f 5). The polymerization reaction in the reaction kettle is carried out after reaction materials are repeatedly mixed, so that the process variable of the model input variable related to the materials adopts the average value of a plurality of previous moments. The data in this example were averaged over the previous hour. The melt index off-line assay value is used as an output variable of the soft measurement model 5. The test sample is obtained by manual sampling and offline assay analysis, and is analyzed and collected every 4 hours.
The on-site intelligent instrument 2 and the control station 3 are connected with the propylene polymerization production process 1 and the DCS database 4; the soft measurement model 5 is connected with the DCS database and the soft measurement value display instrument 6. The on-site intelligent instrument 2 measures the easily-measured variable of the propylene polymerization production object and transmits the easily-measured variable to the DCS database 4; the control station 3 controls manipulated variables of the propylene polymerization production target, and transmits the manipulated variables to the DCS database 4. The variable data recorded in the DCS database 4 is used as the input of the industrial melt index soft measurement model 5 of the fuzzy equation, and the soft measurement value display instrument 6 is used for displaying the output, namely the soft measurement value, of the industrial melt index soft measurement model 5 of the fuzzy equation.
Table 1: modeling variable required by industrial melt index soft measurement model of fuzzy equation
Variable sign Meaning of variables Variable sign Meaning of variables
T Temperature in the kettle f1 First propylene feed flow rate
p Pressure intensity in kettle f2 Second propylene feed flow rate
L Liquid level in the kettle f3 Third propylene feed flow rate
Xv Volume concentration of hydrogen in the autoclave f4 Main catalyst flow rate
f5 Flow rate of cocatalyst
The industrial melt index soft measurement model of fuzzy equation 5, includes the following 3 parts:
a data preprocessing module 7, configured to preprocess the model training samples input from the DCS database, centralize the training samples, that is, subtract an average value of the samples, and then normalize them:
calculating an average value: <math><mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
calculating the variance: <math><mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
and (3) standardization: <math><mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math>
wherein, TXiIs the ith training sample, N is the number of training samples,is the mean of the training samples, and X is the normalized training sample. SigmaxRepresenting the standard deviation, σ, of the training samples2 xRepresenting the variance of the training samples.
And the fuzzy equation module 8 is used for fuzzifying the standardized training sample X transmitted from the data preprocessing module. Let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math><mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is usually taken as 2, | | · |, as a norm expression.
Using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik)Xi] (5)
wherein func (. mu.)ik) To be aGenus value μikDeformation function of, in general, takeexp(μik) Equal, phiik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix.
And the least square support vector machine is used as a local equation of the fuzzy equation system and performs optimal fitting on each fuzzy group. Let the ith target output of the model training sample be OiThe weighted support vector machine equates the fitting problem to the following quadratic programming problem by transformation:
<math><mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ = { ξ =1,…,ξNIs the relaxation variable, ξiIs the i-th component of the relaxation variable, αiI =1, …, N being the i-th component of the corresponding lagrange multiplier, w being the normal vector of the hyperplane of the support vector machine, b being the corresponding offset, and ω beingiI =1, …, N and γ being the weights and penalty factors of the least squares support vector machine, respectively, the superscript T representing the transpose of the matrix, μikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix. From equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo><</mo> <msub> <mi>&Phi;</mi> <mi>im</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Taking the linear kernel function, mumkRepresents the m-th training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Denotes the m-th input variable XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix. Alpha is alphamM =1, …, N is the mth component of the corresponding lagrange multiplier.
The output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,is the output of the fuzzy group k at the training sample i.
And the model updating module 9 is used for updating the model on line, inputting offline experimental data into a training set regularly and updating the fuzzy equation model.
Example 2
