CN113740594A - 一种交流电压有效值高精度测量电路 - Google Patents

一种交流电压有效值高精度测量电路 Download PDF

Info

Publication number
CN113740594A
CN113740594A CN202111063104.3A CN202111063104A CN113740594A CN 113740594 A CN113740594 A CN 113740594A CN 202111063104 A CN202111063104 A CN 202111063104A CN 113740594 A CN113740594 A CN 113740594A
Authority
CN
China
Prior art keywords
circuit
pwm
phase shift
effective value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111063104.3A
Other languages
English (en)
Other versions
CN113740594B (zh
Inventor
王世晨
彭志辉
余心舒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN202111063104.3A priority Critical patent/CN113740594B/zh
Publication of CN113740594A publication Critical patent/CN113740594A/zh
Application granted granted Critical
Publication of CN113740594B publication Critical patent/CN113740594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/02Measuring effective values, i.e. root-mean-square values
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本发明提供了一种交流电压有效值高精度测量电路,包括如下电路模块:(1)直流偏置电路:将适当的直流偏置值VDC和待测周期信号x(t)进行叠加,得到输出信号x1(t)=x(t)+VDC,满足:满足:Uc>x1(t)>0;(2)移相电路:移相电路由2个低通滤波电路组成,分别对x1(t)进行移相φ1和φ2;(3)三角波发生电路:微处理器I/O口输出周期为Tc的方波信号uPWM,通过积分电路,将方波信号uPWM进行处理,得到对称三角波uc(t);(4)比较电路:将uc(t)分别于与x1(t)、
Figure DDA0003257361390000011
Figure DDA0003257361390000012
进行比较,分别得到输出PWM信号vPWM
Figure DDA0003257361390000013
Figure DDA0003257361390000014
(5)微处理器三路捕获单元:捕获vPWM
Figure DDA0003257361390000015
Figure DDA0003257361390000016
的导通时间,分别记为:
Figure DDA0003257361390000017
Figure DDA0003257361390000018
(6)计算程序:计算x(t)有效值的高精度测量值
Figure DDA0003257361390000019

Description

一种交流电压有效值高精度测量电路
技术领域
本发明属于测控及仪器仪表领域,具体涉及一种交流电压有效值高精度测量电路。
背景技术
在电力系统和仪器仪表领域,需要高精度获取交流信号的有效值。例如,在电力系统领域,需要实时测量电网交流电压/电流的有效值。在仪器仪表领域,同样需要高精度测量各种交流信号的有效值。为了获得高精度的有效值测量精度,最主要的方法有两种:①提高AD的采样频率和有效位数;②AD实现同步采样。所以,在AD采样频率和有效位数一致的情况下,同步采样条件下的有效值其精度最高。同步采样就是AD在待测信号过零点开始采样,这就需要复杂的过零点检测电路,并且需要保证AD在零点以最小的延迟时间启动采样。上述两点的实现,会导致硬件电路和软件算法更复杂和成本更高。
发明内容
本发明的目的在于提供一种交流电压有效值高精度测量电路。本发明给出的交流电压有效值高精度测量电路实现简单,能显著提高交流电压/电流有效值测量精度,为电力系统电能参数测量提供一种新的实现方案。
本发明提供的技术方案如下:
一种交流电压有效值高精度测量电路,包括如下电路模块:
(1)直流偏置电路:将适当的直流偏置值VDC和待测周期信号x(t)进行叠加,得到输出信号x1(t)=x(t)+VDC,满足:满足:Uc>x1(t)>0;
(2)移相电路:移相电路由2个低通滤波电路组成,分别对x1(t)进行移相φ1和φ2。由滤波器知识可知,通过对低通滤波器的幅频特性和相频特性进行合理的设计,使得通过该滤波器的信号,其幅值不变,相角进行移位,从而获得信号
Figure BDA0003257361370000021
Figure BDA0003257361370000022
其中:φ1≠φ2,φ1,φ2∈(0,2π/N);
(3)三角波发生电路:微处理器I/O口输出周期为Tc的方波信号uPWM,通过积分电路,将方波信号uPWM进行处理,得到对称三角波uc(t);
(4)比较电路:将uc(t)分别于与x1(t)、
Figure BDA0003257361370000023
Figure BDA0003257361370000024
进行比较,分别得到输出PWM信号vPWM
Figure BDA0003257361370000025
Figure BDA0003257361370000026
(5)微处理器三路捕获单元:捕获vPWM
Figure BDA0003257361370000027
Figure BDA0003257361370000028
的导通时间,分别记为:
Figure BDA0003257361370000029
Figure BDA00032573613700000210
(6)计算程序:依据
Figure BDA00032573613700000211
计算x1(t)与uc(t)、
Figure BDA00032573613700000212
Figure BDA00032573613700000213
进行PWM调制后有效值的估计值分别为
Figure BDA00032573613700000214
Figure BDA00032573613700000215
进而计算x(t)有效值的高精度测量值
Figure BDA00032573613700000216
本发明所述的一种交流电压有效值高精度测量电路具有以下优势:
①无需高精度的过零点检测电路、AD采样模块和同步采样算法,降低的系统的成本,提高抗干扰能力;
②系统结构相对简单,实现难度低;
本发提供的交流电压有效值高精度测量方法,为电力系统、仪器仪表和测控领域提供了一种新的测量方案。
附图说明
图1为交流电压有效值高精度测量电路图。
图2a为移相电路1幅频特性的原理图;
图2b为移相电路1相频特性的原理图;
图3a为移相电路2幅频特性的原理图;
图3b为移相电路2相频特性的原理图;
图4为交流电压有效值高精度计算程序流程图;
图5是uc(t)、
Figure BDA0003257361370000031
和x1(t)之间的相互关系示意图。
具体实施方式
本发明提供了一种周期信号有效值最优估计方法,主要应用了发明专利CN201910030796.8“一种周期信号有效值测量方法”给出的方法。假设待测信号x(t)和VDC进行直流偏置操作,得到:x1(t)=x(t)+VDC,并且满足:Uc>x1(t)>0。其中:Uc为对称三角波uc(t)的峰值。中心对称的三角波uc(t)满足:
Figure BDA0003257361370000032
通过将x1(t)与uc(t)进行PWM调制得到PWM信号vpwm,并依据公式
Figure BDA0003257361370000033
计算x1(t)有效值的估计值
Figure BDA0003257361370000034
其中:
Figure BDA0003257361370000035
为vpwm的导通时间,T为x(t)的周期,Tc为uc(t)的周期,T=NTc
由发明专利CN 201910030796.8“一种周期信号有效值测量方法”的推导过程可知,x1(t)与uc(t)满足相位同步关系。所以,公式(1)的有效值估计值
Figure BDA0003257361370000036
为x1(t)的最优估计值
Figure BDA0003257361370000037
然而,在实际工程中,我们很难保证x1(t)与三角波uc(t)同相位,进而不能依据公式(1)求解出有效值最优估计值
Figure BDA0003257361370000038
即便能实现uc(t)与x1(t)同相位,也需要复杂的硬件电路和软件算法支撑,这大大增加了系统的难度和成本。由于实际工程中uc(t)与x1(t)不一定同相位,依据公式(1)求解得到的
Figure BDA0003257361370000041
就不一定是
Figure BDA0003257361370000042
在不增加复杂的硬件电路和软件算法支撑的条件下,需要另辟蹊径求解
Figure BDA0003257361370000043
为此,本发明给出了一种基于移相的求解
Figure BDA0003257361370000044
方案。
假设uc(t)与x1(t)同相位,则有:
Figure BDA0003257361370000045
又由于T=NTC,所以x1(t),uc(t)关于
Figure BDA0003257361370000046
轴对称。令:
Figure BDA0003257361370000047
由于uc(t)具有周期性,所以
Figure BDA0003257361370000048
将uc(t)、
Figure BDA0003257361370000049
与x1(t)调制,则x1(t)有效值的估计值分别为
Figure BDA00032573613700000410
Figure BDA00032573613700000411
在T>>TC(即TC很小)时,在t∈[kTC,(k+1)TC],x1(t)可视为一段直线。则:uc(t)、
