CN113742840A - 垂直起降可重复使用运载器试验样机快速弹道迭代计算法 - Google Patents

垂直起降可重复使用运载器试验样机快速弹道迭代计算法 Download PDF

Info

Publication number
CN113742840A
CN113742840A CN202110940762.XA CN202110940762A CN113742840A CN 113742840 A CN113742840 A CN 113742840A CN 202110940762 A CN202110940762 A CN 202110940762A CN 113742840 A CN113742840 A CN 113742840A
Authority
CN
China
Prior art keywords
angle
section
landing
trajectory
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110940762.XA
Other languages
English (en)
Inventor
李晓苏
汪潋
王志军
岳小飞
刘克龙
黎桪
邹延兵
左湛
周鑫
张昌涌
杨跃
朱佩婕
刘浩
段淑婧
彭彦召
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CASIC Rocket Technology Co
Original Assignee
CASIC Rocket Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASIC Rocket Technology Co filed Critical CASIC Rocket Technology Co
Priority to CN202110940762.XA priority Critical patent/CN113742840A/zh
Publication of CN113742840A publication Critical patent/CN113742840A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及垂直起降可重复使用运载器试验样机快速弹道迭代计算法。具体步骤为:S1、确定约束量要求及精度要求;S2、确定待迭代的各控制量;S3、给控制量赋初值;S4、根据约束量与控制量之间的关系,确定修正系数;S5、根据修正系数,计算修正量,进行弹道迭代计算;S6、获得满足精度要求的弹道。本方法设置三个控制变量迭代求解满足着陆点位置要求的弹道,显著减少控制变量,加快迭代速度,可以解决传统迭代算法中收敛慢、初值敏感性高的问题,本方法设计的弹道满足垂直起降可重复使用运载器试验样机用于垂直起降关键技术攻关与技术验证的要求,简单可靠,为垂直起降可重复使用运载器的研制节约成本节约时间做出重要贡献。