Referring to fig. 1 and 2, a soft measurement method for melt index in industrial polypropylene production based on a least squares support vector machine fuzzy equation model is specifically implemented by the following steps:
1) selecting an operation variable and an easily-measured variable as input of a model for a propylene polymerization production process object according to process analysis and operation analysis, wherein the operation variable and the easily-measured variable are obtained by a DCS (distributed control system) database;
2) preprocessing a model training sample input from a DCS database, centralizing the training sample, namely subtracting the average value of the sample, and then normalizing the training sample so that the average value is 0 and the variance is 1. The processing is accomplished using the following mathematical process:
2.1) calculating the mean value: <math><mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow></math>
2.2) calculating the variance: <math><mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow></math>
2.3) standardization: <math><mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow></math> wherein, TXiIs the ith training sample, N is the number of training samples,is the mean of the training samples, and X is the normalized training sample. SigmaxRepresenting standard deviation of training samples,σ2 xRepresenting the variance of the training samples.
3) And fuzzifying the standardized training sample transmitted from the data preprocessing module. Let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math><mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow></math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is usually taken as 2, | | · |, as a norm expression.
Using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik)Xi] (5)
wherein func (. mu.)ik) Is a membership value muikDeformation function of, in general, takeexp(μik) Equal, phiik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix.
And the least square support vector machine is used as a local equation of the fuzzy equation system and performs optimal fitting on each fuzzy group. Let the ith target output of the model training sample be OiThe weighted support vector machine equates the fitting problem to the following quadratic programming problem by transformation:
<math><mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow></math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ = { ξ =1,…,ξNIs the relaxation variable, ξiIs the i-th component of the relaxation variable, αiI =1, …, N being the i-th component of the corresponding lagrange multiplier, w being the normal vector of the hyperplane of the support vector machine, b being the corresponding offset, and ω beingiI =1, …, N and γ being the weights and penalty factors of the least squares support vector machine, respectively, the superscript T representing the transpose of the matrix, μikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Denotes the ith input variable XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix. From equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo><</mo> <msub> <mi>&Phi;</mi> <mi>im</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Taking the linear kernel function, mumkRepresents the m-th training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Denotes the m-th input variable XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix. Alpha is alphamM =1, …, N is the mth component of the corresponding lagrange multiplier.
The output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math><mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow></math>
wherein,is the output of the fuzzy group k at the training sample i.
As a preferred solution: the soft measurement method further comprises the following steps: 4) and inputting the offline experimental data into a training set regularly, and updating the fuzzy equation model.
The method of the embodiment specifically comprises the following steps:
step 1: for the propylene polymerization production process object 1, the manipulated variables and easily measurable variables are selected as the inputs of the model according to the process analysis and the operational analysis. The manipulated variables and easily measurable variables are obtained from the DCS database 4.
Step 2: and sample data is preprocessed and completed by a data preprocessing module 7.
And step 3: and establishing a fuzzy equation model 8 based on the model training sample data. Input data is obtained as described in step 2 and output data is obtained from an off-line assay.
And 4, step 4: and the model updating module 9 periodically inputs offline experimental data into a training set, updates the fuzzy equation model, and completes the establishment of the soft measurement model 5 based on the fuzzy equation model of the least square support vector machine.
And 5: the melt index soft measurement value display instrument 6 displays the output of the industrial melt index soft measurement model 5 of the fuzzy equation, and completes the display of the melt index soft measurement of the industrial polypropylene production.

Claims (2)

1. The soft measurement instrument for the industrial melt index of the fuzzy equation comprises a field intelligent instrument for measuring easily-measured variables, a control station for measuring operation variables, a DCS (distributed control system) database for storing data and a soft measurement value display instrument for the melt index, wherein the field intelligent instrument and the control station are connected with a propylene polymerization production process, and the field intelligent instrument and the control station are connected with the DCS database, and are characterized in that: the soft measuring instrument further comprises an industrial melt index soft measuring model of a fuzzy equation, the DCS database is connected with the input end of the industrial melt index soft measuring model of the fuzzy equation, the output end of the industrial melt index soft measuring model of the fuzzy equation is connected with a melt index soft measuring value display instrument, and the industrial melt index soft measuring model of the fuzzy equation comprises:
the data preprocessing module is used for preprocessing the model training samples input from the DCS database, centralizing the training samples, namely subtracting the average value of the samples, and then normalizing the training samples:
calculating an average value: <math> <mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
calculating the variance: <math> <mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
and (3) standardization: <math> <mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, TXiIs the ith training sample, N is the number of training samples,is the mean value of the training sample, and X is the training sample after standardization; sigmaxRepresenting the standard deviation, σ, of the training samples2 xRepresenting the variance of the training samples;
the fuzzy equation module is used for fuzzifying the standardized training sample X transmitted from the data preprocessing module; let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math> <mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is taken as 2, | | · | | is a norm expression;
using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik) Xi] (5)
wherein func (. mu.)ik) Is a membership value muikIs taken as a deformation function ofOr exp (μ)ik),Φik(Xiik) Represents the ith normalized training sample XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix;
the least square support vector machine is used as a local equation of the fuzzy equation system, and optimal fitting is carried out on each fuzzy group; let the ith target output of the model training sample be OiWeighted support vector machine pass transformThe fitting problem is equivalent to the following quadratic programming problem:
<math> <mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ ═ ξ1,...,ξNIs the relaxation variable, ξiIs the i-th component of the relaxation variable, αiIs the ith component of the corresponding lagrange multiplier, where i is 1, …, N, w is the normal vector of the support vector machine hyperplane, b is the corresponding offset, and ω isiWhere i 1, N and γ are the weight and penalty factors of the least squares support vector machine, respectively, the superscript T tableTranspose of the matrix, muikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Represents the ith normalized training sample XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix; from equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo>&lt;</mo> <msub> <mi>&Phi;</mi> <mi>mk</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Is a linear kernel function, mumkRepresents the m-th normalized training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Represents the m-th normalized training sample XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix; alpha is alphamIs the mth component of the corresponding lagrange multiplier, where m is 1, …, N;
the output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,the output of the fuzzy group k in the training sample i;
the soft measurement model of the industrial melt index of the fuzzy equation further comprises:
and the model updating module is used for updating the model on line, inputting offline experimental data into a training set regularly and updating the fuzzy equation model.
2. A soft-sensing method implemented with the fuzzy-equation industrial melt index soft-sensing instrument of claim 1, wherein: the soft measurement method comprises the following concrete implementation steps:
1) selecting an operation variable and an easily-measured variable as input of a model for a propylene polymerization production process object according to process analysis and operation analysis, wherein the operation variable and the easily-measured variable are obtained by a DCS (distributed control system) database;
2) preprocessing a model training sample input from a DCS database, centralizing the training sample, namely subtracting the average value of the sample, and then standardizing the training sample to ensure that the average value is 0 and the variance is 1; the processing is accomplished using the following mathematical process:
2.1) calculating the mean value: <math> <mrow> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
2.2) calculating the variance: <math> <mrow> <msubsup> <mi>&sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>TX</mi> <mi>i</mi> </msub> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
2.3) standardization: <math> <mrow> <mi>X</mi> <mo>=</mo> <mfrac> <mrow> <mi>TX</mi> <mo>-</mo> <mover> <mi>TX</mi> <mo>&OverBar;</mo> </mover> </mrow> <msub> <mi>&sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, TXiIs the ith training sample, N is the number of training samples,is the mean value of the training sample, and X is the training sample after standardization; sigmaxRepresenting the standard deviation, σ, of the training samples2 xRepresenting the variance of the training samples;
3) fuzzification is carried out on the training samples transmitted from the data preprocessing module; let there be c in the system of fuzzy equations*A fuzzy group, the centers of the fuzzy groups k and j are vk、vjThe ith normalized training sample XiMembership mu for fuzzy group kikComprises the following steps:
<math> <mrow> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </munderover> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, n is a blocking matrix index required in the fuzzy classification process, and is taken as 2, | | · | | is a norm expression;
using the above membership values or its variants to obtain a new input matrix, for the fuzzy group k, its input matrix variant is:
Φik(Xiik)=[1 func(μik) Xi] (5)
wherein func (. mu.)ik) Is a membership value muikIs taken as a deformation function ofOr exp (μ)ik),Φik(Xiik) To representIth normalized training sample XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix;
the least square support vector machine is used as a local equation of the fuzzy equation system, and optimal fitting is carried out on each fuzzy group; let the ith target output of the model training sample be OiThe weighted support vector machine equates the fitting problem to the following quadratic programming problem by transformation:
<math> <mrow> <mi>min</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>w</mi> <mo>,</mo> <mi>&xi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mi>w</mi> <mi>T</mi> </msup> <mi>w</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&gamma;</mi> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <msubsup> <mi>&xi;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
the lagrangian function is also defined:
where R (w, ξ) is the objective function of the optimization problem, minR (w, ξ) is the minimum of the objective function of the optimization problem,a non-linear mapping function, N is the number of training samples, ξ ═{ξ1,...,ξNIs the relaxation variable, ξiIs the i-th component of the relaxation variable, αiIs the ith component of the corresponding lagrange multiplier, where i is 1, …, N, w is the normal vector of the support vector machine hyperplane, b is the corresponding offset, and ω isiWhere i 1, N and γ are the weights and penalty factors of the least squares support vector machine, respectively, the superscript T representing the transpose of the matrix, μikRepresents the ith normalized training sample XiMembership, Φ, for fuzzy group kik(Xiik) Represents the ith normalized training sample XiAnd membership mu of its fuzzy group kikThe corresponding new input matrix; from equations (6), (7) and (8), the output of the fuzzy group k in the training sample i is derived as:
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&alpha;</mi> <mi>m</mi> </msub> <mo>&times;</mo> <mi>K</mi> <mo>&lt;</mo> <msub> <mi>&Phi;</mi> <mi>mk</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>m</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>mk</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>ik</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,for the output of the fuzzy group K in the training sample i, K<·>Is the kernel function of a least squares support vector machine, where K<·>Is a linear kernel function, mumkRepresents the m-th normalized training sample XmMembership, Φ, for fuzzy group kmk(Xmmk) Represents the m-th normalized training sample XmAnd membership mu of its fuzzy group kmkThe corresponding new input matrix; alpha is alphamIs the mth component of the corresponding lagrange multiplier, where m is 1, …, N;
the output of the final fuzzy equation system is obtained by the gravity center method in the anti-fuzzy method:
<math> <mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>ik</mi> </msub> </mrow> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mo>*</mo> </msup> </msubsup> <msub> <mi>&mu;</mi> <mi>ik</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,the output of the fuzzy group k in the training sample i;
the soft measurement method further comprises the following steps: 4) and inputting the offline experimental data into a training set regularly, and updating the fuzzy equation model.
CN201310435088.5A 2013-09-22 2013-09-22 The industrial melt index soft measurement instrument of fuzzifying equation and method Expired - Fee Related CN103675009B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310435088.5A CN103675009B (en) 2013-09-22 2013-09-22 The industrial melt index soft measurement instrument of fuzzifying equation and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310435088.5A CN103675009B (en) 2013-09-22 2013-09-22 The industrial melt index soft measurement instrument of fuzzifying equation and method

Publications (2)

Publication Number Publication Date
CN103675009A CN103675009A (en) 2014-03-26
CN103675009B true CN103675009B (en) 2015-08-26

Family

ID=50313214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310435088.5A Expired - Fee Related CN103675009B (en) 2013-09-22 2013-09-22 The industrial melt index soft measurement instrument of fuzzifying equation and method

Country Status (1)

Country Link
CN (1) CN103675009B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680428A (en) * 2016-12-19 2017-05-17 华北电力大学(保定) Soft measuring method for denitration control system
CN108572190A (en) * 2017-03-09 2018-09-25 江苏金发科技新材料有限公司 The evaluation method of double screw extruder shear strength
CN108985574A (en) * 2018-06-23 2018-12-11 浙江工业大学 A kind of polypropylene melt index flexible measurement method based on selective ensemble extreme learning machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180348A (en) * 1983-03-30 1984-10-13 Mitsubishi Petrochem Co Ltd Automatic measuring apparatus of melt index
JPS613035A (en) * 1984-06-18 1986-01-09 Mitsui Petrochem Ind Ltd Improved operation system of automatic melt indexer
CN101017374A (en) * 2006-12-28 2007-08-15 浙江大学 Polypropylene melting index softsensoring instrument based on blind signal analysis and method thereof
CN101315557A (en) * 2008-06-25 2008-12-03 浙江大学 Propylene polymerization production process optimal soft survey instrument and method based on genetic algorithm optimization BP neural network
CN101315556A (en) * 2008-06-25 2008-12-03 浙江大学 Propylene polymerization production process optimal soft survey instrument and method based on chaos optimization
CN101382801A (en) * 2008-06-25 2009-03-11 浙江大学 Optimum soft measuring instrument based on EGA-optimized polymerization of propylene production process and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180348A (en) * 1983-03-30 1984-10-13 Mitsubishi Petrochem Co Ltd Automatic measuring apparatus of melt index
JPS613035A (en) * 1984-06-18 1986-01-09 Mitsui Petrochem Ind Ltd Improved operation system of automatic melt indexer
CN101017374A (en) * 2006-12-28 2007-08-15 浙江大学 Polypropylene melting index softsensoring instrument based on blind signal analysis and method thereof
CN101315557A (en) * 2008-06-25 2008-12-03 浙江大学 Propylene polymerization production process optimal soft survey instrument and method based on genetic algorithm optimization BP neural network
CN101315556A (en) * 2008-06-25 2008-12-03 浙江大学 Propylene polymerization production process optimal soft survey instrument and method based on chaos optimization
CN101382801A (en) * 2008-06-25 2009-03-11 浙江大学 Optimum soft measuring instrument based on EGA-optimized polymerization of propylene production process and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Melt flow index on high molecular weight polyethylene:A comparative study of experiments and simulation";M.A. Barrera et al.;《Journal of Materials Processing Technology》;20051210;第171-177页 *
"基于机制建模与模糊建模相结合的聚丙烯熔融指数软测量方法";田华阁 等;《中国石油大学学报(自然科学版) 》;20090331;第33卷(第3期);第162-166页 *

Also Published As

Publication number Publication date
CN103675009A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
CN103675011B (en) The industrial melt index soft measurement instrument of optimum support vector machine and method
CN103675006B (en) The industrial melt index soft measurement instrument of least square and method
CN101863088B (en) Method for forecasting Mooney viscosity in rubber mixing process
CN100461044C (en) Melt index detection fault diagnozing system and method in propylene polymerization production
WO2021114320A1 (en) Wastewater treatment process fault monitoring method using oica-rnn fusion model
CN103675009B (en) The industrial melt index soft measurement instrument of fuzzifying equation and method
CN105608536A (en) Food safety risk prediction method based on hidden Markov model
Li et al. Gaussian process regression with heteroscedastic noises—A machine-learning predictive variance approach
CN103674778A (en) Industrial melt index soft measuring meter and method based on RBF (radial basis function) particle swarm optimization
CN103675005B (en) The industrial melt index soft measurement instrument of optimum FUZZY NETWORK and method
CN103675010B (en) The industrial melt index soft measurement instrument of support vector machine and method
CN103279030B (en) Dynamic soft measuring modeling method and device based on Bayesian frame
CN103675012B (en) The industrial melt index soft measurement instrument of BP particle group optimizing and method
CN103675008B (en) The industrial melt index soft measurement instrument of Weighted Fuzzy and method
CN103472867B (en) The optimizing temperature of pesticide production waste liquid incinerator system and method for support vector machine
CN109445398B (en) Propylene polymerization production process optimal online forecasting system based on weighted combination learning
CN103630568B (en) The industrial melt index soft measurement instrument of BP network and method
CN103488089B (en) Adaptive pesticide waste liquid incinerator hazardous emission controls up to par system and method
CN103472728B (en) The pesticide incinerator hazardous emission controls up to par system and method for machine learning
CN103678953A (en) Biological fermentation yield on-line forecasting method based on Bayes combination neural network
CN103472727B (en) The pesticide incinerator hazardous emission controls up to par system and method for gunz weighting
CN109726474B (en) Online-correction multi-scale forecasting system for propylene polymerization production process
Hamada et al. The use of fuzzy logic theory in control charts (a comparative study)
CN113764048A (en) Polypropylene production quality on-line measuring system
CN103488090B (en) Incinerator hazardous emission control system up to standard and the method for gunz machine learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150826

Termination date: 20180922