Figure BDA00032573613700000412
和x1(t)之间的相互关系如下附图5图所示。
首先,过点c-k和ck的水平直线
Figure BDA00032573613700000413
Figure BDA00032573613700000414
Figure BDA00032573613700000415
相交于e-k,三个顶点为c-k,b-k,e-k的三角形记为
Figure BDA00032573613700000416
同理,过dk做一水平线与uc(t)在
Figure BDA00032573613700000417
相交于ek,三个顶点为ck,dk,ek的三角形记为
Figure BDA00032573613700000418
由对称性关系可知,∠b-kc-ke-k=∠ckdkek,∠b-ke-kc-k=∠ckekdk
Figure BDA00032573613700000419
所以三角形
Figure BDA00032573613700000420
全等
Figure BDA00032573613700000421
其次,过点a-k和ak的水平直线
Figure BDA00032573613700000422
Figure BDA00032573613700000423
Figure BDA00032573613700000424
相交于f-k,三个顶点为a-k,d-k,f-k的三角形记为
Figure BDA00032573613700000425
同理,过bk做一水平线与uc(t)在
Figure BDA00032573613700000426
相交于fk,三个顶点为ak,bk,fk的三角形记为
Figure BDA00032573613700000427
由对称性关系可知,∠d-ka-kf-k=∠akbkfk,∠a-kd-kf-k=∠bkakfk
Figure BDA00032573613700000428
所以三角形
Figure BDA00032573613700000429
全等
Figure BDA00032573613700000430
Figure BDA00032573613700000431
通过对上述示意图的几何关系进行分析可得:
Figure BDA0003257361370000051
由于x1'(t)=x'(t),并且x'(t)是以T为周期的连续函数,令
Figure BDA0003257361370000052
则:
Figure BDA0003257361370000053
由公式(2)的理论推导分析可知,
Figure BDA0003257361370000054
Figure BDA0003257361370000055
与x1(t)进行PWM调制,在获取PWM信号导通时间的基础上计算得到的。然而,
Figure BDA0003257361370000056
是uc(t)进行超前移相
Figure BDA0003257361370000057
得到的,主要有两种实现方式:一、增加一个对称三角波发生芯片和移相电路,获得
Figure BDA0003257361370000058
二、输出一个移相
Figure BDA0003257361370000059
的方波并对其进行积分获得
Figure BDA00032573613700000510
上述两种方案实现电路较复杂,成本较高。通过分析上面的推导过程发现,
Figure BDA00032573613700000511
是x1(t)相位不变,而对uc(t)超前移相
Figure BDA00032573613700000512
Figure BDA00032573613700000513
进行PWM调制,计算得到的有效值。由于x1(t)和uc(t)均为周期信号,并且x1(t)、uc(t)周期T、Tc满足:T=NTc。所以,如果uc(t)相位不变,而将x1(t)相位滞后
Figure BDA00032573613700000514
得到
Figure BDA00032573613700000515
并将uc(t)与
Figure BDA00032573613700000516
进行PWM调制,其计算得到的有效值同样为
Figure BDA00032573613700000517
而对周期信号x1(t)进行移相就简单得多,只需通过低通滤波器就能实现移相并保证幅值不变,因而可以采用对x1(t)进行移相操作。
现对x1(t)进行移相,得到相位滞后分别为φ1和φ2的信号
Figure BDA00032573613700000518
Figure BDA00032573613700000519
Figure BDA00032573613700000520
滞后x1(t)相位φ1
Figure BDA00032573613700000521
滞后x1(t)相位φ2。φ1和φ2满足:φ1≠φ212∈(0,2πN)。x1(t)移相电路可由两个幅频特性和相频特性满足要求的低通滤波器实现,即低通滤波器不改变x1(t)的幅值,只是对x1(t)的相位分别滞后φ1和φ2
将x1(t)、
Figure BDA00032573613700000522
Figure BDA00032573613700000523
与uc(t)进行PWM调制,分别得到PWM信号vPWM
Figure BDA00032573613700000524
Figure BDA00032573613700000525
并依据公式(1)计算x1(t)、
Figure BDA00032573613700000526
Figure BDA00032573613700000527
有效值估计值
Figure BDA00032573613700000528
Figure BDA00032573613700000529
有:
Figure BDA0003257361370000061
Figure BDA0003257361370000062
Figure BDA0003257361370000063
其中:
Figure BDA0003257361370000064
Figure BDA0003257361370000065
分别为vPWM
Figure BDA0003257361370000066
Figure BDA0003257361370000067
的导通时间。
然而,需要明确的是公式(2)中的uc(t)与x1(t)是同步相位关系。但在实际工程中,与三角波uc(t)进行PWM调制的x1(t)不能确保是同相位,进而不能依据公式(1)求解出有效值最优估计值
Figure BDA0003257361370000068
为此,假设与uc(t)进行PWM调制的同步相位周期信号为
Figure BDA0003257361370000069
并且满足:
Figure BDA00032573613700000610
那么
Figure BDA00032573613700000611
与uc(t)PWM调制之后依据公式(1)计算
Figure BDA00032573613700000612
的有效值即为最优估计值
Figure BDA00032573613700000613
这是因为
Figure BDA00032573613700000614
的有效值与x1(t)的有效值相同,
Figure BDA00032573613700000615
的有效值最优估计值亦为x1(t)的有效值最优估计值。则依据公式(2)可得:
Figure BDA00032573613700000616
同理,联立(2)、(4)、(5)可得:
Figure BDA00032573613700000617
Figure BDA00032573613700000618
所以,联立(6)、(7)、(8),并整理可得:
Figure BDA00032573613700000619
求解(9)可得:
Figure BDA0003257361370000071
Figure BDA0003257361370000072
由(6)可得:
Figure BDA0003257361370000073
将(3)、(10)、(11)代入(12),即可解得
Figure BDA0003257361370000074
又由于
Figure BDA0003257361370000075
是x1(t)有效值的最优估计值,而非x(t)有效值的最优估计值
Figure BDA0003257361370000076
但由于x1(t)=x(t)+VDC,所以x1(t)的有效值
Figure BDA0003257361370000077
满足:
Figure BDA0003257361370000078
对(13)整理可得:
Figure BDA0003257361370000079
其中:
Figure BDA00032573613700000710
又因为
Figure BDA00032573613700000711
为x(t)的平均值。在电力系统中,需要测量交流电压/电流信号,其电压/电流的直流分量必须消除,否则会导致发电设备、输电线路及配电装置严重故障。那么当x(t)为交流电压/电流信号时,有:
Figure BDA00032573613700000712
所以:
Figure BDA00032573613700000713
由于x1(t)=x(t)+VDC与x(t)具有相同的相位关系,因而有:
Figure BDA00032573613700000714
由(17)可知,由于Vdc为已知参数,依据(12)解得
Figure BDA00032573613700000715
的基础上,可以得到x(t)有效值的最优估计值
Figure BDA00032573613700000716
下面结合附图对本发明实施例作进一步说明:
图1所示为交流电压有效值高精度测量电路图,其包括:分压电路:用于将电网电压进行分压,得到合适的交流电压信号x(t);直流偏置电路、移相电路1、移相电路2、积分电路、比较电路和MCU。直流偏置电路将VDC和x(t)进行叠加,得到输出信号x1(t)=x(t)+VDC;移相电路1和移相电路2实现对x1(t)进行移相操作,得到
Figure BDA0003257361370000081
Figure BDA0003257361370000082
三角波发生电路是通过积分电路将MCU输出的方波信号uPWM转换为三角波uc(t);比较电路实现x1(t)、
Figure BDA0003257361370000083
Figure BDA0003257361370000084
与uc(t)进行比较得到PWM信号vPWM
Figure BDA0003257361370000085
Figure BDA0003257361370000086
MCU的捕获单元Capture1、Capture2和Capture3分别连接vPWM
Figure BDA0003257361370000087
Figure BDA0003257361370000088
用于获取vPWM
Figure BDA0003257361370000089
Figure BDA00032573613700000810
的导通时间;MCU在捕获vPWM
Figure BDA00032573613700000811
Figure BDA00032573613700000812
导通时间的基础上,执行x(t)的有效值的高精度计算
Figure BDA00032573613700000813
图2a为移相电路1幅频特性的原理图;图2b为移相电路1相频特性的原理图。附图中所示的特性符合低通滤波器的幅频和相频特性,因而移相电路可以使用低通滤波器实现。如果x1(t)的周期T满足
Figure BDA00032573613700000814
当x1(t)输入到移相电路1时,移相电路1对x1(t)进行移相操作,即其输出
Figure BDA00032573613700000815
满足:
Figure BDA00032573613700000816
同理,图3a为移相电路2幅频特性的原理图;图3b为移相电路2相频特性的原理图;当x1(t)输入到图3a和图3b所示的移相电路2时,如果x1(t)的周期T满足
Figure BDA00032573613700000817
移相电路2对x1(t)进行移相操作,即其输出
Figure BDA00032573613700000818
满足:
Figure BDA00032573613700000819
图4为交流电压有效值高精度计算程序流程图,包括:
⑴初始化模块,用于初始化PWM模块和Capture模块。PWM模块初始化用于设定uPWM的周期和占空比。Capture模块初始化捕获单元Capture1、Capture2和Capture3设上升沿启动,下降沿停止。设置完之后,启动PWM模块和Capture模块;
⑵判断Tc内三个捕获单元是否捕获到三个PWM信号的时间,如果是,则进入步骤(3);否则,等待;
⑶获取三个捕获单元寄存器的值,分别存入
Figure BDA0003257361370000091
Figure BDA0003257361370000092
进入步骤(4);
⑷依据公式
Figure BDA0003257361370000093
Figure BDA0003257361370000094
计算
Figure BDA0003257361370000095
Figure BDA0003257361370000096
进入步骤(5);
⑸依据公式(10)、(11),分别计算出φ和Yrms;进入步骤(6);
⑹依据公式(12),计算
Figure BDA0003257361370000097
进入步骤(7);
⑺根据已知的Vdc及公式(17),计算x(t)有效值的最优值
Figure BDA0003257361370000098
返回步骤(2);
实施例不应视为对本发明的限制,任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。

Claims (1)

1.一种交流电压有效值高精度测量电路,其特征在于,包括如下电路:
(1)直流偏置电路:将适当的直流偏置值VDC和待测周期信号x(t)进行叠加,得到输出信号x1(t)=x(t)+VDC,满足:满足:Uc>x1(t)>0;
(2)移相电路:移相电路由2个低通滤波电路组成,分别对x1(t)进行移相φ1和φ2。由滤波器知识可知,通过对低通滤波器的幅频特性和相频特性进行合理的设计,使得通过该滤波器的信号,其幅值不变,相角进行移位,从而获得信号
Figure FDA0003257361360000011
Figure FDA0003257361360000012
其中:φ1≠φ2,φ1,φ2∈(0,2π/N);
(3)三角波发生电路:微处理器I/O口输出周期为Tc的方波信号uPWM,通过积分电路,将方波信号uPWM进行处理,得到对称三角波uc(t);
(4)比较电路:将uc(t)分别于与x1(t)、
Figure FDA0003257361360000013
Figure FDA0003257361360000014
进行比较,分别得到输出PWM信号vPWM
Figure FDA0003257361360000015
Figure FDA0003257361360000016
(5)微处理器三路捕获单元:捕获vPWM
Figure FDA0003257361360000017
Figure FDA0003257361360000018
的导通时间,分别记为:
Figure FDA0003257361360000019
Figure FDA00032573613600000110
(6)计算程序:依据
Figure FDA00032573613600000111
计算x1(t)与uc(t)、
Figure FDA00032573613600000112
Figure FDA00032573613600000113
进行PWM调制后有效值的估计值分别为
Figure FDA00032573613600000114
Figure FDA00032573613600000115
进而计算x(t)有效值的高精度测量值
Figure FDA00032573613600000116
CN202111063104.3A 2021-09-10 2021-09-10 一种交流电压有效值高精度测量电路 Active CN113740594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111063104.3A CN113740594B (zh) 2021-09-10 2021-09-10 一种交流电压有效值高精度测量电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111063104.3A CN113740594B (zh) 2021-09-10 2021-09-10 一种交流电压有效值高精度测量电路

Publications (2)

Publication Number Publication Date
CN113740594A true CN113740594A (zh) 2021-12-03
CN113740594B CN113740594B (zh) 2023-10-17

Family

ID=78737972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111063104.3A Active CN113740594B (zh) 2021-09-10 2021-09-10 一种交流电压有效值高精度测量电路

Country Status (1)

Country Link
CN (1) CN113740594B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643389A1 (de) * 1986-12-19 1988-07-07 Duerrwaechter E Dr Doduco Verfahren zum erzeugen eines elektrischen sinussignals mit veraenderlicher frequenz
US20060248138A1 (en) * 2005-04-21 2006-11-02 Daihen Corporation Signal processing device for computing phase difference between alternating current signals
JP2013200225A (ja) * 2012-03-26 2013-10-03 Sanken Electric Co Ltd 交流入力電圧検出回路
CN107085133A (zh) * 2016-02-15 2017-08-22 中车株洲电力机车研究所有限公司 用于计算单相有效值的方法及装置
CN109752584A (zh) * 2019-01-14 2019-05-14 彭志辉 一种周期信号有效值测量方法
US20210116484A1 (en) * 2018-06-29 2021-04-22 Brusa Elektronik Ag Primary measuring device for measuring a current effective power

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643389A1 (de) * 1986-12-19 1988-07-07 Duerrwaechter E Dr Doduco Verfahren zum erzeugen eines elektrischen sinussignals mit veraenderlicher frequenz
US20060248138A1 (en) * 2005-04-21 2006-11-02 Daihen Corporation Signal processing device for computing phase difference between alternating current signals
JP2013200225A (ja) * 2012-03-26 2013-10-03 Sanken Electric Co Ltd 交流入力電圧検出回路
CN107085133A (zh) * 2016-02-15 2017-08-22 中车株洲电力机车研究所有限公司 用于计算单相有效值的方法及装置
US20210116484A1 (en) * 2018-06-29 2021-04-22 Brusa Elektronik Ag Primary measuring device for measuring a current effective power
CN109752584A (zh) * 2019-01-14 2019-05-14 彭志辉 一种周期信号有效值测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DMYTRO YARYMBASH等: "Calculation of No-load Currents Using Hysteresis Loop", 《2019 IEEE INTERNATIONAL CONFERENCE ON MODERN ELECTRICAL AND ENERGY SYSTEMS (MEES)》, pages 122 - 125 *
李大斌 等: "采样法测量有效值的一种改进方法", 《现代电子技术》, no. 217, pages 134 - 135 *

Also Published As

Publication number Publication date
CN113740594B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
Xiong et al. A novel PLL for grid synchronization of power electronic converters in unbalanced and variable-frequency environment
CN102904568B (zh) 一种自适应并网变流器单相软锁相环
Fang et al. A novel frequency-adaptive PLL for single-phase grid-connected converters
CN103534601B (zh) 用于实时谐波频谱分析仪的装置和方法
CN103267897A (zh) 一种基于反Park变换的三相锁相环
RU2463613C1 (ru) Устройство для определения составляющих мощности в трехфазных трехпроводных цепях переменного тока
CN103904693A (zh) 基于频率自适应虚拟磁链估测的电网同步方法
CN102809687A (zh) 一种交流电频率的数字化测量方法
Al-Gahtani et al. A New Voltage Sensorless Control Method for a Shunt Active Power Filter for Unbalanced Conditions
Busarello et al. Zero-crossing detection frequency estimator method combined with a Kalman filter for non-ideal power grid
KR100839436B1 (ko) 코사인 필터와 사인 필터의 이득차를 이용한 주파수 측정방법
CN110749769A (zh) 一种三相电压跌落的快速检测方法
CN109358228B (zh) 基于双增强型锁相环的电网电压正负序分量实时估计方法
JP2014006144A (ja) 交流抵抗測定装置および交流抵抗測定方法
CN113740594A (zh) 一种交流电压有效值高精度测量电路
CN105372471B (zh) 正弦信号的幅值检测方法和系统
CN102832931A (zh) 基于不完整周期电网电压信号的鉴相方法、装置及锁相环
KR101946308B1 (ko) 주파수검출 정확도 개선을 위한 단상 태양광발전 시스템의 위상동기화 방법
CN113740592B (zh) 一种周期信号有效值最优测量电路
CN116260457A (zh) 一种改进型正交信号发生器及新型强抗扰锁相环结构
CN111983335B (zh) 一种基于正交面积的相序检测方法
CN113258555B (zh) 一种柔性直流输电系统的谐波谐振抑制方法及系统
US10063242B2 (en) Phase-locked loop method for use in utility electricity parallel-connection system
CN112816768B (zh) 交流电压信号过零检测装置
KR20140052152A (ko) Lpn 필터를 이용한 전력계통의 위상추종 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant