CN113738322B - 一种利用产氢产乙酸菌改变煤渗透率的方法 - Google Patents

一种利用产氢产乙酸菌改变煤渗透率的方法 Download PDF

Info

Publication number
CN113738322B
CN113738322B CN202111018769.2A CN202111018769A CN113738322B CN 113738322 B CN113738322 B CN 113738322B CN 202111018769 A CN202111018769 A CN 202111018769A CN 113738322 B CN113738322 B CN 113738322B
Authority
CN
China
Prior art keywords
hydrogen
coal
acetogenic bacteria
permeability
producing acetogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111018769.2A
Other languages
English (en)
Other versions
CN113738322A (zh
Inventor
何环
曹玥
黄再兴
占迪
陈子豪
黄冠华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202111018769.2A priority Critical patent/CN113738322B/zh
Publication of CN113738322A publication Critical patent/CN113738322A/zh
Application granted granted Critical
Publication of CN113738322B publication Critical patent/CN113738322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/582Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/27Methods for stimulating production by forming crevices or fractures by use of eroding chemicals, e.g. acids

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开一种利用产氢产乙酸菌改变煤层渗透率的方法,适用于低渗透性煤层使用。首先通过钻孔、水力压裂的方式将产氢产乙酸菌的营养液注入煤层中,之后封孔操作,注入低渗透性煤层中的产氢产乙酸菌产生乙酸和氢气,将煤中的大分子有机物作为产氢产乙酸菌生命活动的底物转化为乙酸,为煤层中自有的产甲烷菌提供底物,促使产甲烷菌生成甲烷;反排使废液回流至地面,同时煤层的渗透率也在乙酸的腐蚀以及产生的氢气和甲烷气体的挤压作用下变大;抽采煤层中的煤层气。实施容易,投入少,单菌种容易放大培养,反应过程也可控,且对矿井应力分布情况影响小。

Description

一种利用产氢产乙酸菌改变煤渗透率的方法
技术领域
本发明涉及一种改变煤渗透率的方法,尤其适用于低渗透性煤层使用的一种利用产氢产乙酸菌改变煤渗透率的方法。
背景技术
煤层气(coalbedmethane,CBM)是自生自储于煤层中的气体,其主要成分为甲烷,是一种非常优质的清洁能源,也是当前国家大力提倡开发的新能源。煤层气的开发利用具有十分广阔的前景,这种气体带来的经济效益也十分可观,通过统计分析可知,如果我国能够对埋藏深度在两千米以内的煤层气进行抽采,只要抽取率达到40%左右,就可以达到80%的利用率,具体可以利用的煤层气大约有9.6×1012m3~11.2×1012m3,而每立方米的煤层气资源可以产生3kW·h的电能。由此可见,煤层气可以带来较大的经济效益,在未来的发展前景巨大。根据成因,煤层气分为生物成因气和热解气两大类,其中生物成因煤层气是由产甲烷菌等厌氧菌代谢煤或煤层物质产生的以甲烷为主要成分的气体,通常出现在未成熟的低阶煤中,有着埋藏浅、开发成本低等特点。
目前利用微生物来增产煤层气主要有两大类:内源微生物激活和外源微生物注入。其中内源激活主要通过激活培养基促进内源微生物代谢活力促进甲烷生成;而外源微生物注入通过注入混合菌群提高微生物丰度来促进甲烷生成。大量模拟产气研究结果表明,微生物处理后煤的渗透率和空隙率会发生改变,这种煤层特性改变对后续煤层气抽采也存在促进作用。但是混合菌注入存在菌群放大培养难,菌群结构不好控制问题,并且注入菌群也会对内源菌群的代谢产甲烷产生干扰。因此,提供一种单一功能菌株注入煤层来促进煤层气的抽采方法就尤为必要。
发明内容
针对上述现有技术存在的问题,本发明的目的是提供一种利用产氢产乙酸菌改变低渗透煤层渗透率的生物增采方法,实施容易,投入少,单菌种容易放大培养,反应过程也可控,且对矿井应力分布情况影响小。
为实现上述目的,本发明的利用产氢产乙酸菌改变煤层渗透率的生物增采方法,其步骤为:
步骤一、首先选取实验室产氢产乙酸菌Clostridiumsp.BXX,进行富集驯化培养;
步骤二、选择渗透性低的煤层,通过钻孔、水力压裂的方式将产氢产乙酸菌的营养液注入煤层中,之后封孔操作,其中每1L的煤间空隙,加入660mL含有产氢产乙酸菌的培养液,需达到接种量10%;
步骤三、注入低渗透性煤层中的产氢产乙酸菌产生乙酸和氢气,将煤中的大分子有机物作为产氢产乙酸菌生命活动的底物转化为乙酸小分子,为煤层中自有的产甲烷菌提供底物,促使产甲烷菌生成甲烷;待产氢产乙酸菌产生的乙酸与氢气开始持续下降同时pH值下降至7以下,进行反排使废液回流至地面,此时低渗透性煤层中甲烷量提高,同时煤层的渗透率也在乙酸的腐蚀以及产生的氢气和甲烷气体的挤压作用下变大;
步骤四、抽采煤层中的煤层气;当煤层气压力下降后重新向煤层注入含产氢产乙酸菌的营养液,即可循环实现生物增采。
所述产氢产乙酸菌产生的乙酸与氢气开始持续下降且pH值下降至7以下的时间为8天。
每升的培养基中包括NH4Cl0.50g/L,MgSO4·7H2O0.50g/L,CaCl2·2H2O0.25g/L,NaCl2.25g/L,FeSO4·7H2O2.00mg/L,酵母粉4.00g/L,K2HPO40.35g/L,KH2PO40.23g/L,NaHCO34.00g/L,L-半胱氨酸0.30g/L,Na2S·9H2O0.30g/L;每升的培养基中添加微量元素10.00mL,亚硒酸钨酸盐溶液1.00mL,0.1%刃天青的0.50mL,维生素液10.00mL。
培养产氢产乙酸菌时,将300mL培养基装于500mL厌氧瓶中,用10mL的一次性无菌注射器按10%的比例吸取活化的菌株培养液30mL接入培养基中,用丁基胶塞密封后摇匀,将厌氧瓶放入恒温培养箱30℃培养4天后备用,具体的培养的总量根据现场具体情况进行调整。
有益效果:
1)本方法成本低,设置简易,利用生物技术可有效提高煤层渗透率,可以让具备产气能力却已经不再产气的煤井再次产气,达到死井复活的目的。提高资源的利用率。
