CN113740325A - 一种污泥重金属污染生态风险评价方法 - Google Patents

一种污泥重金属污染生态风险评价方法 Download PDF

Info

Publication number
CN113740325A
CN113740325A CN202111056007.1A CN202111056007A CN113740325A CN 113740325 A CN113740325 A CN 113740325A CN 202111056007 A CN202111056007 A CN 202111056007A CN 113740325 A CN113740325 A CN 113740325A
Authority
CN
China
Prior art keywords
heavy metal
sludge
ecological risk
single heavy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111056007.1A
Other languages
English (en)
Inventor
陈磊
武克亮
关晓琳
王怀林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Kaimi Membrane Technology Co ltd
Original Assignee
Jiangsu Kaimi Membrane Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Kaimi Membrane Technology Co ltd filed Critical Jiangsu Kaimi Membrane Technology Co ltd
Priority to CN202111056007.1A priority Critical patent/CN113740325A/zh
Publication of CN113740325A publication Critical patent/CN113740325A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种污泥重金属污染生态风险评价方法,包括污泥预处理、污泥单项重金属总含量测定、污泥重金属组分测定、污泥单项重金属的污染指数的计算、污泥单项重金属的有效毒性系数的计算、污泥单项重金属的潜在环境生态风险因子的计算,以及污泥重金属的潜在环境生态风险指数的计算等步骤,并根据技术结果结合现有PERI法对污泥进行全面的重金属污染生态风险评价。本发明的污泥重金属污染生态风险评价方法能够综合全面地对污泥重金属污染生态风险进行评价,为污泥的处置及资源化利用提供重金属生态风险评价指导。