Description

垂直起降可重复使用运载器试验样机快速弹道迭代计算法
技术领域
本发明属于飞行器弹道设计技术领域,具体为一种垂直起降可重复使用运载器试验样机快速弹道迭代计算法。
背景技术
采用垂直起降技术的火箭与传统一次性火箭相比,最大的区别在于能否回收火箭一子级。随着商业航天发展,市场对低成本火箭的需求十分迫切,使用高可靠、低成本、可重复使用的火箭实现商业发射任务已成为未来发展趋势。但是直接开展可重复使用火箭研制技术难度大、风险高,需先开展垂直起降关键技术攻关与技术验证。为此设计的一种垂直起降可重复使用运载器试验样机用于垂直起降关键技术攻关与技术验证,因传统的弹道迭代算法收敛慢、初值敏感性高,不能满足试验样机的使用要求,需要对弹道进行适应性设计。
发明内容
为了满足垂直起降可重复使用运载器试验样机用于垂直起降关键技术攻关与技术验证,本发明提供了一种垂直起降可重复使用运载器试验样机快速弹道迭代计算法,包括以下步骤:
S1、确定约束量要求及精度要求;
S2、确定待迭代的各控制量;
S3、给控制量赋初值;
S4、根据约束量与控制量之间的关系,确定修正系数;
S5、根据修正系数,计算修正量,进行弹道迭代计算;
S6、获得满足精度要求的弹道。
进一步地,所述步骤S1的具体内容为:
所述约束要求包括着陆点高度、速度、射程、落点方位角的要求,其中,末端高度约束要求为0m,精度要求为0.001m-0.1m(最优选0.01m);末端速度要求为0m/s,精度要求为0.001m/s-0.1m/s(最优选0.01m/s);射程精度要求为0.01m-1m(最优选0.1m);落点方位角精度要求为0.01°-1°(最优选0.1°)。
所述步骤S2的具体内容为:
确定待迭代的控制量,首先将弹道分为加速上升段、第一调推段、减速上升段、加速下降段、第二调推段、减速下降段,其中减速返回段结束高度HH为控制量之一,HH用于控制落点高度使其满足落点高度精度要求;随后对弹道全程的姿态角进行设计,其中表征俯仰角的特征量
Figure BDA0003214817650000021
为控制量之一(用来控制射程),
Figure BDA0003214817650000022
用于控制落点射程使其满足射程精度要求;射向角A0为第三个控制变量,A0用于控制落点方位角使其满足落点方位角精度要求,射向角定义为发射瞄准方向与发射点正北方向的夹角,落点方位角定义落点相对发射点的方向与发射点正北方向的夹角;
所述步骤S3的具体内容为:
给控制变量赋初值,所述初值可以使弹道迭代计算快速收敛;
所述步骤S4的具体内容为:
确定修正系数时,射向角与落点方位角、加速下降段结束高度与着陆高度单位相同且有较为明显的单调(单调递增或单调递减)关系,修正系数定为1;射程与
Figure BDA0003214817650000023
的修正系数按照如下方式计算:每算完一条弹道,记录射程L与
Figure BDA0003214817650000024
值,则修正系数为
Figure BDA0003214817650000025
进一步地,所述步骤S2中,
所述加速上升段的结束判断条件为发射系Y向速度达到特定值Vy1,该值的设定与弹道顶点高度相关:此段结束时刻为t1;
所述第一调推段的时长Tm1与发动机调整推力的性能以及推力调整量相关;此段结束时刻为t2;
所述减速上升段结束判断条件为Y向速度为0;此段结束时刻为t3:
所述加速下降段结束判断条件为高度达到控制量HH;此段结束时刻为t4;
所述第二调推段的时长Tm2与发动机调整推力的性能以及推力调整量相关;此段结束时刻为t5;
所述减速下降段结束判断条件为Y向速度为0,此段结束时刻为t6。
各段结束的时刻按时间顺序为t1、t2、t3、t4、t5、t6。
进一步地,所述步骤S5中进行弹道迭代计算时确定待迭代的各控制量时,不用各飞行段的时间作为控制量,而是分成六段飞行段分别用不同的更方便计算的物理量来做为控制量(六段的判断量更适合本弹道)的:加速上升段、第一调推段、减速上升段、加速下降段、第二调推段、减速下降段,各个段推力不同,各个段俯仰角不同,在初始时就确定了AO射向角但在整个过程中进行坐标系变换进行计算;在加速下降段将加速下降段结束的高度作为控制量HH。
进一步地,无需设计控制量用于满足着陆点三个方向速度要求,将减速下降段的结束判断条件设置为发射系Y向速度为0,通过俯仰角
Figure BDA0003214817650000031
和偏航角ψ设计,令返回段火箭推力方向与速度方向相反,可使着陆时发射系x向、z向速度回0,由于滚转角不影响三自由度弹道计算,所以全程滚转角为0。
进一步地,所述姿态角包括俯仰角
Figure BDA0003214817650000032
和偏航角ψ,具体设计内容为:
在加速上升段:俯仰角为90°、偏航角为0°;
在第一调推段:俯仰角从90°匀速过渡至
Figure BDA0003214817650000041
偏航角为0°;
在减速上升段:俯仰角为
Figure BDA0003214817650000042
偏航角为0°;
在加速下降段、第二调推段、减速下降段:俯仰角从
Figure BDA0003214817650000043
匀速过渡至
Figure BDA0003214817650000044
为保持箭体姿态稳定,角速率
Figure BDA0003214817650000045
不宜过大,随后俯仰角保持
Figure BDA0003214817650000046
飞行,计算弹道倾角θ和弹道偏角σ,当
Figure BDA0003214817650000047
记录下该时刻
Figure BDA0003214817650000048
从该时刻起,令
Figure BDA0003214817650000049
返回段俯仰角程序如下式所示:
Figure BDA00032148176500000410
加速下降段和第二调推段偏航角为0°,减速下降段计算弹道偏角σ,令偏航角ψ=-σ;
Figure BDA00032148176500000411
具体地,在减速下降段,如果临近着陆速度过低,计算出的弹道倾角和弹道偏角可能出现较大跳变,处理方式为当速度小于0.1m/s的一瞬间,记录下当前姿态角
Figure BDA00032148176500000412
ψf,从该瞬间之后,令俯仰角和偏航角冻结在
Figure BDA00032148176500000413
ψf,直至Y向速度达到0m/s。
具体地,所述步骤S3中给控制变量赋初值,当约束量确定时,由于射向角与落点方位角定义方向一致、起始基准一致,所以将射向角初值定为与目标落点方位角Azi0相等;减速返回段结束高度初值必定处于起飞点海拔高度H0和弹道顶点Hm海拔高度之间,令HH=xH(Hm-H0),其中xH∈(0,1),由于减速下降段结束的判断条件为Y向速度为0m/s,如果xH太小,可能出现减速下降段结束时高度为负值的问题,此时无法求解有意义的大气参数,所以xH的取值区间定在(0.5,1.0)之间;特征量
Figure BDA0003214817650000051
的初值取值范围为(0°,90°),可根据射程L(即图2中的l)要求进行选取,姿态角过大可能导致迭代发散的问题,较小的初值有利于迭代收敛。
总体而言,通过本发明所构思的以上技术方案能够取得下列有益效果:
1、本方法设置三个控制变量迭代求解满足着陆点位置要求的弹道,控制变量包括:射向、表征姿态角程序的特征量、减速返回段结束高度HH,位置要求包括:落点方位角、射程、终端高度。速度要求无需设置控制变量,通过姿态角设计实现x向和z向速度回零,将着每条弹道计算的结束点条件设置为发射系Y向速度为零,在每次迭代过程中计算的弹道均能满足终端速度约束要求。该方法显著减少控制变量,加快迭代速度,可以解决传统迭代算法中收敛慢、初值敏感性高的问题。
2、本方法设计的弹道满足垂直起降可重复使用运载器试验样机用于垂直起降关键技术攻关与技术验证的要求,简单可靠,为垂直起降可重复使用运载器的研制节约成本节约时间做出重要贡献。
附图说明
图1为本发明弹道计算法的发射系示意图,坐标原点O1与发射点固连,x轴在发射平面内,指向发射瞄准方向,y轴垂直于发射点水平面指向天向,z轴与x,y轴构成右手直角坐标系;A0为射向角;O点为地球本身的坐标系原点;
图2为本发明弹道计算法的流程示意图,图中的t为从起飞时刻开始的时间变量;h为从起飞时刻开始的弹道高度变量,随t变化而变化;Vy-发射系Y向速度,Vy1-加速上升段结束发射系Y向速度判断条件,HH-加速下降段结束高度判断条件,h-海拔高度,H0-落点海拔高度要求,l-射程,l0-射程约束要求,Az-落点方位角,Az0-落点方位角约束要求;
图3为垂直起降可重复使用运载器试验样机按本发明的弹道计算法设计的弹道飞行剖面图,图中调推段I即第一调推段,调推段II即第二调推段。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供一种垂直起降可重复使用运载器试验样机快速弹道迭代计算法,如图1所示,首先定义发射系:坐标原点O1与发射点固连,x轴在发射平面内,指向发射瞄准方向,y轴垂直于发射点水平面指向天向,z轴与x,y轴构成右手直角坐标系。
射向角:射向角为发射瞄准方向与发射点正北方向的夹角,从y轴看顺时针为正。
落点方位角:落点相对发射点的方向与发射点正北方向的夹角,从y轴看顺时针为正。
如图2所示,本发明的试验样机快速弹道迭代计算法,包括以下步骤:
步骤S1、确定约束量要求及精度要求;
所述步骤S1的具体内容为:
所述约束要求包括着陆点高度、速度、射程、落点方位角的要求,其中,末端高度约束要求为0m,精度要求为0.001m-0.1m,优选为0.01m;末端速度要求为0m/s,精度要求为0.001m/s-0.1m/s,优选为0.01m/s;射程精度要求为0.01m-1m,优选为0.1m;落点方位角精度要求为0.01°-1°,优选为0.1°。
步骤S2、确定待迭代的各控制量;
所述步骤S2的具体内容为:
确定待迭代的控制量,首先将弹道分为加速上升段、第一调推段、减速上升段、加速下降段、第二调推段、减速下降段,其中减速返回段结束高度HH为控制量之一,HH用于控制落点高度使其满足落点高度精度要求;随后对弹道全程的姿态角进行设计,其中表征俯仰角的特征量
Figure BDA0003214817650000071
为控制量之一,
Figure BDA0003214817650000072
用于控制落点射程使其满足射程精度要求;射向角A0为第三个控制变量,A0用于控制落点方位角使其满足落点方位角精度要求,射向角定义为发射瞄准方向与发射点正北方向的夹角,落点方位角定义落点相对发射点的方向与发射点正北方向的夹角;
在实际应用中,所述步骤S2中,
所述加速上升段的结束判断条件为发射系Y向速度达到特定值Vy1,该值的设定与弹道顶点高度相关:此段结束时刻为t1(即图2中的T1);Vy1和弹道顶点高度是单调递增的关系。
所述第一调推段的时长Tm1与发动机调整推力的性能以及推力调整量相关;此段结束时刻为t2;例如,发动机调整推力的性能如果为调整10%的推力需要1s的时间(设发动机额定推力(满推力)为P,发动机每秒可调节10%P),推力调整量由70%调整到50%,调整量为20%,那么时长Tm1需要2×1s=2s;
所述减速上升段结束判断条件为Y向速度为0;此段结束时刻为t3;
所述加速下降段结束判断条件为高度达到控制量HH;此段结束时刻为t4(即图2中的T4);
所述第二调推段的时长Tm2与发动机调整推力的性能以及推力调整量相关;此段结束时刻为t5;例如:设发动机额定推力(满推力)为P,发动机每秒可调节10%P,假如从70%P调整至50%P,则需要2s。
所述减速下降段结束判断条件为Y向速度为0,此段结束时刻为t6。
各段结束的时刻按时间顺序为t1(即图2中的T1)、t2、t3、t4(即图2中的T4)、t5、t6。
步骤S3、给控制量赋初值;
所述步骤S3的具体内容为:
给控制变量赋初值,所述初值可以使弹道迭代计算快速收敛;
在实际应用中,具体地,所述步骤S3中给控制变量赋初值,当约束量(约束量包括射程,落点方位角,着陆速度为0其中垂直速度回零即为0(判断着陆标准)、侧向速度也回零即为0,高度为0)确定时,由于射向角与落点方位角定义方向一致、起始基准一致,所以将射向角初值定为与目标落点方位角Azi0相等;减速返回段结束高度初值必定处于起飞点海拔高度H0和弹道顶点Hm海拔高度之间,令HH=xH(Hm-H0),其中xH∈(0,1),由于减速下降段结束的判断条件为Y向速度为0m/s,如果xH太小,可能出现减速下降段结束时高度为负值的问题,此时无法求解有意义的大气参数,所以xH的取值区间定在(0.5,1.0)之间;特征量
Figure BDA0003214817650000081
的初值取值范围为(0°,90°),可根据射程L(即图2中的l,l0是射程约束要求)要求进行选取,例如:对于50m射程可以取
Figure BDA0003214817650000082
姿态角过大可能导致迭代发散的问题,较小的初值有利于迭代收敛。
在实际应用中,无需设计控制量用于满足着陆点三个方向速度要求,将减速下降段的结束判断条件设置为发射系Y向速度为0,通过俯仰角
Figure BDA0003214817650000091
和偏航角ψ设计,令返回段火箭推力方向与速度方向相反,可使着陆时发射系x向、z向速度回0,由于滚转角不影响三自由度弹道计算,所以全程滚转角为0。
所述姿态角包括俯仰角
Figure BDA0003214817650000092
和偏航角ψ,具体设计内容为:
在加速上升段:俯仰角为90°、偏航角为0°;
在第一调推段:俯仰角从90°匀速过渡至
Figure BDA0003214817650000093
偏航角为0°;
在减速上升段:俯仰角为
Figure BDA0003214817650000094
偏航角为0°;
在加速下降段、第二调推段、减速下降段:俯仰角从
Figure BDA0003214817650000095
匀速过渡至
Figure BDA0003214817650000096
为保持箭体姿态稳定,角速率
Figure BDA0003214817650000097
不宜过大,随后俯仰角保持
Figure BDA0003214817650000098
飞行,计算弹道倾角θ和弹道偏角σ,当
Figure BDA0003214817650000099
记录下该时刻
Figure BDA00032148176500000910
从该时刻起,令
Figure BDA00032148176500000911
返回段俯仰角程序如下式所示:
Figure BDA00032148176500000912
加速下降段和第二调推段偏航角为0°,减速下降段计算弹道偏角σ,令偏航角ψ=-σ;
Figure BDA00032148176500000913
Vx、Vy、Vz为发射系X、Y、Z向速度,V发射系速速,a没有意义,a与sin一起用,是反三角函数arcsin的意思。
具体地,减速下降段,如果临近着陆速度过低,计算出的弹道倾角和弹道偏角可能出现较大跳变,处理方式为当速度小于0.1m/s的一瞬间,记录下当前姿态角
Figure BDA0003214817650000101
ψf,从该瞬间之后,令俯仰角和偏航角冻结在
Figure BDA0003214817650000102
ψf,直至Y向速度达到0m/s。
步骤S4、根据约束量与控制量之间的关系,确定修正系数;
所述步骤S4的具体内容为:
确定修正系数时,射向角与落点方位角、加速下降段结束高度与着陆高度单位相同且有较为明显的单调(单调递增或单调递减)关系,修正系数定为1;射程与
Figure BDA0003214817650000103
的修正系数按照如下方式计算:每算完一条弹道,记录射程L与
Figure BDA0003214817650000104
值,则修正系数为
Figure BDA0003214817650000105
基本规则是火箭往哪边发射就往哪边返回着陆,落点方位角随着射向增加而单调递增。由于弹道顶点高度一定,加速下降段结束高度越高,则加速下降段结束时刻发射系Y向速度Vy越小,而调推段时长不变,则减速下降段开始时刻Vy也越小,减速下降段从较小速度减速至速度为0,则该段起始的高度差也越小,则着陆时刻(发射系Y向速度为O)的高度就越高,着陆高度随着加速下降段结束高度的增加而单调递增。
步骤S5、根据修正系数,计算修正量,进行弹道迭代计算;
具体地,所述步骤S5中进行弹道迭代计算时确定待迭代的各控制量时,不用各飞行段的时间作为控制量,而是分成六段飞行段分别用不同的更方便计算的物理量来做为控制量的:加速上升段、第一调推段、减速上升段、加速下降段、第二调推段、减速下降段,这六个段中的各个段推力不同,各个段的俯仰角不同,在初始时就确定了AO射向角但在整个过程中进行坐标系变换进行计算;在加速下降段将加速下降段结束的高度作为控制量HH。
步骤S6、获得满足精度要求的弹道。
如图2所示,具体地,弹道计算流程如下:
首先给三个控制变量赋初值,随后开始加速上升段积分计算,直至发射系Y向速度Vy达到Vy1,加速上升段结束,结束时刻为T1,程序进入第一调推段积分计算,当第一调推段时长达到Tm1后,第一调推段结束,结束时刻为T2,程序进入减速上升段,当发射系Y向速度为0,此时达到弹道顶点,减速上升段结束,结束时刻为T3,随后进入加速下降段积分计算,当高度h小于等于HH瞬间,加速下降段结束,结束时刻为T4,程序进入第二调推段积分计算,当第二调推段时长等于Tm2时,第二调推段结束,结束时刻为T5,程序进入减速下降段积分计算,当发射系Y向速度Vy的绝对值小于0.01m/s时,弹道积分计算结束,结束时刻T6。随后进行迭代计算,首先判断结束时刻T6时刻,三个约束量是否均满足精度要求,只要存在一个约束量不满足要求,就对所有控制量进行修正计算,并以此控制量重新进行上述弹道积分计算,当且仅当三个约束量同时满足精度要求,跳出迭代,获得满足精度要求的解。

Claims (8)

1.垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于包括以下步骤:
S1、确定约束量要求及精度要求;
S2、确定待迭代的各控制量;
S3、给控制量赋初值;
S4、根据约束量与控制量之间的关系,确定修正系数;
S5、根据修正系数,计算修正量,进行弹道迭代计算;
S6、获得满足精度要求的弹道。
2.根据权利要求1所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于,
所述步骤S1的具体内容为:
所述约束要求包括着陆点高度、速度、射程、落点方位角的要求,其中,末端高度约束要求为0m,精度要求为0.001m-0.1m;末端速度要求为0m/s,精度要求为0.001m/s-0.1m/s;射程精度要求为0.01m-1m;落点方位角精度要求为0.01°-1°。
所述步骤S2的具体内容为:
确定待迭代的控制量,首先将弹道分为加速上升段、第一调推段、减速上升段、加速下降段、第二调推段、减速下降段,其中减速返回段结束高度HH为控制量之一,HH用于控制落点高度使其满足落点高度精度要求;随后对弹道全程的姿态角进行设计,其中表征俯仰角的特征量
Figure FDA0003214817640000011
为控制量之一,
Figure FDA0003214817640000012
用于控制落点射程使其满足射程精度要求;射向角A0为第三个控制变量,A0用于控制落点方位角使其满足落点方位角精度要求,射向角定义为发射瞄准方向与发射点正北方向的夹角,落点方位角定义落点相对发射点的方向与发射点正北方向的夹角;
所述步骤S3的具体内容为:
给控制变量赋初值,所述初值可以使弹道迭代计算快速收敛;
所述步骤S4的具体内容为:
确定修正系数时,射向角与方位角、减速返回段结束高度与着陆高度单位相同且有较为明显的单调关系,修正系数定为1;射程与
Figure FDA0003214817640000021
的修正系数按照如下方式计算:每算完一条弹道,记录射程L与
Figure FDA0003214817640000022
值,则修正系数为
Figure FDA0003214817640000023
3.根据权利要求2所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于:所述步骤S2中,
所述加速上升段的结束判断条件为发射系Y向速度达到特定值Vy1,该值的设定与弹道顶点高度相关:此段结束时刻为t1;
所述第一调推段的时长Tm1与发动机调整推力的性能以及推力调整量相关;此段结束时刻为t2;
所述减速上升段结束判断条件为Y向速度为0;此段结束时刻为t3;
所述加速下降段结束判断条件为高度达到控制量HH;此段结束时刻为t4;
所述第二调推段的时长Tm2与发动机调整推力的性能以及推力调整量相关;此段结束时刻为t5;
所述减速下降段结束判断条件为Y向速度为0,此段结束时刻为t6。
各段结束的时刻按时间顺序为t1、t2、t3、t4、t5、t6。
4.根据权利要求1所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于:所述步骤S5中进行弹道迭代计算时确定待迭代的各控制量时,不用各飞行段的时间作为控制量,而是分成六段飞行段分别用不同的更方便计算的物理量来做为控制量的:加速上升段、第一调推段、减速上升段、加速下降段、第二调推段、减速下降段,各个段推力不同,各个段俯仰角不同,在初始时就确定了AO射向角但在整个过程中进行坐标系变换进行计算;在加速下降段将加速下降段结束的高度作为控制量HH。
5.根据权利要求4所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于:无需设计控制量用于满足着陆点三个方向速度要求,将减速下降段的结束判断条件设置为发射系Y向速度为0,通过俯仰角
Figure FDA0003214817640000031
和偏航角ψ设计,令返回段火箭推力方向与速度方向相反,可使着陆时发射系x向、z向速度回0,由于滚转角不影响三自由度弹道计算,所以全程滚转角为0。
6.根据权利要求5所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于所述姿态角包括俯仰角
Figure FDA0003214817640000032
和偏航角ψ,具体设计内容为:
在加速上升段:俯仰角为90°、偏航角为0°;
在第一调推段:俯仰角从90°匀速过渡至
Figure FDA0003214817640000033
偏航角为0°;
在减速上升段:俯仰角为
Figure FDA0003214817640000034
偏航角为0°;
在加速下降段、第二调推段、减速下降段:俯仰角从
Figure FDA0003214817640000035
匀速过渡至
Figure FDA0003214817640000036
为保持箭体姿态稳定,角速率
Figure FDA0003214817640000037
不宜过大,随后俯仰角保持
Figure FDA0003214817640000038
飞行,计算弹道倾角θ和弹道偏角σ,当
Figure FDA0003214817640000039
记录下该时刻
Figure FDA00032148176400000310
从该时刻起,令
Figure FDA00032148176400000311
返回段俯仰角程序如下式所示:
Figure FDA00032148176400000312
加速下降段和第二调推段偏航角为0°,减速下降段计算弹道偏角σ,令偏航角ψ=-σ。
Figure FDA0003214817640000041
7.根据权利要求6所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于在减速下降段,如果临近着陆速度过低,计算出的弹道倾角和弹道偏角可能出现较大跳变,处理方式为当速度小于0.1m/s的一瞬间,记录下当前姿态角
Figure FDA0003214817640000042
ψf,从该瞬间之后,令俯仰角和偏航角冻结在
Figure FDA0003214817640000043
ψf,直至Y向速度达到0m/s。
8.根据权利要求1-7任一项所述的垂直起降可重复使用运载器试验样机快速弹道迭代计算法,其特征在于:所述步骤S3中给控制变量赋初值,当约束量确定时,由于射向角与落点方位角定义方向一致、起始基准一致,所以将射向角初值定为与目标落点方位角Azi0相等;减速返回段结束高度初值必定处于起飞点海拔高度H0和弹道顶点Hm海拔高度之间,令HH=xH(Hm-H0),其中xH∈(0,1),由于减速下降段结束的判断条件为Y向速度为0,如果xH太小,可能出现减速下降段结束时高度为负值的问题,此时无法求解有意义的大气参数,所以xH的取值区间定在(0.5,1.0)之间;特征量
Figure FDA0003214817640000044
的初值取值范围为(0,90),可根据射程要求进行选取,姿态角过大可能导致迭代发散的问题,较小的初值有利于迭代收敛。
CN202110940762.XA 2021-08-17 2021-08-17 垂直起降可重复使用运载器试验样机快速弹道迭代计算法 Pending CN113742840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110940762.XA CN113742840A (zh) 2021-08-17 2021-08-17 垂直起降可重复使用运载器试验样机快速弹道迭代计算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110940762.XA CN113742840A (zh) 2021-08-17 2021-08-17 垂直起降可重复使用运载器试验样机快速弹道迭代计算法

Publications (1)

Publication Number Publication Date
CN113742840A true CN113742840A (zh) 2021-12-03

Family

ID=78731301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110940762.XA Pending CN113742840A (zh) 2021-08-17 2021-08-17 垂直起降可重复使用运载器试验样机快速弹道迭代计算法

Country Status (1)

Country Link
CN (1) CN113742840A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324975A (zh) * 2021-12-29 2022-04-12 航天科工火箭技术有限公司 一种风向确定方法、装置、设备和介质
CN116929149A (zh) * 2023-09-14 2023-10-24 中国电子科技集团公司第五十八研究所 一种基于图像制导的目标识别及制导方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109189087A (zh) * 2018-08-20 2019-01-11 哈尔滨工业大学 一种垂直起降重复使用运载器的自适应容错控制方法
CN109426155A (zh) * 2018-09-10 2019-03-05 哈尔滨工业大学 垂直起降可重复使用运载器通用快速弹道迭代设计方法
CN112416012A (zh) * 2020-11-30 2021-02-26 中国运载火箭技术研究院 一种火箭动力面对称运载器主动段制导控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109189087A (zh) * 2018-08-20 2019-01-11 哈尔滨工业大学 一种垂直起降重复使用运载器的自适应容错控制方法
CN109426155A (zh) * 2018-09-10 2019-03-05 哈尔滨工业大学 垂直起降可重复使用运载器通用快速弹道迭代设计方法
CN112416012A (zh) * 2020-11-30 2021-02-26 中国运载火箭技术研究院 一种火箭动力面对称运载器主动段制导控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张世杰;聂涛;赵亚飞;段晨阳;: "基于解析梯度的经典Lambert问题迭代求解方法", 《宇航学报》, no. 03 *
胡星: "多旋翼无人机火控指令解算方法研究", 《兵器装备工程学报》, vol. 39, no. 9, pages 33 - 38 *
胡正东;郭才发;蔡洪;: "天基对地打击动能武器再入解析预测制导技术", 《宇航学报》, no. 03 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324975A (zh) * 2021-12-29 2022-04-12 航天科工火箭技术有限公司 一种风向确定方法、装置、设备和介质
CN114324975B (zh) * 2021-12-29 2024-01-09 航天科工火箭技术有限公司 一种风向确定方法、装置、设备和介质
CN116929149A (zh) * 2023-09-14 2023-10-24 中国电子科技集团公司第五十八研究所 一种基于图像制导的目标识别及制导方法
CN116929149B (zh) * 2023-09-14 2024-01-19 中国电子科技集团公司第五十八研究所 一种基于图像制导的目标识别及制导方法

Similar Documents

Publication Publication Date Title
CN107544067B (zh) 一种基于高斯混合近似的高超声速再入飞行器跟踪方法
CN109740198B (zh) 一种基于解析预测的滑翔飞行器三维再入制导方法
CN111399531B (zh) 高超声速飞行器滑翔段制导与姿态控制一体化设计方法
CN113742840A (zh) 垂直起降可重复使用运载器试验样机快速弹道迭代计算法
CN112461060B (zh) 一种火箭末级离轨控制方法和装置
Slegers et al. Optimal control for terminal guidance of autonomous parafoils
JP5822676B2 (ja) 多段式ロケット誘導装置、多段式ロケット誘導プログラム、多段式ロケット誘導方法および多段式ロケット誘導システム
CN112198886B (zh) 一种跟踪机动目标的无人机控制方法
CN115562314B (zh) 运载火箭子级落区控制方法、系统、介质及计算机设备
CN110471456A (zh) 高超声速飞行器俯冲段制导、姿控、变形一体化控制方法
US20220107160A1 (en) Glide Trajectory Optimization for Aerospace Vehicles
CN113758383B (zh) 一种用于验证垂直起降技术的可重复使用火箭及验证方法
CN108298110A (zh) 一种两级入轨空天飞行器上升段轨迹及设计方法
CN110615104A (zh) 一种无人机武器平台稳定瞄准控制方法
CN112696988A (zh) 一种火箭回收控制方法、装置、电子设备及存储介质
Fuhry Adaptive atmospheric reentry guidance for the Kistler K-1 orbital vehicle
Krashanitsa et al. Aerodynamics and controls design for autonomous micro air vehicles
CN111272173A (zh) 一种考虑地球自转和大偏航角的梯度求解迭代制导方法
CN109857140A (zh) 运载火箭俯仰程序角计算方法、系统、设备及存储介质
RU2654238C1 (ru) Способ управления беспилотным планирующим летательным аппаратом
CN113111433B (zh) 一种双线程嵌入式实时轨迹优化与制导方法
CN114935277A (zh) 一种滑翔增程制导炮弹理想弹道的在线规划方法
CN112379680A (zh) 一种飞行器姿态角控制方法、控制装置及存储介质
CN113342044A (zh) 一种可重复使用运载器末端能量管理段地面轨迹设计方法
CN112949150A (zh) 基于变结构自适应多模型箱粒子滤波弹道目标跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination