CN113731461A - 一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用 - Google Patents

一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用 Download PDF

Info

Publication number
CN113731461A
CN113731461A CN202110879667.3A CN202110879667A CN113731461A CN 113731461 A CN113731461 A CN 113731461A CN 202110879667 A CN202110879667 A CN 202110879667A CN 113731461 A CN113731461 A CN 113731461A
Authority
CN
China
Prior art keywords
cetio
composite material
photocatalytic
cto
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110879667.3A
Other languages
English (en)
Inventor
陈小卫
李中钦
奚新国
许琦
姜瑞雨
何寿成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202110879667.3A priority Critical patent/CN113731461A/zh
Publication of CN113731461A publication Critical patent/CN113731461A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种CeTiO4‑(g‑C3N4)光催化复合材料的制备方法与应用。首先称取一定质量比的NaCl和KCl混磨,然后向混合盐中加入Ce(NO3)3·6H2O和TiO2,混磨均匀,再将混磨粉末置于氧化铝坩埚中,进行热处理,最后得到纯的CeTiO4,然后将CeTiO4在与一定量的三聚氰胺混合在一定温度下热处理,最后得CeTiO4/g‑C3N4光催化复合材料。本发明成本低、效率高、环境友好、安全便利,过程简单等优点,所得的g‑C3N4复合的CeTiO4材料是典型复合异质结结构,具有较多的表面光催化活性区域,具有可见光响应,光催化性能稳定,因此在制备新型光催化剂上具有重大的潜在应用价值。

Description

一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用
技术领域
本发明涉及光催化技术领域,具体涉及一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用。
背景技术
随着工业化和城市化进程的不断推进,由废气、有机物、聚合物和生物质等引起的污染问题变得日益严峻。目前,一些物理方法和化学方法已经用于解决环境污染问题。其中,半导体光催化技术能够完全消除有机污染物,反应速度快,工艺成本低,运行条件温和且环境友好,因此成为了去除有机污染最有效最“绿色”的方法之一。目前,光催化材料面临着合成工艺复杂、可见光利用率低、有机物矿化率低以及催化剂稳定差,这使得其在工业生产及实际应用中受到了限制。
近年来,TiO2因其绿色环保、物理化学稳定、制备简单且成本低廉而备受关注,其在涂料、传感器、太阳能电池、光催化制等领域受到广泛研究。CeO2本身在催化、电化学和光化学方面也有广泛的应用,这是由于其中的Ce4+和Ce3+之间的氧化还原价态转换,从而具有储存和释放氧原子的能力。然而,由于TiO2的宽带隙和CeO2较差的热稳定性,使得它们的在应用方面受到了限制。最近,有研究者认为在TiO2中引入Ce离子可以减小晶粒尺寸,增大比表面积,稳定锐钛矿相和降低带隙能。基于此,近年来双金属氧化物CeTiO4引起了研究者们越来越多的关注。
目前,CeTiO4的禁带宽度为~2.4eV,为提高其在光催化领域性能,主要集中在两个方面:一是对CeTiO4单元改性,通过控制形貌结构和元素掺杂改性,提高光催化性能;二是通过寻求有机或无机化合物与CeTiO4形成二元或多元复合异质结,提高光催化性能。在这些策略中,复合异质结半导体材料,被认为是由于电荷分离的增加而提高光催化活性的常用有效方法。
熔融法因其成本低、效率高、环境友好、安全方便等优点被广泛应用于微材料的合成。特别是暴露的离子可以直接输运并参与反应过程,限制了水化离子脱水引起的反应,大大加快了熔融盐中的反应速度。熔盐中的传质速率要高于液相法,这有利于材料的均相合成。
综上所述,目前在CeTiO4制备方面,未有采用LiCl-KCl作为熔盐,选取g-C3N4与CeTiO4进行复合材料制备报道,同时在材料改性方面也未有研究。
发明内容
针对现有技术的不足,本发明的目的在于提供一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用,该发明通过创新地选择三聚氰胺与CeTiO4混合,通过一定温度条件下,制备出具有较高活性的可见光响应的CeTiO4-g-C3N4光催化材料,所制备CeTiO4-g-C3N4改性材料,具有强的太阳光响应的催化降解活性,另外该方法制备工艺简单,能耗低,所制的材料催化效率高,拓宽其在光催化领域上的应用。
为解决现有技术问题,本发明采取的技术方案为:
一种CeTiO4-(g-C3N4)光催化复合材料的制备方法,包括以下步骤:
步骤1,按化学计量称取Ce(NO3)3•6H2O和TiO2,再加入KCl和LiCl的混合物进行混合,置于玛瑙研钵中研磨均匀,将混合粉末置于马弗炉中550-650℃下空气氛下灼烧10h,待冷却至室温,用去离子水反复洗涤3-5次,再置于80℃下烘干过夜,所得样品CeTiO4,记为CTO;
步骤2,称量CeTiO4与三聚氰胺进行混合研磨,将研磨后混合物置于马弗炉中升温至到500℃,并保温3h,待冷却至室温后,用无水乙醇水溶液反复进行离心洗涤5-10次,再置于80℃烘箱中烘干过夜,即得CeTiO4/g-C3N4光催化复合材料,记为CTO/CN-x,其中x为不同质量的三聚氰胺数值,x为0.5-8。
作为改进的是,步骤1中KCL与LiCl的混合物中KCL与LiCl的摩尔比为40.8:59.2,且KCl和LiCl的总质量为Ce(NO3)3·6H2O和TiO2总质量的20倍,所用KCl、LiCl、Ce(NO3)3·6H2O和TiO2均为分析纯。
作为改进的是,步骤1中马弗炉灼烧时,升温速度保持在5-10℃/min。
作为改进的是,步骤2中三聚氰胺为分析纯,x为6。
作为改进的是,步骤1和步骤2所用的离心洗涤的速率为4000r/min。
上述制备的CeTiO4/g-C3N4光催化复合材料在降解RhB溶液上的应用。
工作原理:一方面,CeTiO4和g-C3N4本身特殊的能带结构,具备一定的可见光响应能力;另一方面,形成复合异质结改性后形成界面内接电场,可以有利于的光生电子-空穴对的快速分离,从而提高量子产率,因此在在可见光响应范围内,也提高光催化降解性能。
有益效果:
与现有技术相比,本发明一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用,采用熔融盐(NaNO3和KNO3)法制备了纯CeTiO4、g-C3N4和CeTiO4-g-C3N4;首先称取一定质量比的NaCl和KCl混磨,然后向混合盐中加入Ce(NO3)3·6H2O和TiO2,混磨均匀,再将混磨粉末置于氧化铝坩埚中,进行热处理,最后得到纯的CeTiO4,然后将CeTiO4在与一定量的三聚氰胺混合在一定温度下热处理,最后得CeTiO4/g-C3N4光催化复合材料;
通过上述分析可知,本发明成本低、效率高、环境友好、安全便利,过程简单等优点,所得的CeTiO4/g-C3N4光催化复合材料具有较多的表面活性区域,具有可见光响应,在可见光区1.5h内降解效率可达80%以上,且循环使用光催化性能稳定,对RhB具有优异的降解效果。
附图说明
图1为本发明不同实施例制备的光催化复合材料的XRD图谱;
图2为本发明实施例5中CTO/CN-6不同元素的XPS光谱图;
图3(a)为本发明实施例5中 CTO的SEM图像;
图3 (b)为CN的SEM图像;
图3(c)为CTO/CN-6的SEM图像,
图3(d)为CTO/CN-6的TEM图像;
图3 (e) 为Ce元素分布图;
图3 (f) 为CTO/CN-6的HRTEM图像;
图3 (g) 为O元素分布图;
图3 (h) 为Ti元素分布图;
图3 (i) 为C元素分布图;
图3 (j) 为N元素分布图;
图4为本发明实施例5中紫外-可见吸收光谱,其中(a)为CTO、CN和CTO/CN-6的紫外-可见漫反射吸收光谱,(b)为(αhυ)1/2对光子能量(hυ)作图计算CTO和CN的带隙能;
图5(a)为不同样品在模拟太阳光下降解RhB速率;
图5(b)为不同样品光催化降解RhB溶液的反应动力学常数曲线;
图5(c)为不同CN含量的CTO/CN反应动力学常数的变化;
图5(d)为模拟太阳光下CTO/CN-6降解RhB循环试验。
具体实例方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完成地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明实施例中所用CeTiO4的制备方法,具体步骤如下:按化学计量称取Ce(NO3)3•6H2O和TiO2,再加入KCl和LiCl的混合物进行混合,置于玛瑙研钵中研磨均匀,将混合粉末置于马弗炉中600℃下空气氛下灼烧10h,待冷却至室温,用去离子水反复洗涤3-5次,再置于80℃下烘干过夜,所得样品CeTiO4,记为CTO。
实施例1
(1)称取1.0000g熔盐法制备的纯相CeTiO4和0.5000g的三聚氰胺进行混合,混磨3h得混合粉末;
(2)再将混合粉末置于氧化铝坩埚中,升温到500℃保温3h,自然冷却至环境温度,得半成品;
(3)取出半成品用无水乙醇水溶液反复进行离心洗涤5-10次,再在80℃烘箱中烘干过夜,即得CeTiO4/g-C3N4光催化复合材料,(缩写为CTO/CN-0.5)。
实施例 2
除将三聚氰胺的质量更换1.0000g外,其余同实施例1,即得CeTiO4/g-C3N4光催化复合材料,(缩写为CTO/CN-1)。
实施例 3
除将三聚氰胺的质量更换2.0000g外,其余同实施例1,即得CeTiO4/g-C3N4光催化复合材料,(缩写为CTO/CN-2)。
实施例 4
除将三聚氰胺的质量更换4.0000g外,其余同实施例1,即得CeTiO4/g-C3N4光催化复合材料,(缩写为CTO/CN-4)。
实施例5
除将三聚氰胺的质量更换6.0000g外,其余同实施例1,即得CeTiO4/g-C3N4光催化复合材料,(缩写为CTO/CN-6)。
实施例6
除将三聚氰胺的质量更换8.0000g外,其余同实施例1,即得CeTiO4/g-C3N4光催化复合材料,(缩写为CTO/CN-8)。
对比例
为便于实验比较,称取5g三聚氰胺,按上述实验条件合成g-C3N4,所得样品记为CN。
性能测试
为了对本发明实施例中得到的一种新型的CeTiO4/g-C3N4光催化复合材料的自身品质和催化性能进行验证和分析,对实施例1-6所得的CeTiO4/g-C3N4光催化剂,以及单一CeTiO4和g-C3N4进行了试验,测试分析结果表现均较好,具体测试方法如下:
1、催化剂的表征:样品的XRD分析采用日本的Shimadzu XRD-6000型X射线衍射仪进行,Cu靶(λ=0.1541 nm),配有石墨单色镜,管压为40 KV,管流为30mA,扫描速度:2 °/min,扫描角度范围为10-80°。样品的形貌表征通过QUANTA200型扫描电镜(SEM)(美国FEI公司)和JEM-2100型透射电镜(TEM)(日本JEOL公司)。样品XPS分析通过ESCALAB250Xi 型X射线电子能谱仪进行检测,其电子能量分析器:分析面积为0.02~8 mm连续可调。
2、光催化性能测试:通过模拟太阳光条件下对罗丹明B(RhB)溶液进行降解,以测试光催化性能。其中光源为氙灯(300W),距离液面高度20cm,取0.1000 g催化剂均匀分散在100.00 ml浓度为10mg/L的RhB溶液中,采用循环冷却的方式保持反应器室温。光照前,将混合悬浮液搅拌暗吸附45分钟,以实现暗吸附平衡,再光催化反应,每15min,取样一次(样品的体积4 mL),离心去沉淀物,进行吸光度分析。
具体地说明:
首先,对所得成品进行所测成品进行X射线粉末衍射分析测试,其结果如图1所示,分别表示纯的CeTiO4、g-C3N4和 CeTiO4/g-C3N4的XRD图谱,从图谱可以看出,所获得的CeTiO4衍射峰被认为是纯相的CeTiO4的特征峰,由于Ce2/3TiO3的有效氧化和引入的盐的逐步电离,样品得以成功合成。在制备过程中,Ce2/3TiO3发生相变生成CeTiO4,而不是形成复合氧化物CeO2-TiO2,因为它被Ce离子包围,促进了Ti-O-Ce键的形成。此外,由于结构中钛的量较大,且相对较小的Ti4+离子半径(0.068 pm)原因,取代了部分Ce3+ (Ce3+= 0.094μm),并阻碍其结晶成立方相。由纯g-C3N4衍射峰可以明显看出,在2θ=13.0°和27.4°处存在两个衍射峰,它们分别对应于四方晶相g-C3N4的(100)和(002)晶面(JCPDS 87-1526)。从复合的CTO-CN系列衍射峰分析得出,在CN含量较低时,(002)面衍射峰消失,这是因为被CeTiO4含量高,其衍射峰强,从而覆盖了CN的衍射峰强度。有趣的是,在CTO-CN复合材料系列中(100)晶面消失,这是因为g-C3N4被剥离成薄层纳米结构。
为进一步确认复合后的表面化学组成和化学态,图2为CTO/CN-6的XPS图谱。如图2(a)所示,图谱中898.7eV、889.7eV、885.1eV和882.9eV出现特征峰值,属于Ce 3d3/2的结合能,而917.3eV、907.8eV、901.3eV和898.7eV四个特征峰归属于Ce3+,903.2eV,889.7eV,885.1eV,882.9eV四个特征峰归属于Ce4+。从图2(b)可知,位于464.4eV和458.8eV两个结合能的特征峰可归属于典型的Ti4+ 的2p1/2和2p3/2。如图2(c)中位于529.5 eV和531.8 eV两个结合能的特征峰表明在CTO/CN-6复合材料中至少存在两个氧物种,分析可能分别归因于晶格氧和表面吸附的氧。图2(d)中位于284.8eV和288.2eV两个结合能的峰,位于284.8eV的峰归因于仪器中的碳污染以及C-N的sp2杂化峰,位于288.2 eV的峰归因于g-C3N4芳香环上N-C=N的sp2键合碳。图2(e)中可拟合为明显的三个特征峰,分别位于398.6 eV,399.5 eV和401.0 eV,其中位于398.6 eV的主峰归因于C-N=C的sp2杂化氮的典型信号,位于399.5eV的峰归因于骨架上的N-(C)3基团,而位于399.5eV的特征峰归因于C-N-H官能团上附加的表面未凝聚桥连氮原子。
为了进一步证明上述关于物质鉴定的部分推测和进一步地分析研究CTO、CN和CTO/CN-6光催化材料的微观形貌特征,如图3(a)所示为熔盐法制备的CTO粉体,从图中可以看出CTO呈现细小纳米颗粒状,颗粒团聚呈板结状和球颗粒状。从图3(b)可以观察到CN呈现明显的层状结构,大量CN纳米片重叠在一起。CTO/CN-6复合材料的形貌如图3(c)所示,CTO纳米颗粒大量负载在了CN层状纳米片上,这为可能形成CTO与CN异质结结构有利于光生载流子的分离,创造了条件。通过TEM分析后,从图3(d)的CTO/ CN-6照片中可以看出,CTO与CN形成了明显的异质结界面,其中CTO和CN紧密结合,在图3(f)上显示了CTO晶格条纹与无晶格条纹的CN, CTO和CN间的紧密接触形成界面。从元素分布图3(e)、图3(g)、图3(h)、图3(i)和图3(j))所示,结合TEM和XRD图相表明,所研究CTO/ CN异质结构中含有Ce,O,Ti,C和N,且元素在复合材料中均布。
用紫外-可见吸收光谱法对其光学吸收性能进行了评价。如图4(a)所示,与CTO样品相比,CTO与 CN复合后的吸收边发生了红移,意味着CTO/CN-6光吸收扩展到可见光区域,提高了光吸收的范围,增加了太阳光的利用率。通过(αhv)1/2做纵坐标,hv做横坐标作图,得出CTO和CN的带隙值分别为2.69 eV和2.44 eV,图4(b) 分别显示了CTO和CN的莫特-肖特基曲线,通过将莫特-肖特基曲线线性部分外推至横坐标轴,可得到其平带电位分别为-0.80V和-0.46V。由于交点均为负值,两种样品均具有p型半导体特性,其交点值近似等于其CB边缘电位,通过能斯特方程计算可以得到CTO和CN的CB电位分别为-0.60V Vs NHE和-0.26VVs NHE(VNHE=VAg/AgCl+0.197V)。
进一步地,为了验证CTO、CN和CTO/CN-x可见光催化剂的降解能力。本试验进行了所制备的样品进行全面了可见光催化降解RhB实验,如图5(a)所示,通过在300W模拟太阳光氙灯照射下降解10mg/L的RhB溶液,研究了样品的光催化性能。在降解90min后,随着复合材料中CN含量的增加,降解效率呈现先升高后降低的趋势,其中CTO/CN-6的降解效率高于其他组分,达80.4%。当CTO中加入CN,形成复合异质结材料,光催化活性均得到了增强,这说明两者间形成了促进光生载流子转移的异质结界面,从而提高了光催化活性,但是过量的CN可能将CTO覆盖,减少了复合界面有效活性点位,阻碍了光捕获,从而降低了光催化活性。
为了进一步研究材料降解化学反应动力学情况,据文献报道结合本实验数据,光催化降解反应动力学近似满足一级反应动力学方程,光催化反应可用dC/dt=kC表示,其中C为RhB的浓度,k为总降解速率常数。如图5(b)所示为拟合后的反应动力学曲线,结合图5(c)可以得出,速率常数k(单位:min-1)随着CN含量增加同样符合先升高后降低的趋势,CTO/CN-6的速率常数k(0.01788 min-1)是CTO(0.00399 min-1)的4.5倍。结合上述材料表征分析,论证了CTO与CN复合后,光催化材料降解污染物的性能得到很大提高。
本实验利用再循环收集光催化剂,采用一种由砂芯漏斗,外接真空泵,以及微孔径0.45μm的水性滤膜组成的循环装置,将每次循环反应后的的溶液置于砂芯漏斗中,开启真空泵,抽除过滤去反应溶液,固体催化剂在滤膜处收集并进行下一组循环,从而得到在可见光照射下降解RhB,研究了CTO/CN-6的光降解稳定性结果。从图5(d)可以看出,在对CTO/CN-6进行了循环实验4次后,RhB的降解效率依然保持在80%以上,说明了该复合材料在降解污染物方面具有良好的稳定性。
综上所述,本发明采用熔融盐(NaCl和KCl)法制备了纯CeTiO4,同时混合热处理制备了CeTiO4/g-C3N4光催化复合材料。本发明成本低、效率高、环境友好、安全便利,过程简单等优点,所得的CeTiO4/g-C3N4光催化复合材料具有较多的表面活性区域,具有可见光响应,光催化性能稳定,对RhB具有优异的降解效果。从而本发明提供的改性CeTiO4光催化剂复合制备方法可广泛应用于光催化降解有机污水领域。
以上所述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细叙述并非旨在限制要求保护的本发明的范围内,仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护范围。

Claims (6)

1.一种CeTiO4-(g-C3N4)光催化复合材料的制备方法,其特征在于,包括以下步骤:
步骤1,按化学计量称取Ce(NO3)3•6H2O和TiO2,再加入KCl和LiCl的混合物进行混合,置于玛瑙研钵中研磨均匀,将混合粉末置于马弗炉中550-650℃下空气氛下灼烧10h,待冷却至室温,用去离子水反复洗涤3-5次,再置于80℃下烘干过夜,所得样品CeTiO4,记为CTO;
步骤2,称量CeTiO4与三聚氰胺进行混合研磨,将研磨后混合物置于马弗炉中升温至到500℃,并保温3h,待冷却至室温后,用无水乙醇水溶液反复进行离心洗涤5-10次,再置于80℃烘箱中烘干过夜,即得CeTiO4/g-C3N4光催化复合材料,记为CTO/CN-x,其中x为不同质量的三聚氰胺数值,x为0.5-8。
2.根据权利要求1所述的一种CeTiO4-(g-C3N4)光催化复合材料的制备方法,其特征在于,步骤1中KCL与LiCl的混合物中KCL与LiCl的摩尔比为40.8:59.2,且KCl和LiCl的总质量为Ce(NO3)3·6H2O和TiO2总质量的20倍,所用KCl、LiCl、Ce(NO3)3·6H2O和TiO2均为分析纯。
3.根据权利要求1所述的一种CeTiO4-(g-C3N4)光催化复合材料的制备方法,其特征在于,步骤1中马弗炉灼烧时,升温速度保持在5-10℃/min。
4.根据权利要求1所述的一种CeTiO4-(g-C3N4)光催化复合材料的制备方法,其特征在于,步骤2中三聚氰胺为分析纯,x为6。
5.根据权利要求1所述的一种CeTiO4-(g-C3N4)光催化复合材料的制备方法,其特征在于,步骤1和步骤2所用的离心洗涤的速率为4000r/min。
6.基于权利要求1-5中任一种方法所制备的CeTiO4/g-C3N4光催化复合材料在降解RhB溶液上的应用。
CN202110879667.3A 2021-08-02 2021-08-02 一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用 Withdrawn CN113731461A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110879667.3A CN113731461A (zh) 2021-08-02 2021-08-02 一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110879667.3A CN113731461A (zh) 2021-08-02 2021-08-02 一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用

Publications (1)

Publication Number Publication Date
CN113731461A true CN113731461A (zh) 2021-12-03

Family

ID=78729897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110879667.3A Withdrawn CN113731461A (zh) 2021-08-02 2021-08-02 一种CeTiO4-(g-C3N4)光催化复合材料的制备方法与应用

Country Status (1)

Country Link
CN (1) CN113731461A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471658A (zh) * 2022-01-27 2022-05-13 大连理工大学 一种温度调控双功能原子级分散金属的g-C3N4光催化剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471658A (zh) * 2022-01-27 2022-05-13 大连理工大学 一种温度调控双功能原子级分散金属的g-C3N4光催化剂的制备方法

Similar Documents

Publication Publication Date Title
Zhu et al. Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies
Zhang et al. Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites
Chen et al. In situ construction of an SnO 2/gC 3 N 4 heterojunction for enhanced visible-light photocatalytic activity
Wu et al. Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation
Zhu et al. Fabrication of heterostructured BiOBr/Bi24O31Br10/TiO2 photocatalyst by pyrolysis of MOF composite for dye degradation
Chai et al. In-situ construction of Bi2SiO5/BiOBr heterojunction with significantly improved photocatalytic activity under visible light
Xie et al. Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation
Wang et al. High-efficiency visible-light AgI/Ag/Bi 2 MoO 6 as a Z-scheme photocatalyst for environmental applications
Venkatesh et al. Enhanced photocatalytic activity of reduced graphene oxide/SrSnO3 nanocomposite for aqueous organic pollutant degradation
Manchala et al. Facile synthesis of noble-metal free polygonal Zn2TiO4 nanostructures for highly efficient photocatalytic hydrogen evolution under solar light irradiation
Zhu et al. Coating BiOCl@ g-C3N4 nanocomposite with a metal organic framework: enhanced visible light photocatalytic activities
Kaur et al. Visible–light induced photocatalytic degradation of fungicide with Fe and Si doped TiO2 nanoparticles
Sharma et al. Visible light driven g-C3N4/Bi4NbO8X (XCl, Br) heterojunction photocatalyst for the degradation of organic pollutants
Xie et al. Enhancing visible light photocatalytic activity by transformation of Co3+/Co2+ and formation of oxygen vacancies over rationally Co doped ZnO microspheres
Cai et al. Construction of self-sufficient Z-scheme Ag 3 PW 12 O 40/TiO 2 photocatalysts for the improved visible-light-driven photo-degradation of rhodamine B
Liu et al. Promoting the photocatalytic activity of Bi 4 Ti 3 O 12 microspheres by incorporating iron
Yu et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity
Chu et al. KCl–LiCl molten salt synthesis of LaOCl/CeO2-g-C3N4 with excellent photocatalytic-adsorbed removal performance for organic dye pollutant
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
Wei et al. MOF-derived mesoporous gC 3 N 4/TiO 2 heterojunction with enhanced photocatalytic activity
Hou et al. Fabrication and photocatalytic activity of floating type Ag3PO4/ZnFe2O4/FACs photocatalyst
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
Li et al. Visible-light photocatalytic activity of Fe and/or Ni doped ilmenite derived-titanium dioxide nanoparticles
Quan et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S
Yang et al. Comparative study on the synthesis and photocatalytic performance of Bi 2 WO 6 nanosheets prepared via molten salt and hydrothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211203

WW01 Invention patent application withdrawn after publication