Description

一种污泥重金属污染生态风险评价方法
技术领域
本发明涉及生态风险评价技术领域,具体涉及一种污泥重金属污染生态风险评价方法。
背景技术
污水处理过程中产生大量的污泥,据统计我国2018年污泥产量超过5660万吨(含水率为 80%),其中50%以上的污泥进行了卫生填埋,而近15%的污泥采用了土地利用方式进行处置。全球化与经济政策研究中心预计,到2021年,我国的污泥总产量将达到6424万吨,预计未来三年年复合增长率为4%左右。污泥中含有大量的细菌以及Pb、Cr、Cd、Zn、Cu等重金属有毒有害物质,通常被视为一种典型的污染源。同时,由于其有机物、氮、磷含量高,也可以将其视为潜在的生物资源。因此污泥在进行资源化利用或最终处置前应仔细评估和验证重金属的生态环境风险。
目前已有多种定量评价方法用于评估重金属的生态环境风险,其中包括地质累积指数 (Geo-accumulation Index,Igeo)、潜在生态风险指数(Potential Ecological RiskIndex, PERI)和风险评估代码(Risk Assessment Code,RAC)等。
上述现有重金属的生态环境风险评价方法多用于土壤和道路扬尘评价,并且其评价方法也各有其优缺点。如地质累积指数评价法只能给出各采样点某种重金属的污染指数,无法对元素间或区域间环境质量进行比较分析。风险评估代码评价方法仅考虑酸可溶/可交换态组分的占比来评估重金属的环境毒性,缺乏对样品重金属总量的考量,评价标准单一,未充分考虑地区差异及地理空间差异的特点。
潜在生态风险指数(PERI)是瑞典科学家提出,根据重金属性质及其在环境中迁移转化沉积等行为特定,从沉积学的角度对土壤或者沉积物中的重金属进行评价。该方法首先要测得土壤中重金属的含量,通过与土壤中重金属元素背景值的比值得到单项污染指数,然后引入重金属毒性响应系数,得到潜在生态危害单项系数,最后加权得到此区域土壤中重金属的潜在生态危害指数。如中国专利CN111552924A公开了一种乡镇尺度的土壤重金属污染特征及潜在生态风险评价方法,通过结合重金属的种类与数目对单项及综合潜在生态风险指数的评估域进行调整,并结合ArcGIS技术实现可视化区域污染状况。该专利方法虽然对潜在生态风险评估进行了一定的改进与调整,但由于重金属的形态对于重金属的毒性变化具有非常大的影响,而潜在生态风险指数未能将重金属进行形态划分,无法对不同样品中重金属的有效毒性组分进一步评价,仅考虑样品整体重金属含量,导致评价偏高,不利于后续的资源化利用。
因此,如何在现有评价方法上改进得出一种适用于污泥的重金属生态风险评价方法对污泥的处置及资源化利用有重要意义。
发明内容
本发明的目的在于提供一种污泥重金属污染生态风险评价方法,能够综合全面地对污泥重金属污染生态风险进行评价,为污泥的处置及资源化利用提供重金属生态风险评价指导。
本发明采用的技术方案是:
一种污泥重金属污染生态风险评价方法,包括以下步骤:
步骤1:污泥预处理,将污泥样品依次经均质、过滤、干燥、磨碎得到污泥分析样品;
步骤2:测定步骤1所得污泥分析样品的单项重金属总含量;
步骤3:采用BCR分级法分析步骤1所得污泥分析样品的酸可溶/可交换态单项重金属含量、可还原态单项重金属含量和可氧化态单项重金属含量;
步骤4:基于步骤2和步骤3的分析结果,计算单项重金属的酸可溶/可交换态组分、可还原态组分及可氧化态组分占比;
步骤5:基于污泥所在地的土壤背景值和步骤2的计算结果,计算单项重金属的污染指数;
步骤6:基于现有重金属的毒性系数及步骤4的计算结果,计算单项重金属的有效毒性系数;
步骤7:基于步骤5和步骤6的计算结果,计算单项重金属的潜在环境生态风险因子;
步骤8:基于步骤7的计算结果,计算污泥分析样品的重金属的潜在环境生态风险指数,并根据现有PERI法对污泥进行全面的重金属污染生态风险评价。
进一步地,步骤1中,取部分待评价污泥置于烧杯中搅拌混匀后,真空过滤得到污泥饼,将污泥饼烘干至重量不变后移入研磨器,研磨磨碎得到污泥分析样品。
进一步地,步骤2中,用微波消解仪将污泥分析样品溶解于混合酸液中,待消解溶液冷却后过0.2μm~0.45μm滤膜,用电感耦合等离子体发射光谱仪测试溶液中单项重金属含量。
进一步地,步骤2中,混合酸液以HNO3、HF、HCl中两种或三种酸液采用一定比例混合,消解条件为:微波400~1600W、温度120~190℃、消解时间为3~30min。
进一步地,步骤4中,污泥重金属三种形态占比
Figure BDA0003254629000000028
的计算公式如下:
Figure BDA0003254629000000021
其中
Figure BDA0003254629000000022
分别步骤3所得酸可溶/可交换态单项重金属含量、可还原态单项重金属含量和可氧化态单项重金属含量;
Figure BDA0003254629000000023
为步骤2所得污泥分析样品中的单项重金属总含量。
进一步地,步骤5中,单项重金属污染指数
Figure BDA0003254629000000024
的计算公式如下:
Figure BDA0003254629000000025
其中,
Figure BDA0003254629000000026
为步骤2所得污泥分析样品中的单项重金属总含量,
Figure BDA0003254629000000027
为污泥所在地的单项重金属背景浓度值。
进一步地,,步骤6中,单项重金属的有效毒性系数
Figure BDA0003254629000000031
的计算公式如下:
Figure BDA0003254629000000032
其中,
Figure BDA0003254629000000033
为现有单项重金属的毒性系数,
Figure BDA0003254629000000034
为步骤4所得单项重金属三种形态占比。
进一步地,步骤7中,单项重金属的潜在环境生态风险因子
Figure BDA0003254629000000035
的计算公式如下:
Figure BDA0003254629000000036
其中,
Figure BDA0003254629000000037
为步骤6所得单项重金属的有效毒性系数,
Figure BDA0003254629000000038
为步骤5所得单项重金属的污染指数。
进一步地,步骤8中,重金属的潜在环境生态风险指数EERI的计算公式如下:
Figure BDA0003254629000000039
其中,
Figure BDA00032546290000000310
为单项重金属的潜在环境生态风险因子。
本发明的有益效果:本发明的污泥重金属污染生态风险评价方法基于潜在生态风险指数 (PERI),建立改进的潜在环境生态风险指数EERI,充分考虑了污泥特征、环境背景值、人为污染因素、重金属总量、重金属有效毒性、重金属形态及迁移释放能力等因素,方法中引入了重金属有效毒性系数的概念,能够更加直观的体现重金属的毒性效应。本发明的评价结果更加直接可靠,可为污泥的处置及资源化利用提供重金属生态风险评价指导,有利于污泥的资源化利用。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合一种优选的实施方式对本发明的技术方案进行清楚、完整地描述。
实施例1
实施例所用污泥取自湖北省武汉市沙湖污水处理厂,该污水处理厂采用厌氧-缺氧-好氧 (A-A-O)处理工艺,每天处理污水量为150000m3,污泥(含水率80%)产生量为70t。采用X射线荧光分析仪(HD Rocksand,XOS,US)测定了污泥的主要无机氧化物含量,如表 1所示。
表1污泥的主要氧化物分析
Figure BDA00032546290000000311
本实施例以重金属铅(Pb)、铬(Cr)、镉(Cd)、锌(Zn)、铜(Cu)为例,对上述污泥进行污泥重金属污染生态风险评价,评价方法包括以下步骤:
步骤一、污泥预处理。
将待评价的污泥样品放在一个单独的烧杯中,用机械搅拌器在室温下以300rpm的转速下搅拌45min,经真空过滤分离为固体产物(污泥饼)和液体产物(滤液),污泥饼在105℃下干燥,然后磨碎得到污泥分析样品。
污泥预处理的目的为:
1、使污泥均质。重金属测定更具代表性,因为取得的原泥成分复杂,取样后若不进行搅拌均质化,会导致检测误差加大。
2、对污泥进行干化。污泥含水率一般为95%,较为稀释,只有进行烘干剔除水分,才能方便后续重金属含量的测量。
步骤二、测定污泥分析样品的单项重金属总含量
Figure BDA0003254629000000041
用微波消解仪(XT-9900A)将0.2g的污泥分析样品溶解于10ml的混合酸液 (HNO3:HF:HCl=6:2:2)中。消解条件为:微波1600W、温度120℃消解5min后升温至140℃消解15min。待消解溶液冷却后过0.45μm滤膜,并用电感耦合等离子体发射光谱仪(ICP-OES)(Optima 4300DV,USA)测试溶液中重金属含量
Figure BDA0003254629000000042
其中i代表重金属种类。测试结果见表2。
表2污泥分析样品中的单项重金属总含量(mg/kg)
Figure BDA0003254629000000043
限值a为农用地土壤污染风险管控标准GB15618-2018中表1取值。
步骤三、分析留存的污泥分析样品中酸可溶/可交换态(F1)、可还原态(F2)和可氧化态(F3)的各重金属含量。
采用BCR分级法对留存污泥分析样品依次进行酸可溶/可交换态(F1)、可还原态(F2) 和可氧化态(F3)3种化学形态重金属的提取,高速离心后过0.45μm滤膜,并用电感耦合等离子体发射光谱仪(ICP-OES)分别测试F1、F2和F3态中单项重金属的含量
Figure BDA0003254629000000044
结果如表3所示。BCR分级法为现有标准操作方法,其原理及操作步骤这里不做赘述。
表3污泥中不同化学形态的单项重金属含量(mg/kg)
Figure BDA0003254629000000045
Figure BDA0003254629000000051
步骤四、计算重金属的酸可溶/可交换态组分(F1)、可还原态组分(F2)及可氧化态组分(F3)占比,计算结果见表4。
根据表2及表3,计算污泥重金属三种形态占比
Figure BDA0003254629000000052
污泥重金属三种形态占比计算公式如下:
Figure BDA0003254629000000053
其中
Figure BDA0003254629000000054
分别为F1、F2和F3态中单项重金属的含量,
Figure BDA0003254629000000055
为污泥分析样品中的单项重金属总含量。
表4污泥样品的F1、F2、F3形态占比
Figure BDA0003254629000000056
(%)
Figure BDA0003254629000000057
步骤五、计算污泥中单项重金属的污染指数
Figure BDA0003254629000000058
计算结果见下表5所示。
单项重金属污染指数的计算公式如下:
Figure BDA0003254629000000059
其中,
Figure BDA00032546290000000510
为污泥分析样品中的单项重金属总含量,
Figure BDA00032546290000000511
为本地土壤的单项重金属背景浓度值。
表5武汉市土壤重金属背景值(mg/kg)与污泥分析样品的重金属的污染指数
Figure BDA00032546290000000512
Figure BDA00032546290000000513
重金属在土壤环境中通常以四种形态存在,其稳定性通常依次为:残渣态(F4)>可氧化态 (F3)>可还原态(F2)>可交换态(F1)。其中,可交换态易迁移,生物毒性大,对生态环境的危害最大;可氧化态以及可还原态相对稳定,在一定酸性或氧化还原剂存在条件下会释放出来对生态环境造成危害;而残渣态能够稳定存在,不易迁移,对生态环境的危害最小。因此区分重金属的组分对评价重金属的有效毒性具有重要作用。
步骤六、计算单项重金属的有效毒性系数
Figure BDA0003254629000000061
计算结果见下表6所示。
Figure BDA0003254629000000062
其中,
Figure BDA0003254629000000063
为单项重金属的毒性系数,
Figure BDA0003254629000000064
为单项重金属三种形态占比。
重金属的毒性系数是通过已经经过证明的文献查阅的方式得来,例如参考文献:L. Hakanson.AN ECOLOGICAL RISK INDEX FOR AQUATIC POLLUTION-CONTROL-ASEDIMENTOLOGICAL APPROACH[J].Water Research,1980,14(8):975-1001。
表6重金属毒性系数
Figure BDA0003254629000000065
与污泥样品的重金属有效毒性系数
Figure BDA0003254629000000066
Figure BDA0003254629000000067
步骤七、计算单项重金属的潜在环境生态风险因子
Figure BDA0003254629000000068
计算结果如表7所示。
环境生态风险因子的计算公式如下:
Figure BDA0003254629000000069
其中,
Figure BDA00032546290000000610
为单项重金属的有效毒性系数,
Figure BDA00032546290000000611
为单项重金属的污染指数。
表7污泥样品单项重金属的潜在环境生态风险因子
Figure BDA00032546290000000612
Figure BDA00032546290000000613
步骤八、计算污泥重金属的环境生态风险指数EERI,计算公式如下:
Figure BDA00032546290000000614
其中,
Figure BDA00032546290000000615
为单项重金属的潜在环境生态风险因子。
根据式5,计算得出实施例1的污泥样品的重金属EERI值为305.4,参考下表8可知该污泥潜在重金属污染处于中重度风险区域,需要进行进一步的处理与处置,其中Cd金属污染对重金属污染占有较大影响,需特别关注。
表8基于EERI评价方法的重金属污染分级
Figure BDA0003254629000000071
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也在本发明的保护范围内。

Claims (9)

1.一种污泥重金属污染生态风险评价方法,其特征在于,包括以下步骤:
步骤1:污泥预处理,将污泥样品依次经均质、过滤、干燥、磨碎得到污泥分析样品;
步骤2:测定步骤1所得污泥分析样品的单项重金属总含量;
步骤3:采用BCR分级法分析步骤1所得污泥分析样品的酸可溶/可交换态单项重金属含量、可还原态单项重金属含量和可氧化态单项重金属含量;
步骤4:基于步骤2和步骤3的分析结果,计算单项重金属的酸可溶/可交换态组分、可还原态组分及可氧化态组分占比;
步骤5:基于污泥所在地的土壤背景值和步骤2的计算结果,计算单项重金属的污染指数;
步骤6:基于现有重金属的毒性系数及步骤4的计算结果,计算单项重金属的有效毒性系数;
步骤7:基于步骤5和步骤6的计算结果,计算单项重金属的潜在环境生态风险因子;
步骤8:基于步骤7的计算结果,计算污泥分析样品的重金属的潜在环境生态风险指数,并根据现有PERI法对污泥进行全面的重金属污染生态风险评价。
2.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤1中,取部分待评价污泥置于烧杯中搅拌混匀后,真空过滤得到污泥饼,将污泥饼烘干至重量不变后移入研磨器,研磨磨碎得到污泥分析样品。
3.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤2中,用微波消解仪将污泥分析样品溶解于混合酸液中,待消解溶液冷却后过0.2μm~0.45μm滤膜,用电感耦合等离子体发射光谱仪测试溶液中单项重金属含量。
4.根据权利要求3所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤2中,混合酸液以HNO3、HF、HCl中两种或三种酸液采用一定比例混合,消解条件为:微波400~1600W、温度120~190℃、消解时间为3~30min。
5.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤4中,污泥重金属三种形态占比
Figure FDA0003254628990000011
的计算公式如下:
Figure FDA0003254628990000012
其中
Figure FDA0003254628990000013
分别步骤3所得酸可溶/可交换态单项重金属含量、可还原态单项重金属含量和可氧化态单项重金属含量;
Figure FDA0003254628990000014
为步骤2所得污泥分析样品中的单项重金属总含量。
6.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤5中,单项重金属污染指数
Figure FDA0003254628990000015
的计算公式如下:
Figure FDA0003254628990000016
其中,
Figure FDA0003254628990000021
为步骤2所得污泥分析样品中的单项重金属总含量,
Figure FDA0003254628990000022
为污泥所在地的单项重金属背景浓度值。
7.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤6中,单项重金属的有效毒性系数
Figure FDA0003254628990000023
的计算公式如下:
Figure FDA0003254628990000024
其中,
Figure FDA0003254628990000025
为现有单项重金属的毒性系数,
Figure FDA0003254628990000026
为步骤4所得单项重金属三种形态占比。
8.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤7中,单项重金属的潜在环境生态风险因子
Figure FDA0003254628990000027
的计算公式如下:
Figure FDA0003254628990000028
其中,
Figure FDA0003254628990000029
为步骤6所得单项重金属的有效毒性系数,
Figure FDA00032546289900000210
为步骤5所得单项重金属的污染指数。
9.根据权利要求1所述的一种污泥重金属污染生态风险评价方法,其特征在于,步骤8中,重金属的潜在环境生态风险指数EERI的计算公式如下:
Figure FDA00032546289900000211
其中,
Figure FDA00032546289900000212
为单项重金属的潜在环境生态风险因子。
CN202111056007.1A 2021-09-09 2021-09-09 一种污泥重金属污染生态风险评价方法 Pending CN113740325A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111056007.1A CN113740325A (zh) 2021-09-09 2021-09-09 一种污泥重金属污染生态风险评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111056007.1A CN113740325A (zh) 2021-09-09 2021-09-09 一种污泥重金属污染生态风险评价方法

Publications (1)

Publication Number Publication Date
CN113740325A true CN113740325A (zh) 2021-12-03

Family

ID=78737581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111056007.1A Pending CN113740325A (zh) 2021-09-09 2021-09-09 一种污泥重金属污染生态风险评价方法

Country Status (1)

Country Link
CN (1) CN113740325A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237353A (zh) * 2023-02-21 2023-06-09 河北地质大学 一种修复填埋物重金属污染的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237353A (zh) * 2023-02-21 2023-06-09 河北地质大学 一种修复填埋物重金属污染的方法

Similar Documents

Publication Publication Date Title
Ting et al. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China
Sposito et al. Trace metal chemistry in arid‐zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases
Gambrell et al. Chemical availability of mercury, lead, and zinc in Mobile Bay sediment suspensions as affected by pH and oxidation-reduction conditions
Duan et al. The distribution, enrichment and source of potential harmful elements in surface sediments of Bohai Bay, North China
Yuan et al. Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China
Tett et al. A method for the spectrophotometric measurement of chlorophyll a and pheophytin a in benthic microalgae 1
Guppy et al. Analytical methods and quality assurance: A simplified, sequential, phosphorus fractionation method
Shan et al. Characteristics of phosphorus components in the sediments of main rivers into the Bohai Sea
Zhai et al. Concentration distribution and assessment of heavy metals in surface sediments in the Zhoushan Islands coastal sea, East China Sea
Zhang et al. Extraction of copper from sewage sludge using biodegradable chelant EDDS
Li et al. Distribution and risk assessment of trace metals in sediments from Yangtze River estuary and Hangzhou Bay, China
CN113740325A (zh) 一种污泥重金属污染生态风险评价方法
CN101963594A (zh) 一种固体环境样品中微量锑的分析方法
Liang et al. Metals in size-fractionated core sediments of Jiaozhou Bay, China: Records of recent anthropogenic activities and risk assessments
Bao et al. Particle size distribution mathematical models and properties of suspended solids in a typical freshwater pond
Strickland et al. On the forms, balance and cycle of phosphorus observed in the coastal and oceanic waters of the Northeastern Pacific
Zhao et al. Effects of pH on phosphorus form transformation in lake sediments
Yang et al. The distribution and speciation characteristics of vanadium in typical cultivated soils
Zhang et al. Phosphorus characteristics, distribution, and relationship with environmental factors in surface sediments of river systems in Eastern China
Benson et al. Monitoring of dissolved reactive phosphorus in wastewaters by flow injection analysis. Part 1. Method development and validation
Risser et al. Spectroscopic study of surface redox reactions with manganese oxides
Amiel et al. Nearshore sediment pollution in Israel by trace metals derived from sewage effluent
CN111234815A (zh) 一种生物质碳量子点荧光检测器的制备及使用方法
Cheshire et al. Hyperfine splitting in the electron spin resonance solution spectra of humic substances
Sun et al. Study on ecological safety evaluation method for pyrolysis residue of oily sludge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination