CN113755509A - Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain - Google Patents

Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain Download PDF

Info

Publication number
CN113755509A
CN113755509A CN202111183145.6A CN202111183145A CN113755509A CN 113755509 A CN113755509 A CN 113755509A CN 202111183145 A CN202111183145 A CN 202111183145A CN 113755509 A CN113755509 A CN 113755509A
Authority
CN
China
Prior art keywords
sequence
lysophospholipase
promoter
aspergillus niger
variant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202111183145.6A
Other languages
Chinese (zh)
Inventor
赵正阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Zhengyang Biotechnology Co ltd
Original Assignee
Nanjing Zhengyang Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Zhengyang Biotechnology Co ltd filed Critical Nanjing Zhengyang Biotechnology Co ltd
Priority to CN202111183145.6A priority Critical patent/CN113755509A/en
Publication of CN113755509A publication Critical patent/CN113755509A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention discloses a sequence of lysophospholipase variant. The invention constructs a recombinant expression cassette containing a lysophospholipase variant sequence by a method for constructing a recombinant Aspergillus niger expression strain, wherein the recombinant expression cassette is a gene fragment containing elements such as a lysophospholipase variant gene sequence, a promoter, a terminator, a screening marker, upstream and downstream homologous sequences and the like. The expression cassette of the lysophospholipase variant sequence is constructed by means of genetic engineering and is introduced into an Aspergillus niger expression host bacterium, so that the high-efficiency secretory expression of the lysophospholipase variant is realized. Compared with the Aspergillus niger recombinant expression strain using the original lysophospholipase sequence before change, the Aspergillus niger recombinant expression strain using the lysophospholipase variant sequence constructed by the method of the invention has the advantages that the enzyme activity of the supernatant is improved by 20.7 percent and the specific enzyme activity per milligram of crude protein is improved by 21.12 percent under the same culture condition.

Description

Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain
Technical Field
The invention belongs to the field of genetic engineering breeding, and relates to a polypeptide which can be expressed in a large amount in Aspergillus niger host bacteria and has higher lysophospholipase specific enzyme activity, and construction and application of an Aspergillus niger recombinant expression strain thereof.
Background
Lysophospholipases are widely used in a variety of industries. However, its relatively high price still limits its wider application. Lysophospholipase is produced essentially by means of microbial fermentation. And the improvement of the expression quantity of the strain in the microbial fermentation process is an excellent mode for improving the industrial production and reducing the industrial production price.
Disclosure of Invention
The invention provides a polypeptide sequence with lysophospholipase activity, which is expressed in a corresponding Aspergillus niger host by using a patent method applied by the company before, and the activity of supernatant and the molecular specific enzyme activity of the polypeptide sequence are respectively improved by 20.7 percent and 21.12 percent compared with the expression of wild-type Aspergillus niger-derived lysophospholipase in the Aspergillus niger host.
The invention provides a sequence of lysophospholipase variant and a method for constructing an Aspergillus niger recombinant expression strain thereof.
The recombinant expression strain can be constructed by a genetic engineering method, and is specifically described as follows:
a method for constructing recombinant Aspergillus niger expression bacteria is to construct a recombinant expression cassette containing a lysophospholipase variant gene sequence, wherein the recombinant expression cassette is a gene fragment containing lysophospholipase variant gene sequence, a promoter, a terminator, a signal peptide, a screening marker and other elements.
The lysophospholipase variant gene has a nucleotide sequence shown in SEQ ID NO. 1; the host cell is Aspergillus niger.
The promoter may be an aspergillus niger endogenous promoter: such as Aspergillus niger glucoamylase promoter, neutral amylase promoter, acid amylase promoter, alpha-glucosidase promoter, etc.; it may also be an exogenous promoter: such as Aspergillus oryzae neutral amylase promoter, Rhizopus oryzae glucoamylase promoter; aspergillus niger glucoamylase promoter or Aspergillus niger neutral amylase promoter is preferred in the present invention.
Linked to the 3' end of the promoter may be regulatory sequences: such as a suitable leader sequence (5' UTR), a nontranslated region of an mRNA that is important for translation by the host cell, such as the Aspergillus oryzae neutral amylase and Aspergillus nidulans triose phosphate isomerase leader sequences.
For secretory expression of a particular protein, signal peptide sequence mediation is required, and commonly used signal peptide sequences in Aspergillus niger are the glucoamylase signal peptide, acid amylase signal peptide, Aspergillus niger phytase signal peptide, Aspergillus oryzae TAKA amylase signal peptide, and in the present invention, the signal peptide encoded by the lysophospholipase variant gene sequence itself is utilized.
Preferred terminators are obtained from the genes for the following enzymes: aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase, and Fusarium oxysporum trypsin-like protease.
The specific gene is linked to a promoter, a regulatory sequence, a signal peptide sequence and a terminator to form an expression cassette. Can be introduced into the A.niger genome by conventional methods, either randomly inserted into the genome or site-directed integration at one or more loci. Alternative loci are gla (glucoamylase), amya (neutral amylase), amyb (neutral amylase), aa (acid amylase), agda (alpha glucosidase), agdb (alpha glucosidase).
The expression cassette may preferably be linked to one or more selectable markers which allow for easy selection of transformed, transfected, transduced, or the like cells or strains. Selectable markers are genes whose products provide biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs (prototrophy to autotrophs), and the like. Selectable markers for use in a filamentous fungal host cell include, but are not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (glufosinate) acetyltransferase, hyg (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5' -phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase) and equivalents thereof. Preferred for use in an Aspergillus cell is the amdS or hyg of Aspergillus nidulans (Aspergillus nidulans) or Aspergillus oryzae.
The expression cassette may preferably be linked to one or more counter-selectable markers (negative selection markers). Selectable markers for use in filamentous fungal host cells include, but are not limited to, amdS (acetamidase), pyrG (orotidine-5' -phosphate decarboxylase), hsvTK (herpes simplex virus thymidine kinase).
The expression cassette is introduced into the genome of a host Aspergillus niger by a conventional method and randomly inserted into the genome of the host Aspergillus niger or site-specific integrated into one or more loci of the host Aspergillus niger.
The gene locus is selected from glucoamylase gla, neutral amylase amya, neutral amylase amyb, acid amylase aa, alpha-glucosidase agda and alpha-glucosidase agdb.
The host is Aspergillus niger with the glucoamylase gene, the fungal amylase gene and the acid amylase gene being knocked out.
The invention has the beneficial effects that:
the invention provides a gene sequence of lysophospholipase variant and a polypeptide sequence thereof, and provides an expression method of the lysophospholipase variant in Aspergillus niger. By expressing the variant sequence, the high-yield lysophospholipase variant Aspergillus niger expression strain is obtained. Compared with the strain expressing the lysophospholipase original sequence, under the same condition, the activity of the supernatant and the molecular specific enzyme activity are respectively improved by 20.7 percent and 21.12 percent compared with the expression of the wild type aspergillus niger derived lysophospholipase in an aspergillus niger host.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention and not to limit the invention. In the drawings:
FIG. 1 is a graph showing comparison of enzyme activities.
Detailed Description
The preferred embodiments of the present invention will be described in conjunction with the accompanying drawings, and it will be understood that they are described herein for the purpose of illustration and explanation and not limitation.
Examples
Construction of p-ZYAN02-LPPL-T plasmid
The method mainly comprises the following two steps: 1. an intermediate plasmid p-ZYAN01 was prepared. 2. Linearizing intermediate plasmid p-ZYAN01, and integrating lysophospholipase variant gene expression cassette and upstream and downstream homologous fragments into p-ZYAN01 to form p-ZYAN02-LPPL-T plasmid
The intermediate plasmid p-ZYAN01 was prepared as follows:
the p-ZYAN01 is mainly composed of the following parts and necessary connecting sequences, or is composed of the following parts directly.
(1) A 2305bp fragment obtained after double digestion of pUC57 plasmid XbaI-PscI;
(2) the sequence of the hyg gene expression cassette is shown in SEQ ID NO. 5;
(3) amds expression cassette, sequence shown in SEQ ID No. 6.
The 2305bp fragment obtained by double digestion of pUC57 plasmid XbaI-PciI, the hyg gene expression cassette, and the amds expression cassette, the three gene fragment sequence fragments were recombined by Gibson Master Mix Kit (E2611, New England Biolabs) to obtain recombinant plasmid p-ZYAN 01. Expression of the lysophospholipase variant expression cassette is integrated into the aspergillus niger glucoamylase locus for expression using a glucoamylase promoter and a glucoamylase terminator. Construction of lysophospholipase variant integral expression plasmid p-ZYAN 02-LPPL-T. The construction method of the integration plasmid is as follows: linearizing the p-ZYAN01 plasmid by a method commonly used in the industry; the Aspergillus niger gene fragment SEQ ID NO.7 is taken as a 5 'end homologous fragment, the Aspergillus niger gene fragment SEQ ID NO.8 is taken as a 3' end homologous fragment, and each fragment is 2000bp long. The linearized p-ZYAN01 vector, the homologous fragment and the lysophospholipase variant expression cassette fragment were recombined by GibsoMaster Mix Kit (E2611, New England Biolabs) to obtain an integration plasmid p-ZYAN02-LPPL-T, which contains the lysophospholipase variant expression cassette containing the Aspergillus niger glucoamylase promoter sequence, the Candida antarctica-derived lysophospholipase variant sequence and the Aspergillus niger glucoamylase terminator sequence, and the sequences were confirmed by sequencing.
Integration of lysophospholipase variant expression cassettes by transformation
The starting strain in this example is ZYAN05, which is obtained by knocking out glucoamylase gene, fungal amylase gene and acid amylase gene from conventional strains. The gene knockout/knock-in method in Aspergillus niger can be realized by referring to the technical method disclosed in the patent C N103937766A or CN 104962594A example. I.e., the method described with reference to Delmas (apple Environ Microbiol.2014,80(11):3484-7), et al. Specifically, circular DNA vectors are used, which contain the 5 'and 3' homologous sequences, a selectable marker, and an E.coli replication sequence. The circular vector is transferred into Aspergillus niger, and a recombinant strain is obtained by selection.
The protoplast transformation method is adopted to introduce the p-ZYAN02-LPPL-T plasmid into the Aspergillus niger strain ZYAN05, and the specific operation steps are as follows: preparation of protoplast: aspergillus niger mycelia were cultured in a nutrient-rich TZ liquid medium (beef extract powder 0.8%, yeast extract 0.2%, peptone 0.5%, NaCl 0.2%, sucrose 3%, pH 5.8). The mycelium was filtered from the culture broth by mira-cloth (LPPL-Tiochem Co.) and washed with 0.7M NaCl (pH5.8), and after draining the mycelium was transferred to an enzymatic hydrolysate (pH5.8) containing 1% cellulase (Sigma), 1% helicase (Sigma) and 0.2% lywallzyme (Sigma) and enzymatically hydrolyzed at 30 ℃ and 65rpm for 3 hours. Then putting the enzymatic hydrolysate containing the protoplast on ice, filtering the enzymatic hydrolysate by using four layers of mirror paper, carrying out mild centrifugation on the obtained filtrate at 3000rpm and 4 ℃ for 10min, and then removing the supernatant; the protoplasts attached to the vessel wall were washed once with STC solution (1M DSorbitol, 50mM CaCl2, 10mM Tris, pH7.5) and finally the protoplasts were resuspended in the appropriate amount of STC solution.
Adding 10 μ l (concentration: 100ng/μ l) of circular p-ZYAN02-LPPL-T plasmid into 100 μ l of protoplast suspension, mixing, and standing at room temperature for 25 min; then adding 900 mul PEG solution into the mixture for 3 times, mixing evenly, and standing for 25min at room temperature; centrifuging at 3000rpm for 10min at normal temperature, discarding the supernatant, attaching protoplasts to the tube wall, and resuspending them in 1ml of STC solution. Mixing the suspension with a culture medium (acetamide 0.3%, sucrose 20%, agar 0.7%) previously cooled to about 45 deg.C, and plating; after the flat plate is solidified, putting the flat plate into an incubator at 34 ℃ for culture; after 24h, a layer of solid medium (agar 1% and the rest as above) containing 300 ng/. mu.l Hygromycin (Hygromycin) was spread on the plate, and the plate was further placed in an incubator at 34 ℃ for 4-5 days, after which transformants that had grown in the upper medium were called integrative transformants. Randomly selecting several integrative transformants, respectively subculturing the integrative transformants on a solid culture medium containing 300 ng/mu l of Hygromycin (Hygromycin), after culturing for 3 days at a constant temperature of 34 ℃, collecting mycelia, freezing the mycelia by using liquid nitrogen, grinding and crushing the mycelia, then extracting the genomic DNA of the integrative transformants by using a fungus genome extraction kit (Boy science and technology, Ltd. in Hangzhou), and finally performing PCR identification on the genomic DNA of the integrative transformants. Integration into the glucoamylase locus was confirmed by sequencing of the PCR product. And (4) sequencing the positive transformant by using a PCR product and then confirming to obtain a recombinant expression strain.
Liquid fermentation production of lysophospholipase variant by recombinant expression strain
Slant culture: inoculating one strain of the Aspergillus niger recombinant expression strain to a PDA solid inclined plane, and culturing at constant temperature of 35 ℃ for 60 h; and (3) shake flask culture: inoculating one strain of the strain obtained by slant culture into seed culture medium, and culturing at initial pH of 5.5 and 35 deg.C and shaking table rotation speed of 200rpm for about 110 h. The slant culture medium is as follows: 20g of sucrose, 32 g of NaNO, 40.5 g of MgSO40, 0.5g of KCl, 40.01g of FeSO40, 41 g of K2HPO and 20g of agar, and the components are dissolved in 1000mL of water, and the pH is adjusted to 5.5,121 ℃ for sterilization for 20min for later use. The shake flask seed culture medium is as follows: 200mL of wort and 5g of bean cake powder, adjusting the pH value to 5.5,121 ℃, and sterilizing for 20min for later use.
The following table shows the fermentation of 2 batches in a 250ml shake flask, and a comparison with the original lysophospholipase fermentation.
Table 1: comparison of the enzyme production activity of lysophospholipase original sequence and lysophospholipase variant sequence in the same host and under the same culture conditions
Figure BDA0003298141210000061
According to the content, compared with the original lysophospholipase gene, the lysophospholipase variant gene provided by the invention has 21.12% higher molecular specific enzyme activity and 20.7% higher enzyme activity of fermentation supernatant (figure 1)
Finally, it should be noted that: although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that changes may be made in the embodiments and/or equivalents thereof without departing from the spirit and scope of the invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Sequence listing
<110> Nanjing Zhengyang Biotechnology Ltd
<120> lysophospholipase variants, method for their construction and expression in A. niger strains
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1776
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
gaaagggccg aggctgaggt tgcgtccgtc gccgccgatt taatcgtccg cgccctcccc 60
aatgcccccg atggctacac tccctccaat gtcacctgtc cctcgactcg tccgagcatt 120
cgtgatgcct cgggcatctc caccaacgag accgagtggc tcaaggtccg tcgcaatgcg 180
accctcaccc cgatgaagaa cctccttagc cgtctcaacc tcaccggctt tgataccacc 240
tcctacatca atgaacactc cagcaacatc tccaacatcc ccaacattgc aattgcggct 300
tcgggtggtg gataccgtgc gctcaccaac ggagctggtg cgctgaaggc tttcgacagc 360
cgctccgaca atgccaccaa ctccggtcaa ctgggtggtc tgctgcaggc ggcaacctac 420
gtctctggtc tgagtggtgg tagctggctg gtcggatcca tgttcgtcaa caacttctcc 480
tccatcggtg aattgcaagc cagcgagaag gtctggcgct tcgacaagtc cctgctcgag 540
ggacccaact tcgaccacat ccagatcgtc agcacggtgg aatactggaa ggacattacc 600
gaggaagtcg acggcaaggc taacgctggt tttaacactt ccttcaccga ctactggggc 660
cgtgcgctgt cctaccagct ggtgaacgcc tccgatgaca agggtggtcc cgactacacc 720
tggtcctcca ttgcgctcat ggacgacttc aagaacggcc agtaccccat gcctattgtg 780
gtcgccgacg gccgcaaccc cggcgaaatc atcgttgaga ccaatgccac cgtttatgaa 840
gtgaaccctt gggaattcgg ctctttcgac cccagcgtct acgccttcgc tcccctgcag 900
tatctgggct cccggttcga gaacggctcc atcccggaca acggcacctg cgtgagcggc 960
ttcgacaatg ccggctttat catgggatca tcctccaccc tgttcaacca attcctcctc 1020
caaatcaaca gcaccagcat ccccacgatc ctgaaggatg ccttcactga catcctcgag 1080
gacctcggtg agcgcaacga cgatatcgcc gtctactccc ccaacccctt ctccggctac 1140
cgcgacagca gcgaggatta cgccacagcc aaggacctcg acgttgtcga cggtggtgaa 1200
gacggcgaga acatccctct gcacccgctg atccagcccg agcgtgccgt cgatgtcatc 1260
ttcgccatcg actcctctgc cgacacagac tactactggc ccaacggtac ctcccttgtc 1320
gcgacctacg agcgcagtct cgagcccagc atcgccaacg gcaccgcctt ccccgccgtg 1380
ccggatcaga acaccttcgt caacctgggt ctcaactccc gcccgacttt cttcggctgc 1440
gaccccaaga acatctccgg caccgccccc ctggtcattt atctgcctaa cagcccctac 1500
acctacgact ccaacttctc gaccttcaag ctgacctaca gcgacgagga gcgtgattcc 1560
gtcatcacca acggctggaa cgtggtcact cgcggtaacg gtaccgttga tgataacttc 1620
ccgtcttgcg tggcgtgcgc tattctccag cgctccacct acaggacgaa cacctctctg 1680
ccagatatct gtaccacctg ctttaacgat tactgctgga acggcacgac aaacagcact 1740
acgcctggag cttatgaacc cagtgtgctg attgct 1776
<210> 2
<211> 592
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Glu Arg Ala Glu Ala Glu Val Ala Ser Val Ala Ala Asp Leu Ile Val
1 5 10 15
Arg Ala Leu Pro Asn Ala Pro Asp Gly Tyr Thr Pro Ser Asn Val Thr
20 25 30
Cys Pro Ser Thr Arg Pro Ser Ile Arg Asp Ala Ser Gly Ile Ser Thr
35 40 45
Asn Glu Thr Glu Trp Leu Lys Val Arg Arg Asn Ala Thr Leu Thr Pro
50 55 60
Met Lys Asn Leu Leu Ser Arg Leu Asn Leu Thr Gly Phe Asp Thr Thr
65 70 75 80
Ser Tyr Ile Asn Glu His Ser Ser Asn Ile Ser Asn Ile Pro Asn Ile
85 90 95
Ala Ile Ala Ala Ser Gly Gly Gly Tyr Arg Ala Leu Thr Asn Gly Ala
100 105 110
Gly Ala Leu Lys Ala Phe Asp Ser Arg Ser Asp Asn Ala Thr Asn Ser
115 120 125
Gly Gln Leu Gly Gly Leu Leu Gln Ala Ala Thr Tyr Val Ser Gly Leu
130 135 140
Ser Gly Gly Ser Trp Leu Val Gly Ser Met Phe Val Asn Asn Phe Ser
145 150 155 160
Ser Ile Gly Glu Leu Gln Ala Ser Glu Lys Val Trp Arg Phe Asp Lys
165 170 175
Ser Leu Leu Glu Gly Pro Asn Phe Asp His Ile Gln Ile Val Ser Thr
180 185 190
Val Glu Tyr Trp Lys Asp Ile Thr Glu Glu Val Asp Gly Lys Ala Asn
195 200 205
Ala Gly Phe Asn Thr Ser Phe Thr Asp Tyr Trp Gly Arg Ala Leu Ser
210 215 220
Tyr Gln Leu Val Asn Ala Ser Asp Asp Lys Gly Gly Pro Asp Tyr Thr
225 230 235 240
Trp Ser Ser Ile Ala Leu Met Asp Asp Phe Lys Asn Gly Gln Tyr Pro
245 250 255
Met Pro Ile Val Val Ala Asp Gly Arg Asn Pro Gly Glu Ile Ile Val
260 265 270
Glu Thr Asn Ala Thr Val Tyr Glu Val Asn Pro Trp Glu Phe Gly Ser
275 280 285
Phe Asp Pro Ser Val Tyr Ala Phe Ala Pro Leu Gln Tyr Leu Gly Ser
290 295 300
Arg Phe Glu Asn Gly Ser Ile Pro Asp Asn Gly Thr Cys Val Ser Gly
305 310 315 320
Phe Asp Asn Ala Gly Phe Ile Met Gly Ser Ser Ser Thr Leu Phe Asn
325 330 335
Gln Phe Leu Leu Gln Ile Asn Ser Thr Ser Ile Pro Thr Ile Leu Lys
340 345 350
Asp Ala Phe Thr Asp Ile Leu Glu Asp Leu Gly Glu Arg Asn Asp Asp
355 360 365
Ile Ala Val Tyr Ser Pro Asn Pro Phe Ser Gly Tyr Arg Asp Ser Ser
370 375 380
Glu Asp Tyr Ala Thr Ala Lys Asp Leu Asp Val Val Asp Gly Gly Glu
385 390 395 400
Asp Gly Glu Asn Ile Pro Leu His Pro Leu Ile Gln Pro Glu Arg Ala
405 410 415
Val Asp Val Ile Phe Ala Ile Asp Ser Ser Ala Asp Thr Asp Tyr Tyr
420 425 430
Trp Pro Asn Gly Thr Ser Leu Val Ala Thr Tyr Glu Arg Ser Leu Glu
435 440 445
Pro Ser Ile Ala Asn Gly Thr Ala Phe Pro Ala Val Pro Asp Gln Asn
450 455 460
Thr Phe Val Asn Leu Gly Leu Asn Ser Arg Pro Thr Phe Phe Gly Cys
465 470 475 480
Asp Pro Lys Asn Ile Ser Gly Thr Ala Pro Leu Val Ile Tyr Leu Pro
485 490 495
Asn Ser Pro Tyr Thr Tyr Asp Ser Asn Phe Ser Thr Phe Lys Leu Thr
500 505 510
Tyr Ser Asp Glu Glu Arg Asp Ser Val Ile Thr Asn Gly Trp Asn Val
515 520 525
Val Thr Arg Gly Asn Gly Thr Val Asp Asp Asn Phe Pro Ser Cys Val
530 535 540
Ala Cys Ala Ile Leu Gln Arg Ser Thr Tyr Arg Thr Asn Thr Ser Leu
545 550 555 560
Pro Asp Ile Cys Thr Thr Cys Phe Asn Asp Tyr Cys Trp Asn Gly Thr
565 570 575
Thr Asn Ser Thr Thr Pro Gly Ala Tyr Glu Pro Ser Val Leu Ile Ala
580 585 590
<210> 3
<211> 63
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atgaagttgc ctctctttgc tgctgcagca gctggcctcg ccaatgccgc ttccctgcct 60
gtc 63
<210> 4
<211> 21
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Met Lys Leu Pro Leu Phe Ala Ala Ala Ala Ala Gly Leu Ala Asn Ala
1 5 10 15
Ala Ser Leu Pro Val
20
<210> 5
<211> 2515
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gtacagtgac cggtgactct ttctggcatg cggagagacg gacggacgca gagagaaggg 60
ctgagtaata agccactggc cagacagctc tggcggctct gaggtgcagt ggatgattat 120
taatccggga ccggccgccc ctccgccccg aagtggaaag gctggtgtgc ccctcgttga 180
ccaagaatct attgcatcat cggagaatat ggagcttcat cgaatcaccg gcagtaagcg 240
aaggagaatg tgaagccagg ggtgtatagc cgtcggcgaa atagcatgcc attaacctag 300
gtacagaagt ccaattgctt ccgatctggt aaaagattca cgagatagta ccttctccga 360
agtaggtaga gcgagtaccc ggcgcgtaag ctccctaatt ggcccatccg gcatctgtag 420
ggcgtccaaa tatcgtgcct ctcctgcttt gcccggtgta tgaaaccgga aaggccgctc 480
aggagctggc cagcggcgca gaccgggaac acaagctggc agtcgaccca tccggtgctc 540
tgcactcgac ctgctgaggt ccctcagtcc ctggtaggca gctttgcccc gtctgtccgc 600
ccggtgtgtc ggcggggttg acaaggtcgt tgcgtcagtc caacatttgt tgccatattt 660
tcctgctctc cccaccagct gctcttttct tttctctttc ttttcccatc ttcagtatat 720
tcatcttccc atccaagaac ctttatttcc cctaagtaag tactttgcta catccatact 780
ccatccttcc catcccttat tcctttgaac ctttcagttc gagctttccc acttcatcgc 840
agcttgacta acagctaccc cgcttgagca gacatcacca tgaaaaagcc tgaactcacc 900
gcgacgtctg tcgagaagtt tctgatcgaa aagttcgaca gcgtctccga cctgatgcag 960
ctctcggagg gcgaagaatc tcgtgctttc agcttcgatg taggagggcg tggatatgtc 1020
ctgcgggtaa atagctgcgc cgatggtttc tacaaagatc gttatgttta tcggcacttt 1080
gcatcggccg cgctcccgat tccggaagtg cttgacattg gggagttcag cgagagcctg 1140
acctattgca tctcccgccg tgcacagggt gtcacgttgc aagacctgcc tgaaaccgaa 1200
ctgcccgctg ttctgcagcc ggtcgcggag gccatggatg cgatcgctgc ggccgatctt 1260
agccagacga gcgggttcgg cccattcgga ccgcaaggaa tcggtcaata cactacatgg 1320
cgtgatttca tatgcgcgat tgctgatccc catgtgtatc actggcaaac tgtgatggac 1380
gacaccgtca gtgcgtccgt cgcgcaggct ctcgatgagc tgatgctttg ggccgaggac 1440
tgccccgaag tccggcacct cgtgcacgcg gatttcggct ccaacaatgt cctgacggac 1500
aatggccgca taacagcggt cattgactgg agcgaggcga tgttcgggga ttcccaatac 1560
gaggtcgcca acatcttctt ctggaggccg tggttggctt gtatggagca gcagacgcgc 1620
tacttcgagc ggaggcatcc ggagcttgca ggatcgccgc ggctccgggc gtatatgctc 1680
cgcattggtc ttgaccaact ctatcagagc ttggttgacg gcaatttcga tgatgcagct 1740
tgggcgcagg gtcgatgcga cgcaatcgtc cgatccggag ccgggactgt cgggcgtaca 1800
caaatcgccc gcagaagcgc ggccgtctgg accgatggct gtgtagaagt actcgccgat 1860
agtggaaacc gacgccccag cactcgtccg agggcaaagg aatagtgatt taatagctcc 1920
atgtcaacaa gaataaaacg cgttttcggg tttacctctt ccagatacag ctcatctgca 1980
atgcattaat gcattgactg caacctagta acgccttcag gctccggcga agagaagaat 2040
agcttagcag agctattttc attttcggga gacgagatca agcagatcaa cggtcgtcaa 2100
gagacctacg agactgagga atccgctctt ggctccacgc gactatatat ttgtctctaa 2160
ttgtactttg acatgctcct cttctttact ctgatagctt gactatgaaa attccgtcac 2220
cagccctggg ttcgcaaaga taattgcatg tttcttcctt gaactctcaa gcctacagga 2280
cacacattca tcgtaggtat aaacctcgaa atcattccta ctaagatggt atacaatagt 2340
aaccatggtt gcctagtgaa tgctccgtaa cacccaatac gccggccgaa acttttttac 2400
aactctccta tgagtcgttt acccagaatg cacaggtaca cttgtttaga ggtaatcctt 2460
ctttctagaa gtcctcgtgt actgtgtaag cgcccactcc acatctccac tcgag 2515
<210> 6
<211> 2724
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ctagatctac gccaggaccg agcaagccca gatgagaacc gacgcagatt tccttggcac 60
ctgttgcttc agctgaatcc tggcaatacg agatacctgc tttgaatatt ttgaatagct 120
cgcccgctgg agagcatcct gaatgcaagt aacaaccgta gaggctgaca cggcaggtgt 180
tgctagggag cgtcgtgttc tacaaggcca gacgtcttcg cggttgatat atatgtatgt 240
ttgactgcag gctgctcagc gacgacagtc aagttcgccc tcgctgcttg tgcaataatc 300
gcagtgggga agccacaccg tgactcccat ctttcagtaa agctctgttg gtgtttatca 360
gcaatacacg taatttaaac tcgttagcat ggggctgata gcttaattac cgtttaccag 420
tgccgcggtt ctgcagcttt ccttggcccg taaaattcgg cgaagccagc caatcaccag 480
ctaggcacca gctaaaccct ataattagtc tcttatcaac accatccgct cccccgggat 540
caatgaggag aatgaggggg atgcggggct aaagaagcct acataaccct catgccaact 600
cccagtttac actcgtcgag ccaacatcct gactataagc taacacagaa tgcctcaatc 660
ctgggaagaa ctggccgctg ataagcgcgc ccgcctcgca aaaaccatcc ctgatgaatg 720
gaaagtccag acgctgcctg cggaagacag cgttattgat ttcccaaaga aatcggggat 780
cctttcagag gccgaactga agatcacaga ggcctccgct gcagatcttg tgtccaagct 840
ggcggccgga gagttgacct cggtggaagt tacgctagca ttctgtaaac gggcagcaat 900
cgcccagcag ttagtagggt cccctctacc tctcagggag atgtaacaac gccaccttat 960
gggactatca agctgacgct ggcttctgtg cagacaaact gcgcccacga gttcttccct 1020
gacgccgctc tcgcgcaggc aagggaactc gatgaatact acgcaaagca caagagaccc 1080
gttggtccac tccatggcct ccccatctct ctcaaagacc agcttcgagt caaggtacac 1140
cgttgcccct aagtcgttag atgtcccttt ttgtcagcta acatatgcca ccagggctac 1200
gaaacatcaa tgggctacat ctcatggcta aacaagtacg acgaagggga ctcggttctg 1260
acaaccatgc tccgcaaagc cggtgccgtc ttctacgtca agacctctgt cccgcagacc 1320
ctgatggtct gcgagacagt caacaacatc atcgggcgca ccgtcaaccc acgcaacaag 1380
aactggtcgt gcggcggcag ttctggtggt gagggtgcga tcgttgggat tcgtggtggc 1440
gtcatcggtg taggaacgga tatcggtggc tcgattcgag tgccggccgc gttcaacttc 1500
ctgtacggtc taaggccgag tcatgggcgg ctgccgtatg caaagatggc gaacagcatg 1560
gagggtcagg agacggtgca cagcgttgtc gggccgatta cgcactctgt tgagggtgag 1620
tccttcgcct cttccttctt ttcctgctct ataccaggcc tccactgtcc tcctttcttg 1680
ctttttatac tatatacgag accggcagtc actgatgaag tatgttagac ctccgcctct 1740
tcaccaaatc cgtcctcggt caggagccat ggaaatacga ctccaaggtc atccccatgc 1800
cctggcgcca gtccgagtcg gacattattg cctccaagat caagaacggc gggctcaata 1860
tcggctacta caacttcgac ggcaatgtcc ttccacaccc tcctatcctg cgcggcgtgg 1920
aaaccaccgt cgccgcactc gccaaagccg gtcacaccgt gaccccgtgg acgccataca 1980
agcacgattt cggccacgat ctcatctccc atatctacgc ggctgacggc agcgccgacg 2040
taatgcgcga tatcagtgca tccggcgagc cggcgattcc aaatatcaaa gacctactga 2100
acccgaacat caaagctgtt aacatgaacg agctctggga cacgcatctc cagaagtgga 2160
attaccagat ggagtacctt gagaaatggc gggaggctga agaaaaggcc gggaaggaac 2220
tggacgccat catcgcgccg attacgccta ccgctgcggt acggcatgac cagttccggt 2280
actatgggta tgcctctgtg atcaacctgc tggatttcac gagcgtggtt gttccggtta 2340
cctttgcgga taagaacatc gataagaaga atgagagttt caaggcggtt agtgagcttg 2400
atgccctcgt gcaggaagag tatgatccgg aggcgtacca tggggcaccg gttgcagtgc 2460
aggttatcgg acggagactc agtgaagaga ggacgttggc gattgcagag gaagtgggga 2520
agttgctggg aaatgtggtg actccatagc taataagtgt cagatagcaa tttgcacaag 2580
aaatcaatac cagcaactgt aaataagcgc tgaagtgacc atgccatgct acgaaagagc 2640
agaaaaaaac ctgccgtaga accgaagaga tatgacacgc ttccatctct caaaggaaga 2700
atcccttcag ggttgcgttt ccag 2724
<210> 7
<211> 2000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ctaccaatgc tctcgaggat tgcctgaaca ttgacattcg gcgtccggcc gggaccaccg 60
cggactcgaa gctgcctgtg ctggtctgga tctttggcgg aggctttgaa cttggttcaa 120
aggcgatgta tgatggtaca acgatggtat catcgtcgat agacaagaac atgcctatcg 180
tgtttgtagc aatgaattat cgcgtgggag gtttcgggtt cttgcccgga aaggagatcc 240
tggaggacgg gtccgcgaac ctagggctcc tggaccaacg ccttgccctg cagtgggttg 300
ccgacaacat cgaggccttt ggtggagacc cggacaaggt gacgatttgg ggagaatcag 360
caggagccat ttccgttttt gatcagatga tcttgtacga cggaaacatc acttacaagg 420
ataagccctt gttccggggg gccatcatgg actccggtag tgttgttccc gcagaccccg 480
tcgatggggt caagggacag caagtatatg atgcggtagt ggaatctgca ggctgttcct 540
cttctaacga caccctagct tgtctgcgtg aactagacta caccgacttc ctcaatgcgg 600
caaactccgt gccaggcatt ttaagctacc attctgtggc gttatcatat gtgcctcgac 660
cggacgggac ggcgttgtcg gcatcaccgg acgttttggg caaagcaggg aaatatgctc 720
gggtcccgtt catcgtgggc gaccaagagg atgaggggac cttattcgcc ttgtttcagt 780
ccaacattac gacgatcgac gaggtggtcg actacctggc ctcatacttc ttctatgacg 840
ctagccgaga gcagcttgaa gaactagtgg ccctgtaccc agacaccacc acgtacgggt 900
ctccgttcag gacaggcgcg gccaacaact ggtatccgca atttaagcga ttggccgcca 960
ttctcggcga cttggtcttc accattaccc ggcgggcatt cctctcgtat gcagaggaaa 1020
tctcccctga tcttccgaac tggtcgtacc tggcgaccta tgactatggc accccagttc 1080
tggggacctt ccacggaagt gacctgctgc aggtgttcta tgggatcaag ccaaactatg 1140
cagctagttc tagccacacg tactatctga gctttgtgta tacgctggat ccgaactcca 1200
accgggggga gtacattgag tggccgcagt ggaaggaatc gcggcagttg atgaatttcg 1260
gagcgaacga cgccagtctc cttacggatg atttccgcaa cgggacatat gagttcatcc 1320
tgcagaatac cgcggcgttc cacatctgat gccattggcg gaggggtccg gacggtcagg 1380
aacttagcct tatgagatga atgatggacg tgtctggcct cggaaaagga tatatgggga 1440
tcatgatagt actagccata ttaatgaagg gcatatacca cgcgttggac ctgcgttata 1500
gcttcccgtt agttatagta ccatcgttat accagccaat caagtcacca cgcacgaccg 1560
gggacggcga atccccggga attgaaagaa attgcatccc aggccagtga ggccagcgat 1620
tggccacctc tccaaggcac agggccattc tgcagcgctg gtggattcat cgcaatttcc 1680
cccggcccgg cccgacaccg ctataggctg gttctcccac accatcggag attcgtcgcc 1740
taatgtctcg tccgttcaca agctgaagag cttgaagtgg cgagatgtct ctgcaggaat 1800
tcaagctaga tgctaagcga tattgcatgg caatatgtgt tgatgcatgt gcttcttcct 1860
tcagcttccc ctcgtgcaga tgaggtttgg ctataaattg aagtggttgg tcggggttcc 1920
gtgaggggct gaagtgcttc ctccctttta gacgcaactg agagcctgag cttcatcccc 1980
agcatcatta cacctcagca 2000
<210> 8
<211> 2000
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
acaatcaatc catttcgcta tagttaaagg atggggatga gggcaattgg ttatatgatc 60
atgtatgtag tgggtgtgca taatagtagt gaaatggaag ccaagtcatg tgattgtaat 120
cgaccgacgg aattgaggat atccggaaat acagacaccg tgaaagccat ggtctttcct 180
tcgtgtagaa gaccagacag acagtccctg atttaccctt gcacaaagca ctagaaaatt 240
agcattccat ccttctctgc ttgctctgct gatatcactg tcattcaatg catagccatg 300
agctcatctt agatccaagc acgtaattcc atagccgagg tccacagtgg agcagcaaca 360
ttccccatca ttgctttccc caggggcctc ccaacgacta aatcaagagt atatctctac 420
cgtccaatag atcgtcttcg cttcaaaatc tttgacaatt ccaagagggt ccccatccat 480
caaacccagt tcaataatag ccgagatgca tggtggagtc aattaggcag tattgctgga 540
atgtcggggc cagttggccc ggtggtcatt ggccgcctgt gatgccatct gccactaaat 600
ccgatcattg atccaccgcc cacgaggcgc gtctttgctt tttgcgcggc gtccaggttc 660
aactctctct gcagctccag tccaacgctg actgactagt ttacctactg gtctgatcgg 720
ctccatcaga gctatggcgt tatcccgtgc cgttgctgcg caatcgctat cttgatcgca 780
accttgaact cactcttgtt ttaatagtga tcttggtgac ggagtgtcgg tgagtgacaa 840
ccaacatcgt gcaagggaga ttgatacgga attgtcgctc ccatcatgat gttcttgccg 900
gctttgttgg ccctattcgt gggatgcgat gccctcgctg tgcagcagca ggtactgctg 960
gatgaggagc catcggtctc tgcacgcaaa cccaacttcc tcttcattct cacggatgat 1020
caggatctcc ggatgaattc tccggcgtat atgccgtata cgcaggcgag aatcaaggaa 1080
aagggtaccg agttcttgaa ccatttcgtc actaccgcgc tttgctgtcc gtcgcgcgtg 1140
agtctttgga cgggaagaca ggctcataat actaatgtga cggatgtgaa cccgccttat 1200
ggtatggaca ctgcttcgat cggtcttgat tcttcagcgt ggttacaatt gctaatgcgg 1260
cataggcgga taccccaaat tcgtcgctca aggcttcaac gaaaacttcc tccccgtttg 1320
gctgcagtcc gccggttaca atacctacta cacggggaag ctgttcaact cgcacagtgt 1380
cgctacctat aacgcgccct ttgtgaacgg tttcaatggc tccgacttcc tcctcgaccc 1440
ccacacatat tcctactgga atgcgacata ccagcgaaac catgagcctc cgcggagtta 1500
cgagggacaa tatactacgg atgtgatgaa ggagaaggca tcgggattgt tggcagatgc 1560
gctggacagt gacgcgccat tcttcctgac ggtcgcgccg atcgcaccgc acacgaacat 1620
cgatgtggag gggctgagcg gtgcgggtgg accgaagatg acagagccgc tgcctgcacc 1680
gagacatgcg catttgtttg ctgatgcaaa ggtgccgcgg acgcctaatt tcaatccgga 1740
caaggtgtgt gatatcctga cacagtggtg gggacgggca ctgacaagag taggattctg 1800
gtgcggggtg gatccaaacc atggaactac agaaccagac cgtcatcgac tacgaagacc 1860
atctttatcg ccagcgtctg cgcactttgc aagccgtcga tgagatggtg gatgcgctga 1920
tcacgcagct ggaagaaagt gggcagatcg acaataccta catcatttac agtgctgata 1980
acggctacca cattggccat 2000

Claims (10)

1. A variant lysophospholipase sequence based on a lysophospholipase from aspergillus.
2. The sequence of claim 1, wherein the nucleotide sequence is shown as SEQ ID NO.1, and other sequences having 90% or more homology with SEQ ID NO. 1.
3. The sequence of claim 1, wherein the amino acid sequence is shown in SEQ ID NO.2, and other sequences having homology of 90% or more with SEQ ID NO. 2.
4. The sequence of claim 1, wherein the signal peptide is derived from lysophospholipase from Aspergillus niger when expressed in a host bacterium, and the nucleotide sequence is shown in SEQ ID NO.3, and other sequences having homology of 90% or more with SEQ ID NO. 3.
5. The sequence of claim 4, wherein the amino acid sequence is shown in SEQ ID NO.4, and other sequences having 90% or more homology to SEQ ID NO. 4.
6. The method of claim 1, wherein the construction is carried out using Aspergillus niger as a host, from which the glucoamylase gene, the fungal amylase gene and the acid amylase gene are deleted.
7. The method of claim 6, wherein the promoter used in the strain construction process is selected from the group consisting of an Aspergillus niger endogenous promoter or an exogenous promoter; the Aspergillus niger endogenous promoter is an Aspergillus niger glucoamylase promoter, a neutral amylase promoter, an acid amylase promoter or an alpha-glucosidase promoter; the exogenous promoter is an aspergillus oryzae neutral amylase promoter or a rhizopus saccharidase promoter; the control sequence connected with the 3 'end of the promoter is a leader sequence 5' UT.
8. The method according to claim 7, wherein the terminator is obtained from the following genes for enzymes: aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Aspergillus nidulans anthranilate synthase, Aspergillus niger alpha-glucosidase, or Fusarium oxysporum trypsin-like protease.
9. The method of construction according to claim 7, wherein the selectable marker element is selected from the group consisting of a selectable marker and/or a counter-selectable marker; said selectable marker is selected from the group consisting of acetamidase amdS, ornithine carbamoyltransferase argB, glufosinate bar, acetyltransferase, hygromycin phosphotransferase hyg, nitrate reductase niaD, orotidine-5' -phosphate decarboxylase pyrG, sulfate adenyltransferase sC, anthranilate synthase trpC, or equivalents thereof, preferably used in a cell of Aspergillus is amdS, hyg of Aspergillus nidulans or Aspergillus oryzae; the counter selection marker is selected from the group consisting of a selectable marker for filamentous fungal host cells or hsvTK, preferably acetamidase amdS, orotidine-5' -phosphate decarboxylase pyrG.
10. An expression cassette for a lysophospholipase variant gene, wherein the lysophospholipase variant sequence of claim 1 is introduced by conventional methods, randomly inserted into the genome of a host A.niger, or site-directed integration into one or more loci of a host A.niger; the locus is selected from any one of glucoamylase gla, neutral amylase amya, neutral amylase amyb, acid amylase aa, alpha glucosidase agda or alpha glucosidase agdb.
CN202111183145.6A 2021-10-11 2021-10-11 Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain Withdrawn CN113755509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111183145.6A CN113755509A (en) 2021-10-11 2021-10-11 Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111183145.6A CN113755509A (en) 2021-10-11 2021-10-11 Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain

Publications (1)

Publication Number Publication Date
CN113755509A true CN113755509A (en) 2021-12-07

Family

ID=78799140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111183145.6A Withdrawn CN113755509A (en) 2021-10-11 2021-10-11 Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain

Country Status (1)

Country Link
CN (1) CN113755509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Similar Documents

Publication Publication Date Title
CN105586355B (en) Method for producing polypeptides in enzyme-deficient mutants of fusarium venenatum
CN107586789B (en) High-yield acidic protease aspergillus niger recombinant expression strain and construction method and application thereof
JP4922524B2 (en) Novel expression control sequences and expression products in the field of filamentous fungi
CN111378585B (en) Pichia pastoris mutant strain for expressing exogenous gene
JP2001518786A (en) Agrobacterium-mediated transformation of filamentous fungi, especially those belonging to the genus Aspergillus
JPH10500024A (en) Non-toxic, non-toxic, non-pathogenic expression systems and promoters and terminators for use therein
CN102268448A (en) Expression equipment for expressing heterologous protein in Trichoderma reesei cell, and gene engineering bacteria
JP2022110110A (en) Recombinant oxalate decarboxylase expressed in filamentous fungal host cell
CN113106114B (en) Factor for regulating expression efficiency of trichoderma reesei protein, regulating method and application
JP7459509B2 (en) Mutant strain of Trichoderma fungus and method for producing protein
JP2000501620A (en) fungi in which areA, pepC and / or pepE genes are inactivated
CN108251310B (en) Novel trichoderma host cell and application thereof
CN109553664B (en) Fungal alpha-L-arabinofuranosidase synthesis regulation protein mutant and application thereof
CN113755509A (en) Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain
JP2002515252A (en) Methods for producing polypeptides in filamentous fungal mutant cells
CN113699176A (en) Construction and application of aspergillus niger recombinant expression strain for high-yield lysophospholipase
EP4139332A1 (en) Compositions and methods for enhanced protein production in filamentous fungal cells
CN103114089B (en) Strong promoter from trichoderma reesei as well as expression vector and application thereof
CN112522227B (en) Catalase with high enzyme activity, gene, recombinant strain with high catalase yield and application
CN113736672A (en) Aspergillus niger recombinant strain capable of expressing candida antarctica lipase B in large quantity and construction method and application thereof
CN113897365B (en) Trichoderma reesei cbh1 gene promoter mutant and construction method and application thereof
US6534286B1 (en) Protein production in Aureobasidium pullulans
RU2238974C2 (en) Dna fragment of mycelial fungus penicillium verruculosum encoding synthesis of secretable endoglucanase iii and group of penicillium canescens strains producing penicillium verruculosum endoglucanase iii constructed by methods of transformation and genetic engineering based on this dna fragment
CN114480468B (en) Method for inhibiting growth of fusarium by constructing Sch9 gene mutant strain
JP7503312B2 (en) Recombinant oxalate decarboxylase expressed by filamentous fungal host cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211207

WW01 Invention patent application withdrawn after publication