2)本方法提高了煤层的渗透性的同时,产氢产乙酸菌的代谢产物:氢气和乙酸提供给产甲烷菌产生甲烷。
3)本方法使用的单菌种单一,容易放大培养,便于控制反应过程。
本申请只加入产氢产乙酸菌,因为单一菌种便于进行扩大培养,因此好控制其注入过程,另外产氢产乙酸是介导煤的降解的产生产甲烷前体的重要功能微生物,注入该类微生物不仅可以促进甲烷的生成,同样该菌株的代谢产物可以改善煤的渗透率。
与传统的直接加入培养液培养产甲烷菌相比,加入的产氢产乙酸菌能够使煤炭中的大分子有机物物质降解成乙酸,更能利于产甲烷菌的生命活动,提高产甲烷速度。
附图说明
图1(a)为本发明使用的产氢乙酸菌处理无烟煤过程中pH值的变化示意图;
图1(b)为本发明使用的产氢乙酸菌处理无烟煤过程中细胞浓度变化示意图;
图2(a)为本发明产氢产乙酸菌处理前的原煤样的电镜照片;
图2(b)为本发明产氢产乙酸菌处理前的原煤样的电镜照片;
图2(c)为本发明产氢产乙酸菌处理后的煤样的电镜照片;
图2(d)为本发明产氢产乙酸菌处理后的煤样的电镜照片。
具体实施方式
下面结合附图对本发明的实施例做进一步说明:
本发明的一种利用产氢产乙酸菌改变煤层渗透率的生物增采方法,其步骤为:
步骤一、首先选取实验室产氢产乙酸菌Clostridiumsp.BXX,进行富集驯化培养;
步骤二、选择渗透性低的煤层,通过钻孔、水力压裂的方式将产氢产乙酸菌的营养液注入煤层中,之后封孔操作,其中每1L的煤间空隙,加入660mL含有产氢产乙酸菌的培养液,需达到接种量10%;
步骤三、注入低渗透性煤层中的产氢产乙酸菌产生乙酸和氢气,将煤中的大分子有机物作为产氢产乙酸菌生命活动的底物转化为乙酸小分子,为煤层中自有的产甲烷菌提供底物,促使产甲烷菌生成甲烷;等待一段时间后,待产氢产乙酸菌产生的乙酸与氢气开始持续下降同时pH值下降至7以下,所述产氢产乙酸菌产生的乙酸与氢气开始持续下降且pH值下降至7以下的时间为8天,进行反排使废液回流至地面,此时低渗透性煤层中甲烷量提高,同时煤层的渗透率也在乙酸的腐蚀以及产生的氢气和甲烷气体的挤压作用下变大;如图1(a)和图1(b)所示产氢乙酸菌处理无烟煤过程中的pH和细胞浓度曲线;
步骤四、抽采煤层中的煤层气;当煤层气压力下降后重新向煤层注入含产氢产乙酸菌的营养液,即可循环实现生物增采。如图2(a)和图2(b)均为产氢产乙酸菌处理前的原煤样品的电镜照片,图2(c)和图2(d)均为产氢产乙酸菌处理后煤样的电镜照片。
每升的培养基中包括NH4Cl0.50g/L,MgSO4·7H2O0.50g/L,CaCl2·2H2O0.25g/L,NaCl2.25g/L,FeSO4·7H2O2.00mg/L,酵母粉4.00g/L,K2HPO40.35g/L,KH2PO40.23g/L,NaHCO34.00g/L,L-半胱氨酸0.30g/L,Na2S·9H2O0.30g/L;每升的培养基中添加微量元素10.00mL,亚硒酸钨酸盐溶液1.00mL,0.1%刃天青的0.50mL,维生素液10.00mL。
培养产氢产乙酸菌时,将300mL培养基装于500mL厌氧瓶中,用10mL的一次性无菌注射器按10%的比例吸取活化的菌株培养液30mL接入培养基中,用丁基胶塞密封后摇匀,将厌氧瓶放入恒温培养箱30℃培养4天后备用,具体的培养的总量根据现场具体情况进行调整。
下述表1为本申请使用煤样的微晶结构参数其中,θ002—002峰峰位对应的衍射角;
θ100—100峰峰位对应的衍射角;
d002—002峰峰位对应的衍射间距;
d100—100峰峰位对应的衍射间距;
β002—002峰峰位对应的半峰宽值;
β100—100峰峰位对应的半峰宽值;
Lc—芳香层片的延展度;
La—芳香层片的堆砌度;
Nc—芳核的有效堆砌芳香片数。
表1
Figure BDA0003240973830000041
通过表2表示原煤和微生物处理后煤的孔隙结构参数:
表2
Figure BDA0003240973830000042
利用表3表示柱状煤样品的渗透率:
表3
Figure BDA0003240973830000051

Claims (4)

1.一种利用产氢产乙酸菌改变煤层渗透率的方法,其特征在于:
步骤一、首先选取实验室产氢产乙酸菌Clostridium sp. BXX,进行富集驯化放大培养;
步骤二、选择渗透性低的煤层,通过钻孔、水力压裂的方式将产氢产乙酸菌的营养液注入煤层中,之后封孔操作,其中每1L的煤间空隙,加入660 mL含有产氢产乙酸菌的培养液,需达到接种量10%;
步骤三、注入低渗透性煤层中的产氢产乙酸菌产生乙酸和氢气,将煤中的大分子有机物作为产氢产乙酸菌生命活动的底物转化为乙酸小分子,为煤层中自有的产甲烷菌提供底物,促使产甲烷菌生成甲烷;待产氢产乙酸菌产生的乙酸与氢气开始持续下降同时pH值下降至7以下,进行反排使废液回流至地面,此时低渗透性煤层中甲烷量提高,同时煤层的渗透率也在乙酸的腐蚀以及产生的氢气和甲烷气体的挤压作用下变大;
步骤四、抽采煤层中的煤层气;当煤层气压力下降后重新向煤层注入含产氢产乙酸菌的营养液,即可实现循环生物增采。
2.根据权利要求1所述利用产氢产乙酸菌改变煤层渗透率的方法,其特征在于:所述产氢产乙酸菌产生的乙酸与氢气开始持续下降且pH值下降至7以下的时间为8天。
3.根据权利要求1所述利用产氢产乙酸菌改变煤层渗透率的方法,其特征在于:每升的培养基中包括NH4Cl 0.50 g/L,MgSO4·7H2O 0.50 g/L,CaCl2·2H2O 0.25 g/L,NaCl 2.25g/L,FeSO4·7H2O 2.00 mg/L,酵母粉 4.00 g/L,K2HPO4 0.35 g/L,KH2PO4 0.23g/L,NaHCO34.00 g/L, L-半胱氨酸0.30 g/L,Na2S·9H2O 0.30 g/L;每升的培养基中添加微量元素10.00 mL,亚硒酸钨酸盐溶液 1.00 mL,0.1%刃天青的 0.50 mL,维生素液 10.00 mL。
4.根据权利要求3所述利用产氢产乙酸菌改变煤层渗透率的方法,其特征在于:培养产氢产乙酸菌时,将300 mL培养基装于500 mL厌氧瓶中,用10mL的一次性无菌注射器按10%的比例吸取活化的菌株培养液30 mL接入培养基中,用丁基胶塞密封后摇匀,将厌氧瓶放入恒温培养箱30℃培养4天后备用,具体的培养的总量根据现场具体情况进行调整。
CN202111018769.2A 2021-09-01 2021-09-01 一种利用产氢产乙酸菌改变煤渗透率的方法 Active CN113738322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111018769.2A CN113738322B (zh) 2021-09-01 2021-09-01 一种利用产氢产乙酸菌改变煤渗透率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111018769.2A CN113738322B (zh) 2021-09-01 2021-09-01 一种利用产氢产乙酸菌改变煤渗透率的方法

Publications (2)

Publication Number Publication Date
CN113738322A CN113738322A (zh) 2021-12-03
CN113738322B true CN113738322B (zh) 2022-04-26

Family

ID=78734666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111018769.2A Active CN113738322B (zh) 2021-09-01 2021-09-01 一种利用产氢产乙酸菌改变煤渗透率的方法

Country Status (1)

Country Link
CN (1) CN113738322B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124990B (zh) * 2022-06-22 2023-05-23 重庆大学 一种清洁营养基工作液及其开采煤层气的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027195A (zh) * 2008-05-12 2011-04-20 合成基因组股份有限公司 刺激生物源甲烷从含烃地层中生成的方法
CN102559772A (zh) * 2012-02-16 2012-07-11 北京科技大学 一种利用外源微生物增产煤层气方法
CN103952337A (zh) * 2014-04-10 2014-07-30 河南理工大学 煤层气井用生物压裂液的制备方法
WO2016093690A1 (en) * 2014-12-12 2016-06-16 Schlumberger Technology B.V. Method for treating coalbed methane formation
AU2015271647A1 (en) * 2014-06-03 2016-12-08 Verso Energy Pty Ltd Process for the microbial conversion of a subsurface formation
CN106285581A (zh) * 2016-08-23 2017-01-04 中国矿业大学(北京) 一种利用本源菌提高煤层气产量的方法
WO2018069934A2 (en) * 2016-10-10 2018-04-19 The Energy And Resources Institute Methane production from underground coalbed methane wells
CN113236220A (zh) * 2021-05-31 2021-08-10 中国矿业大学 利用煤层进行碳捕集、封存和生产低碳可再生天然气方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832475B2 (en) * 2005-08-12 2010-11-16 University Of Wyoming Research Corporation Biogenic methane production enhancement systems
EP2561042A4 (en) * 2010-04-21 2016-05-25 Ciris Energy Inc SOLUBILIZATION OF CARBONACEOUS MATERIALS AND PROCESSING INTO HYDROCARBONS AND OTHER USEFUL PRODUCTS
US20160145978A1 (en) * 2014-11-22 2016-05-26 Marcus G. Theodore Method to enhance microbial gas production from unconventional reservoirs and kerogen deposits
US20210180435A1 (en) * 2019-12-13 2021-06-17 Transworld Technologies Inc. Methods and materials for producing identifiable methanogenic products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102027195A (zh) * 2008-05-12 2011-04-20 合成基因组股份有限公司 刺激生物源甲烷从含烃地层中生成的方法
CN102559772A (zh) * 2012-02-16 2012-07-11 北京科技大学 一种利用外源微生物增产煤层气方法
CN103952337A (zh) * 2014-04-10 2014-07-30 河南理工大学 煤层气井用生物压裂液的制备方法
AU2015271647A1 (en) * 2014-06-03 2016-12-08 Verso Energy Pty Ltd Process for the microbial conversion of a subsurface formation
WO2016093690A1 (en) * 2014-12-12 2016-06-16 Schlumberger Technology B.V. Method for treating coalbed methane formation
CN106285581A (zh) * 2016-08-23 2017-01-04 中国矿业大学(北京) 一种利用本源菌提高煤层气产量的方法
WO2018069934A2 (en) * 2016-10-10 2018-04-19 The Energy And Resources Institute Methane production from underground coalbed methane wells
CN113236220A (zh) * 2021-05-31 2021-08-10 中国矿业大学 利用煤层进行碳捕集、封存和生产低碳可再生天然气方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Acetogens and Acetoclastic Methanosarcinales Govern Methane Formation in Abandoned Coal Mines;Beckmann, S等;《APPLIED AND ENVIRONMENTAL MICROBIOLOGY》;20110630;全文 *
Coal biomethanation potential of various ranks from Pakistan: A possible alternative energy source;Malik, AY等;《JOURNAL OF CLEANER PRODUCTION》;20200510;全文 *
寺河矿15号煤层中产氢产乙酸微生物的富集和群落结构研究;肖栋等;《中国煤炭》;20201222;全文 *
微生物提高煤层气产量模拟实验研究;陈浩等;《微生物提高煤层气产量模拟实验研究》;20160825;全文 *
生物成因煤层气实验研究现状与进展;王爱宽等;《煤田地质与勘探》;20101025;全文 *

Also Published As

Publication number Publication date
CN113738322A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
Zhang et al. Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations
Zhang et al. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production
He et al. Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment
Kumar et al. Combined pretreatment of electrolysis and ultra-sonication towards enhancing solubilization and methane production from mixed microalgae biomass
Ren et al. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge
Guo et al. Co-producing hydrogen and methane from higher-concentration of corn stalk by combining hydrogen fermentation and anaerobic digestion
CN102559772A (zh) 一种利用外源微生物增产煤层气方法
CN107387044B (zh) 一种利用煤层本源真菌提高生物煤层气产量的方法
CN101475926B (zh) 一种厌氧降解纤维素产甲烷复合菌
He et al. Enhanced the energy outcomes from microalgal biomass by the novel biopretreatment
Satar et al. Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose
CN101705199B (zh) 一种产甲烷复合菌剂及其制备方法
Yuan et al. Enhancement effect of l-cysteine on dark fermentative hydrogen production
CN103060245B (zh) 一种利用煤层有机杂质制取生物煤层气的复合微生物菌剂及其应用
CN106948797B (zh) 一种增产煤层气的方法
Zhang et al. Metabolic pathways of hydrogen production in fermentative acidogenic microflora
Wang et al. Efficiency enhancement of H2 production by a newly isolated maltose-preferring fermentative bio-hydrogen producer of Clostridium butyricum NH-02
CN113738322B (zh) 一种利用产氢产乙酸菌改变煤渗透率的方法
CN106520897B (zh) 一种提高衣藻产氢量的方法
Ust’ak et al. Experimental verification of various methods for biological hydrogen production
Yin et al. Thermophilic dark fermentation fast start-up of hydrogen production with substrate concentration regulation and moderate pretreatment inoculum
Yang et al. Clean utilization of lignite to produce biomethane by optimizing the microbial community
CN104498422A (zh) 一种嗜冷产甲烷菌的驯化培养方法
Liu et al. Light stimulation strategy for promoting bio-hydrogen production: Microbial community, metabolic pathway and long-term application
CN109609557B (zh) 一种基于发酵过程菌落平衡的小麦秸秆稳定、高效制气方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant