CN113731195B - Synthesis method and application of mixed metal organic framework film - Google Patents
Synthesis method and application of mixed metal organic framework film Download PDFInfo
- Publication number
- CN113731195B CN113731195B CN202110991613.6A CN202110991613A CN113731195B CN 113731195 B CN113731195 B CN 113731195B CN 202110991613 A CN202110991613 A CN 202110991613A CN 113731195 B CN113731195 B CN 113731195B
- Authority
- CN
- China
- Prior art keywords
- organic framework
- metal
- mixed
- metal organic
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 92
- 238000001308 synthesis method Methods 0.000 title claims abstract description 8
- 239000012528 membrane Substances 0.000 claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 60
- 239000002245 particle Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 14
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 238000000746 purification Methods 0.000 claims abstract description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 72
- 229910052725 zinc Inorganic materials 0.000 claims description 47
- 239000011701 zinc Substances 0.000 claims description 47
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 43
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 41
- 239000002904 solvent Substances 0.000 claims description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 238000003756 stirring Methods 0.000 claims description 32
- 150000003839 salts Chemical class 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 26
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 24
- 239000013110 organic ligand Substances 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Substances C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 10
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 10
- -1 N-diethylformamide Chemical compound 0.000 claims description 10
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 9
- 239000002738 chelating agent Substances 0.000 claims description 8
- 238000004729 solvothermal method Methods 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 239000004695 Polyether sulfone Substances 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- 229920006393 polyether sulfone Polymers 0.000 claims description 6
- GPNNOCMCNFXRAO-UHFFFAOYSA-N 2-aminoterephthalic acid Chemical compound NC1=CC(C(O)=O)=CC=C1C(O)=O GPNNOCMCNFXRAO-UHFFFAOYSA-N 0.000 claims description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 4
- FHZALEJIENDROK-UHFFFAOYSA-N 5-bromo-1h-imidazole Chemical compound BrC1=CN=CN1 FHZALEJIENDROK-UHFFFAOYSA-N 0.000 claims description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 239000012510 hollow fiber Substances 0.000 claims description 4
- 229920002492 poly(sulfone) Polymers 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 239000004697 Polyetherimide Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 229920001601 polyetherimide Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims 2
- 239000011259 mixed solution Substances 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 2
- 239000000243 solution Substances 0.000 claims 2
- 239000000126 substance Substances 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract description 41
- 239000010408 film Substances 0.000 abstract description 22
- 230000004907 flux Effects 0.000 abstract description 10
- 239000012920 MOF membrane Substances 0.000 abstract description 5
- 239000012923 MOF film Substances 0.000 abstract description 3
- 230000006911 nucleation Effects 0.000 abstract description 3
- 238000010899 nucleation Methods 0.000 abstract description 3
- 239000008204 material by function Substances 0.000 abstract description 2
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 48
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 48
- 239000013177 MIL-101 Substances 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 23
- 239000013207 UiO-66 Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 8
- 239000004246 zinc acetate Substances 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000000527 sonication Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 4
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- GVHCUJZTWMCYJM-UHFFFAOYSA-N chromium(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GVHCUJZTWMCYJM-UHFFFAOYSA-N 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910001960 metal nitrate Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000004941 mixed matrix membrane Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 1
- 239000013310 covalent-organic framework Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000007783 nanoporous material Substances 0.000 description 1
- 239000013384 organic framework Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域Technical field
本发明属于新型功能材料领域,特别涉及一种混合金属有机骨架膜的合成方法及应用。The invention belongs to the field of new functional materials, and particularly relates to a synthesis method and application of a mixed metal-organic framework membrane.
背景技术Background technique
由于环境友好、工艺方便和能耗低的特点,膜分离在纯化和分离方面引起极大的兴趣。作为最早期开发的分离膜,聚合物膜具有廉价、易加工、易装填等优势。聚合物膜通常由有机聚合物制成。然而,传统的聚合物膜在选择性和渗透性之间受到“罗伯森上限”的影响,无法同时获得高通量和高选择性,这阻碍其进一步应用。为了提高聚合物膜的分离性能,多孔材料,如沸石分子筛和共价有机骨架材料等被添加到聚合物基质中,构建混合基质膜(MMMs)。在众多纳米多孔材料中,金属有机骨架(MOF)因其高度多样化的结构、规整的孔道和可功能化等特点而受到广泛关注。然而,MMMs的性能受到聚合物特性的极大限制。一般情况下,MMMs中填料的负载量通常限制在40wt%以下,过高的负载量会导致颗粒团聚和沉降,从而降低膜的分离性能。Membrane separation has attracted great interest in purification and separation due to its environmental friendliness, process convenience, and low energy consumption. As the earliest separation membrane developed, polymer membranes have the advantages of being cheap, easy to process, and easy to load. Polymer membranes are usually made from organic polymers. However, traditional polymer membranes suffer from the "Robertson upper limit" between selectivity and permeability and cannot achieve high flux and high selectivity simultaneously, which hinders their further application. In order to improve the separation performance of polymer membranes, porous materials, such as zeolite molecular sieves and covalent organic framework materials, are added to the polymer matrix to construct mixed matrix membranes (MMMs). Among many nanoporous materials, metal-organic frameworks (MOFs) have attracted widespread attention due to their highly diverse structures, regular pores, and functionalizability. However, the performance of MMMs is greatly limited by polymer properties. In general, the loading of fillers in MMMs is usually limited to less than 40 wt%. Excessive loading will cause particle agglomeration and sedimentation, thereby reducing the separation performance of the membrane.
相比于混合基质膜,MOFs和MOFs之间具备更好的相容性,可构建颗粒穿透的薄膜而尽量避免了相界面缺陷的形成,同时,MOF膜展现出更高的渗透通量。根据前驱体相的不同,构建常规MOF膜的方法可分为两类,包括溶液法和气相沉积法。溶液法通常是通过异质结晶将多孔基材浸入前驱体混合物或界面中,组装成连续的MOF层。气相沉积法主要通过金属前体和有机配体进行气相沉积反应构建连续MOF膜。溶液法难以如MMMs制备一样,在成膜前添加纳/微米颗粒并形成分散性优异的复合层;同时该方法涉及均/异相结晶竞争、溶剂用量大等问题。气相沉积法同样涉及分子规整组装,难以简单地被用于混合金属有机骨架膜构建。因此目前现有的金属有机骨架膜制备方法,无法在获得连续MOF膜的同时引入异相MOF颗粒,以提高膜的分离性能。因此,探索和开发一种新型混合金属有机骨架膜的合成方法,对于金属有机骨架膜的工业化制备及实际应用具有重要的意义。Compared with mixed matrix membranes, MOFs have better compatibility with each other and can build particle-penetrated membranes to avoid the formation of phase interface defects. At the same time, MOF membranes exhibit higher permeation fluxes. According to the different precursor phases, the methods for constructing conventional MOF films can be divided into two categories, including solution method and vapor deposition method. The solution method usually immerses the porous substrate into a precursor mixture or interface through heterogeneous crystallization to assemble into a continuous MOF layer. The vapor deposition method mainly constructs continuous MOF films through vapor deposition reactions of metal precursors and organic ligands. It is difficult for the solution method to add nano/micron particles before film formation and form a composite layer with excellent dispersion, as in the preparation of MMMs; at the same time, this method involves problems such as homogeneous/heterogeneous crystallization competition and large solvent consumption. The vapor deposition method also involves the regular assembly of molecules and cannot be easily used to construct hybrid metal-organic framework membranes. Therefore, the current preparation method of metal-organic framework membranes cannot simultaneously obtain a continuous MOF membrane and introduce heterogeneous MOF particles to improve the separation performance of the membrane. Therefore, exploring and developing a new synthesis method for hybrid metal-organic framework membranes is of great significance for the industrial preparation and practical application of metal-organic framework membranes.
发明内容Contents of the invention
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种混合金属有机骨架膜的合成方法。本发明合成方法的设计思路为:首先合成金属有机骨架颗粒,然后使金属有机骨架颗粒均匀分散在多功能金属凝胶中,经加热处理后,形成混合金属有机骨架膜。金属有机骨架颗粒的添加不仅可以为金属有机骨架膜的生长提供更多的异相成核位点,并且可以为气体分子提供运输通道。In order to overcome the above-mentioned shortcomings and deficiencies of the prior art, the primary purpose of the present invention is to provide a synthesis method of a mixed metal-organic framework membrane. The design idea of the synthesis method of the present invention is: first synthesize metal-organic framework particles, and then uniformly disperse the metal-organic framework particles in the multifunctional metal gel. After heat treatment, a mixed metal-organic framework film is formed. The addition of metal organic framework particles can not only provide more heterogeneous nucleation sites for the growth of metal organic framework films, but also provide transport channels for gas molecules.
本发明另一目的在于提供上述方法合成的混合金属有机骨架膜。Another object of the present invention is to provide a mixed metal organic framework membrane synthesized by the above method.
本发明再一目的在于提供上述混合金属有机骨架膜的应用。Another object of the present invention is to provide the application of the above-mentioned mixed metal organic framework membrane.
本发明的目的通过下述方案实现:The object of the present invention is achieved through the following solutions:
一种混合金属有机骨架膜的合成方法,包括以下步骤:A method for synthesizing mixed metal-organic framework membranes, including the following steps:
(1)制备金属有机骨架颗粒:将金属盐A和有机配体A加入溶剂A中,混合均匀后获得合成溶液,将合成溶液进行溶剂热反应,反应结束后,待其自然冷却后洗涤、干燥,获得金属有机骨架颗粒;(1) Preparation of metal-organic framework particles: Add metal salt A and organic ligand A to solvent A, mix evenly to obtain a synthetic solution, subject the synthetic solution to a solvothermal reaction, and after the reaction is completed, wait for it to cool naturally before washing and drying. , obtain metal-organic framework particles;
(2)制备混合金属凝胶:将金属盐B加入溶剂B中,在30~80℃下搅拌分散均匀,然后加入螯合剂,继续恒温搅拌反应10~80min,得到金属溶胶,将金属有机骨架颗粒加入所得金属溶胶中,混合均匀并冷却至室温后加入有机配体B搅拌均匀,得到含有金属有机骨架颗粒的混合金属凝胶;(2) Prepare mixed metal gel: Add metal salt B to solvent B, stir and disperse evenly at 30 to 80°C, then add chelating agent, continue the constant temperature stirring reaction for 10 to 80 minutes to obtain a metal sol, and mix the metal organic framework particles Add to the obtained metal sol, mix evenly and cool to room temperature, then add organic ligand B and stir evenly to obtain a mixed metal gel containing metal-organic framework particles;
(3)合成混合金属有机骨架膜:取步骤(2)得到的含有金属有机骨架颗粒的混合金属凝胶涂覆到基底上,然后在60~250℃下进行热处理12~48h,自然冷却至室温,将合成的膜取出用溶剂C浸泡并干燥,得到所述的混合金属有机骨架膜。(3) Synthesis of mixed metal-organic framework membrane: Coat the mixed metal gel containing metal-organic framework particles obtained in step (2) on the substrate, then heat-treat at 60-250°C for 12-48 hours, and then naturally cool to room temperature. , take out the synthesized membrane, soak it in solvent C and dry it to obtain the mixed metal-organic framework membrane.
步骤(1)中所述的金属盐A中的金属元素为Zn、Al、Fe、Cu、Ti、Cr、Co、Ni、Mg、Zr、Nb、Mo、Mn、Sm、Gd中的一种;所述金属盐A通常为金属的硝酸盐、氯化盐、碳酸盐、硫酸盐或醋酸盐,具体优选硝酸锌、硝酸钴、醋酸锌、氯化铜、氯化锌、氯化铝、硝酸铜、氯化锆中的一种。The metal element in the metal salt A described in step (1) is one of Zn, Al, Fe, Cu, Ti, Cr, Co, Ni, Mg, Zr, Nb, Mo, Mn, Sm, and Gd; The metal salt A is usually a metal nitrate, chloride, carbonate, sulfate or acetate, specifically zinc nitrate, cobalt nitrate, zinc acetate, copper chloride, zinc chloride, aluminum chloride, One of copper nitrate and zirconium chloride.
步骤(1)中所述的所述有机配体A为2-咪唑甲醛、2-甲基咪唑、4-溴咪唑、咪唑、苯并咪唑、对苯二甲酸、均苯三甲酸、2-氨基对苯二甲酸、1,4-苯二甲酸中的一种;The organic ligand A described in step (1) is 2-imidazolecarboxaldehyde, 2-methylimidazole, 4-bromoimidazole, imidazole, benzimidazole, terephthalic acid, trimesic acid, 2-amino One of terephthalic acid and 1,4-phthalic acid;
步骤(1)中所述金属盐A与有机配体A的物质的量之比为1∶0.5~8(优选1∶1~2);The ratio of the amounts of metal salt A and organic ligand A described in step (1) is 1:0.5-8 (preferably 1:1-2);
步骤(1)中所述溶剂A为溶剂D、溶剂D与水的混合液、氢氟酸与水的混合液中的一种,其中溶剂D为甲醇、N,N-二甲基乙酰胺、N,N-二乙基甲酰胺、N,N-二甲基甲酰胺、辛醇、乙醇中的至少一种;所述的溶剂A仅作为反应介质,并不参与反应,因此并不需要限定用量;优选为每1mol的金属盐A对应使用4000~110000mL的溶剂A,更优选为对应使用6000~50000mL的溶剂A;Solvent A described in step (1) is one of solvent D, a mixture of solvent D and water, or a mixture of hydrofluoric acid and water, wherein solvent D is methanol, N, N-dimethylacetamide, At least one of N,N-diethylformamide, N,N-dimethylformamide, octanol, and ethanol; the solvent A is only used as a reaction medium and does not participate in the reaction, so there is no need to limit Usage amount: Preferably, 4000 to 110000 mL of solvent A is used for every 1 mol of metal salt A, and more preferably, 6000 to 50000 mL of solvent A is used;
步骤(1)中所述的溶剂热反应是指在衬有聚四氟乙烯的不锈钢高压釜中于40~300℃热处理6~72小时。The solvothermal reaction described in step (1) refers to heat treatment in a stainless steel autoclave lined with polytetrafluoroethylene at 40 to 300°C for 6 to 72 hours.
步骤(1)中所述的洗涤优选为用溶剂D、溶剂D与水的混合液、氢氟酸与水的混合液中的至少一种进行洗涤,其中溶剂D为甲醇、N,N-二甲基乙酰胺、N,N-二乙基甲酰胺、N,N-二甲基甲酰胺、辛醇、乙醇中的至少一种。The washing described in step (1) is preferably carried out with at least one of solvent D, a mixture of solvent D and water, and a mixture of hydrofluoric acid and water, wherein solvent D is methanol, N, N-dihydrogen. At least one of methylacetamide, N,N-diethylformamide, N,N-dimethylformamide, octanol, and ethanol.
步骤(2)中所述的金属盐B中的金属元素为Zn、Al、Fe、Cu、Ti、Cr、Co、Ni、Mg、Zr、Nb、Mo、Mn、Sm、Gd中的一种;所述金属盐B通常为金属的硝酸盐、氯化盐、碳酸盐、硫酸盐或醋酸盐,具体优选硝酸锌、硝酸钴、醋酸锌、氯化铜、氯化锌、氯化铝、硝酸铜、氯化锆中的一种。The metal element in the metal salt B described in step (2) is one of Zn, Al, Fe, Cu, Ti, Cr, Co, Ni, Mg, Zr, Nb, Mo, Mn, Sm, and Gd; The metal salt B is usually a metal nitrate, chloride, carbonate, sulfate or acetate, specifically zinc nitrate, cobalt nitrate, zinc acetate, copper chloride, zinc chloride, aluminum chloride, One of copper nitrate and zirconium chloride.
步骤(2)中所述的溶剂B为一元醇、二元醇及醇类的衍生物,优选为乙醇、丙醇、丁醇、乙二醇、丙二醇、丙三醇、乙二醇乙醚或乙二醇甲醚中的一种;所述的溶剂B的体积用量以金属盐B的质量计为0.5~50mL/g(优选2~22mL/g)。Solvent B described in step (2) is a monohydric alcohol, a glycol and derivatives of alcohols, preferably ethanol, propanol, butanol, ethylene glycol, propylene glycol, glycerin, ethylene glycol ether or ethyl glycol. One of the glycol methyl ethers; the volumetric dosage of the solvent B is 0.5 to 50 mL/g (preferably 2 to 22 mL/g) based on the mass of the metal salt B.
步骤(2)中所述的螯合剂为乙醇胺、乙二胺、二乙醇胺、三乙醇胺、2-氨基乙醇、三乙胺、二乙烯三胺或氨水中的一种,优选为乙二胺、乙醇胺或氨水中的一种;所述螯合剂与金属盐B的物质的量之比为1∶0.5~8(优选1∶1~3);The chelating agent described in step (2) is one of ethanolamine, ethylenediamine, diethanolamine, triethanolamine, 2-aminoethanol, triethylamine, diethylenetriamine or ammonia, preferably ethylenediamine, ethanolamine Or one in ammonia water; the ratio of the amount of the chelating agent to the metal salt B is 1:0.5~8 (preferably 1:1~3);
步骤(2)中所述有机配体B为2-咪唑甲醛、2-甲基咪唑、4-溴咪唑、咪唑、苯并咪唑、对苯二甲酸、均苯三甲酸中的至少一种;所述金属盐B与有机配体B的物质的量之比为1∶0.5~12(优选1∶1~5)。The organic ligand B in step (2) is at least one of 2-imidazolecarboxaldehyde, 2-methylimidazole, 4-bromoimidazole, imidazole, benzimidazole, terephthalic acid and trimesic acid; The ratio of the amounts of the metal salt B and the organic ligand B is 1:0.5-12 (preferably 1:1-5).
步骤(2)中所述的金属有机骨架颗粒为步骤(1)中制备的金属有机骨架颗粒中的至少一种。The metal organic framework particles described in step (2) are at least one of the metal organic framework particles prepared in step (1).
步骤(2)中所述的金属有机骨架颗粒的用量与金属凝胶生成的金属有机骨架材料质量之比为0~50%(优选0~20%)。The ratio of the amount of the metal organic framework particles described in step (2) to the mass of the metal organic framework material generated by the metal gel is 0 to 50% (preferably 0 to 20%).
步骤(3)中所述的基底的构型为平板式、管式或中空纤维式;步骤(3)中所述的基底的材质为聚丙烯、聚乙烯、氧化铝、二氧化钛、铜、聚四氟乙烯、聚酰亚胺、聚醚醚酮、聚偏氟乙烯、聚丙烯腈、聚砜、聚醚砜、纤维素或锌,优选为聚砜、聚醚砜、阳极氧化铝、聚丙烯腈、聚偏氟乙烯、聚醚酰亚胺或聚丙烯腈。The configuration of the substrate described in step (3) is a flat plate, a tube or a hollow fiber type; the material of the substrate described in step (3) is polypropylene, polyethylene, alumina, titanium dioxide, copper, polytetraethylene. Vinyl fluoride, polyimide, polyetheretherketone, polyvinylidene fluoride, polyacrylonitrile, polysulfone, polyethersulfone, cellulose or zinc, preferably polysulfone, polyethersulfone, anodized aluminum, polyacrylonitrile , polyvinylidene fluoride, polyetherimide or polyacrylonitrile.
步骤(3)中,所述的溶剂C为甲醇、N,N-二甲基乙酰胺、N,N-二乙基甲酰胺、N,N-二甲基甲酰胺、辛醇、乙醇中的至少一种。In step (3), the solvent C is methanol, N,N-dimethylacetamide, N,N-diethylformamide, N,N-dimethylformamide, octanol, and ethanol. At least one.
一种由上述方法制备得到的混合金属有机骨架膜。A mixed metal organic framework membrane prepared by the above method.
上述的混合金属有机骨架膜在气体分离和纯化中的应用。Application of the above-mentioned mixed metal organic framework membrane in gas separation and purification.
本发明相对于现有技术,具有如下的优点及有益效果:Compared with the existing technology, the present invention has the following advantages and beneficial effects:
(1)以MOF膜为连续相基质,通过掺杂具有更高比表面积或更大孔径的MOF颗粒作为分散相,构建出一种新型混合金属有机骨架基质膜。(1) Using the MOF membrane as the continuous phase matrix and doping MOF particles with higher specific surface area or larger pore size as the dispersed phase, a new type of mixed metal-organic framework matrix membrane is constructed.
(2)金属有机骨架颗粒的添加不仅可以增加MOF膜的渗透通量和选择性,还为膜的生长提供更多的异相成核位点,促进膜的连续性。(2) The addition of metal-organic framework particles can not only increase the permeation flux and selectivity of the MOF membrane, but also provide more heterogeneous nucleation sites for membrane growth and promote membrane continuity.
(3)本发明方法具有广泛的通用性,可以适用于多种混合金属有机骨架膜的构建,具有很好的应用价值和前景。(3) The method of the present invention has broad versatility and can be applied to the construction of a variety of mixed metal-organic framework membranes, and has good application value and prospects.
附图说明Description of the drawings
图1为本发明实施例1制备的UiO-66-NH2混合ZIF-8基质膜的SEM图,图中,(a)是膜表面,(b)是截面;Figure 1 is an SEM image of the UiO-66-NH 2 mixed ZIF-8 matrix membrane prepared in Example 1 of the present invention. In the figure, (a) is the membrane surface and (b) is the cross section;
图2为实施例1制备的UiO-66-NH2混合ZIF-8基质膜、UiO-66-NH2以及对比例制备的ZIF-8的XRD图;其中ZIF-8代表对比例1中制备的ZIF-8膜,UNZ-M5代表UiO-66-NH2混合ZIF-8基质膜;Figure 2 is the XRD pattern of UiO-66-NH 2 mixed ZIF-8 matrix membrane prepared in Example 1, UiO-66-NH 2 and ZIF-8 prepared in Comparative Example; wherein ZIF-8 represents the ZIF-8 prepared in Comparative Example 1 ZIF-8 membrane, U N ZM 5 represents UiO-66-NH 2 mixed ZIF-8 matrix membrane;
图3为本发明实施例1制备的UiO-66-NH2混合ZIF-8基质膜和对比例中制备的ZIF-8膜的气体通量对比图。其中ZIF-8代表对比例1中制备的ZIF-8膜的通量,UNZ-M5代表UiO-66-NH2混合ZIF-8基质膜的通量;Figure 3 is a gas flux comparison diagram of the UiO-66-NH 2 mixed ZIF-8 matrix membrane prepared in Example 1 of the present invention and the ZIF-8 membrane prepared in the comparative example. Among them, ZIF-8 represents the flux of the ZIF-8 membrane prepared in Comparative Example 1, and U N ZM 5 represents the flux of the UiO-66-NH 2 mixed ZIF-8 matrix membrane;
图4为本发明实施例2制备的MIL-101混合ZIF-8基质膜的SEM图,图中,(a)是膜表面,(b)是截面;Figure 4 is an SEM image of the MIL-101 mixed ZIF-8 matrix membrane prepared in Example 2 of the present invention. In the figure, (a) is the membrane surface and (b) is the cross section;
图5为本发明实施例3制备的UiO-66混合ZIF-8基质膜的SEM图,图中,(a)是膜表面,(b)是截面;Figure 5 is an SEM image of the UiO-66 mixed ZIF-8 matrix membrane prepared in Example 3 of the present invention. In the figure, (a) is the membrane surface and (b) is the cross section;
图6为本发明对比例中制备的ZIF-8膜的SEM图,图中,(a)是膜表面,(b)是截面。Figure 6 is an SEM image of the ZIF-8 membrane prepared in the comparative example of the present invention. In the figure, (a) is the membrane surface and (b) is the cross section.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。The present invention will be described in further detail below with reference to the examples and drawings, but the implementation of the present invention is not limited thereto. If the specific conditions are not specified in the examples, the conditions should be carried out according to the conventional conditions or the conditions recommended by the manufacturer. If the manufacturer of the reagents or instruments used is not indicated, they are all conventional products that can be purchased commercially.
本发明中,术语“金属盐A”、“金属盐B”没有特别的含义,均指通常意义上的金属盐,标记为“A”、“B”只是用于区分不同步骤中用到的金属盐。术语“有机配体A”、“有机配体B”、“溶剂A”、“溶剂B”、“溶剂C”、“溶剂D”与之同理。In the present invention, the terms "metal salt A" and "metal salt B" have no special meaning. They all refer to metal salts in the general sense. The marks "A" and "B" are only used to distinguish the metals used in different steps. Salt. The terms "organic ligand A", "organic ligand B", "solvent A", "solvent B", "solvent C" and "solvent D" are the same.
实施例中所用试剂如无特殊说明均可从市场常规购得。The reagents used in the examples can all be purchased from the market unless otherwise specified.
实施例1Example 1
MOF颗粒为UiO-66-NH2,金属凝胶为锌凝胶,基底为阳极氧化铝基底(AAO),合成的混合金属有机骨架膜为UiO-66-NH2混合ZIF-8基质膜。The MOF particles are UiO-66-NH 2 , the metal gel is zinc gel, the substrate is an anodized aluminum substrate (AAO), and the synthesized mixed metal-organic framework film is a UiO-66-NH 2 mixed ZIF-8 matrix film.
制备方法:Preparation:
(1)UiO-66-NH2的制备:UiO-66-NH2由溶剂热合成法制备。通过搅拌和超声处理将氯化锆(0.48g)和2-氨基对苯二甲酸(0.372g)溶解在N,N-二甲基甲酰胺(40mL)和水(0.19mL)中。将溶液转移到衬有聚四氟乙烯的不锈钢高压釜中,并在120℃下热处理24小时。自然冷却后,通过在6000rpm下离心5min来分离粉末。最后,所得粉末用N,N-二甲基甲酰胺和甲醇洗涤数次。(1) Preparation of UiO-66-NH 2 : UiO-66-NH 2 is prepared by solvothermal synthesis method. Zirconium chloride (0.48 g) and 2-aminoterephthalic acid (0.372 g) were dissolved in N,N-dimethylformamide (40 mL) and water (0.19 mL) by stirring and sonication. The solution was transferred to a Teflon-lined stainless steel autoclave and heat treated at 120 °C for 24 h. After natural cooling, the powder was separated by centrifugation at 6000 rpm for 5 min. Finally, the obtained powder was washed several times with N,N-dimethylformamide and methanol.
(2)制备含有UiO-66-NH2的凝胶:将醋酸锌(3.467g)添加到乙醇(10mL)中,在60℃下恒温搅拌20min,然后向溶液中加入乙醇胺(1.0mL),60℃恒温搅拌反应20min,得到透明的锌溶胶,冷却至室温待用。将UiO-66-NH2(0.0327g)加入到1mL锌溶胶中,超声5min,搅拌5min,循环三次,使得UiO-66-NH2在锌溶胶中分散均匀。分散均匀后,将2-甲基咪唑(0.519g)加入溶胶中迅速搅拌几分钟,得到含有UiO-66-NH2的锌凝胶。(2) Prepare gel containing UiO-66- NH2 : Add zinc acetate (3.467g) to ethanol (10mL), stir at constant temperature at 60°C for 20min, then add ethanolamine (1.0mL) to the solution, 60 The reaction was stirred at constant temperature for 20 minutes to obtain a transparent zinc sol, which was cooled to room temperature for later use. Add UiO-66-NH 2 (0.0327g) to 1 mL of zinc sol, sonicate for 5 min, stir for 5 min, and cycle three times to make UiO-66-NH 2 evenly dispersed in the zinc sol. After uniform dispersion, 2-methylimidazole (0.519g) was added to the sol and stirred rapidly for a few minutes to obtain a zinc gel containing UiO-66- NH2 .
(3)合成UiO-66-NH2混合ZIF-8基质膜:取步骤(2)得到的含有UiO-66-NH2颗粒的锌凝胶旋涂到AAO基底上,在120℃下干燥25h,待反应体系自然冷却后,将合成的混合金属骨架膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的UiO-66-NH2混合ZIF-8基质膜(图1为其SEM图),所述的UiO-66-NH2占ZIF-8的质量分数为10wt%(即UiO-66-NH2与锌凝胶生成的ZIF-8的质量之比为10%)。(3) Synthesis of UiO-66-NH 2 mixed ZIF-8 matrix membrane: Spin-coat the zinc gel containing UiO-66-NH 2 particles obtained in step (2) onto the AAO substrate, and dry at 120°C for 25 hours. After the reaction system is naturally cooled, the synthesized mixed metal framework film is taken out, soaked in the solvent methanol for 2 hours and dried in a methanol atmosphere for 24 hours to obtain the UiO-66-NH 2 mixed ZIF-8 matrix film (Figure 1 is an SEM of Figure), the mass fraction of UiO-66-NH 2 in ZIF-8 is 10 wt% (that is, the mass ratio of UiO-66-NH 2 to ZIF-8 generated from zinc gel is 10%).
如图2中XRD图谱(其中UNZ-M5代表UiO-66-NH2混合ZIF-8基质膜)所示,所制得的UiO-66-NH2混合ZIF-8基质膜的XRD图与对比例1制备的ZIF-8膜的XRD图相似且出现了UiO-66-NH2的特征峰,表明实验条件下成功制备了UiO-66-NH2混合ZIF-8基质膜。同时通过恒压变容法对UiO-66-NH2混合ZIF-8基质膜进行单组分气体分离性能表征,实验结果如图3所示,相比于对比例1的原始ZIF-8膜,UiO-66-NH2混合ZIF-8基质膜的氢气、二氧化碳、氮气、甲烷和丙烷渗透性明显增加,其中氢气的渗透通量从1925Barrer提高到3349Barrer,说明金属有机骨架颗粒的添加可以增强混合金属有机骨架膜的渗透通量。而且各气体通量不同,UiO-66-NH2混合ZIF-8基质膜表现出良好的分离性能,说明所制备的UiO-66-NH2混合ZIF-8基质膜连续致密,不存在明显的缺陷。As shown in the XRD pattern in Figure 2 (where UN ZM 5 represents UiO-66-NH 2 mixed ZIF-8 matrix film), the XRD pattern of the prepared UiO-66-NH 2 mixed ZIF-8 matrix film is consistent with the The XRD patterns of the ZIF-8 membrane prepared in Example 1 are similar and the characteristic peaks of UiO-66-NH 2 appear, indicating that the UiO-66-NH 2 mixed ZIF-8 matrix membrane was successfully prepared under the experimental conditions. At the same time, the single-component gas separation performance of the UiO-66-NH 2 mixed ZIF-8 matrix membrane was characterized by the constant pressure variable volume method. The experimental results are shown in Figure 3. Compared with the original ZIF-8 membrane of Comparative Example 1, The permeability of hydrogen, carbon dioxide, nitrogen, methane and propane of the UiO-66-NH 2 mixed ZIF-8 matrix membrane increased significantly, and the permeation flux of hydrogen increased from 1925 Barrer to 3349 Barrer, indicating that the addition of metal organic framework particles can enhance the mixed metal Permeation flux of organic framework membranes. Moreover, the flux of each gas is different, and the UiO-66-NH 2 mixed ZIF-8 matrix membrane shows good separation performance, indicating that the prepared UiO-66-NH 2 mixed ZIF-8 matrix membrane is continuous and dense, and there are no obvious defects. .
实施例2Example 2
MOF颗粒为MIL-101,金属凝胶为锌凝胶,基底为阳极氧化铝基底(AAO),合成的混合金属有机骨架膜为MIL-101混合ZIF-8基质膜。The MOF particles are MIL-101, the metal gel is zinc gel, the substrate is an anodized aluminum substrate (AAO), and the synthesized mixed metal-organic framework film is a MIL-101 mixed ZIF-8 matrix film.
制备方法:Preparation:
(1)MIL-101的制备:将九水硝酸铬(1.2g)、1,4-苯二甲酸(0.5g)和氢氟酸溶液(0.6mL)加入去离子水(15.0mL)中并搅拌10min。将混合物转移到衬有聚四氟乙烯的不锈钢高压釜中,并在220℃下热处理8小时。结晶后,MIL-101粉末通过离心分离并洗涤。(1) Preparation of MIL-101: Add chromium nitrate nonahydrate (1.2g), 1,4-phthalic acid (0.5g) and hydrofluoric acid solution (0.6mL) into deionized water (15.0mL) and stir 10 minutes. The mixture was transferred to a Teflon-lined stainless steel autoclave and heat treated at 220 °C for 8 h. After crystallization, the MIL-101 powder is separated by centrifugation and washed.
(2)制备含有MIL-101的锌凝胶:将醋酸锌(3.467g)添加到乙醇(10mL)中,在60℃下恒温搅拌20min,然后向溶液中加入乙醇胺(1.0mL),60℃恒温搅拌反应20min,得到透明无沉淀锌溶胶,冷却至室温待用。将MIL-101(0.0327g)加入到1mL锌溶胶中,超声5min,搅拌5min,循环三次,使得MIL-101在锌溶胶中分散均匀。分散均匀后,将2-甲基咪唑(0.519g)加入迅速搅拌几分钟,得到含有MIL-101的锌凝胶。(2) Preparation of zinc gel containing MIL-101: Add zinc acetate (3.467g) to ethanol (10mL), stir at a constant temperature of 60°C for 20 minutes, then add ethanolamine (1.0mL) to the solution, and stir at a constant temperature of 60°C Stir the reaction for 20 minutes to obtain a transparent zinc sol without precipitation, and cool it to room temperature for later use. Add MIL-101 (0.0327g) to 1 mL of zinc sol, sonicate for 5 minutes, stir for 5 minutes, and cycle three times to make MIL-101 evenly dispersed in the zinc sol. After uniform dispersion, 2-methylimidazole (0.519g) was added and stirred rapidly for a few minutes to obtain a zinc gel containing MIL-101.
(3)合成MIL-101混合ZIF-8基质膜:取步骤(2)得到的含有MIL-101颗粒的锌凝胶200uL旋涂到AAO基底上,在120℃下进行干燥25h,待反应体系自然冷却后,将合成的膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的MIL-101混合ZIF-8基质膜(图4为其SEM图),其中MIL-101占ZIF-8的质量分数为10wt%(即MIL-101与锌凝胶生成的ZIF-8的质量之比为10%)。(3) Synthesis of MIL-101 mixed ZIF-8 matrix membrane: Spin-coat 200uL of the zinc gel containing MIL-101 particles obtained in step (2) onto the AAO substrate, dry at 120°C for 25 hours, and wait until the reaction system naturally After cooling, the synthesized membrane was taken out, soaked in the solvent methanol for 2 hours and dried in a methanol atmosphere for 24 hours to obtain the MIL-101 mixed ZIF-8 matrix membrane (Figure 4 is its SEM image), in which MIL-101 accounts for ZIF- The mass fraction of 8 is 10wt% (that is, the mass ratio of MIL-101 to ZIF-8 generated from zinc gel is 10%).
实施例3Example 3
MOF颗粒为UiO-66,金属凝胶为锌凝胶,基底为阳极氧化铝基底(AAO),合成的金属有机骨架混合金属有机骨架基质膜为UiO-66混合ZIF-8基质膜。The MOF particles are UiO-66, the metal gel is zinc gel, the substrate is an anodized aluminum substrate (AAO), and the synthesized metal-organic framework mixed metal-organic framework matrix film is UiO-66 mixed ZIF-8 matrix film.
制备方法:Preparation:
(1)UiO-66的制备:通过搅拌和超声处理将氯化锆(0.53g)、对苯二甲酸(0.3467g)加入到N,N-二甲基甲酰胺(31.5mL)中。将溶液转移到衬有聚四氟乙烯的不锈钢高压釜中,并在120℃下热处理24小时。自然冷却后,分离出UiO-66粉末,用N,N-二甲基甲酰胺和甲醇洗涤数次。(1) Preparation of UiO-66: Add zirconium chloride (0.53g) and terephthalic acid (0.3467g) to N,N-dimethylformamide (31.5mL) through stirring and sonication. The solution was transferred to a Teflon-lined stainless steel autoclave and heat treated at 120 °C for 24 h. After natural cooling, UiO-66 powder was separated and washed several times with N,N-dimethylformamide and methanol.
(2)制备含有UiO-66的锌凝胶:将醋酸锌(3.467g)加入到乙醇(10mL)中,在60℃下恒温搅拌20min,然后加入乙醇胺(1.0mL),60℃恒温搅拌反应20min,得到透明无沉淀锌溶胶,冷却至室温待用。将UiO-66(0.1308g)加入到1mL锌溶胶中,超声5min,搅拌5min,循环三次,使得UiO-66在锌溶胶中分散均匀。分散均匀后,将2-甲基咪唑(0.519g)加入迅速搅拌几分钟,得到含有UiO-66的锌凝胶。(2) Preparation of zinc gel containing UiO-66: Add zinc acetate (3.467g) to ethanol (10 mL), stir at a constant temperature of 60°C for 20 min, then add ethanolamine (1.0 mL), and stir at a constant temperature of 60°C for 20 min. , to obtain a transparent zinc sol without precipitation, and cool it to room temperature for later use. Add UiO-66 (0.1308g) to 1 mL of zinc sol, sonicate for 5 min, stir for 5 min, and cycle three times to make UiO-66 evenly dispersed in the zinc sol. After uniform dispersion, 2-methylimidazole (0.519g) was added and stirred rapidly for a few minutes to obtain a zinc gel containing UiO-66.
(3)合成UiO-66混合ZIF-8基质膜:取步骤(2)得到的含有UiO-66颗粒的锌凝胶200uL旋涂到AAO基底上,在120℃下进行干燥25h,待反应体系自然冷却后,将合成的膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的UiO-66混合ZIF-8基质膜(图5为其SEM图),所述的UiO-66占ZIF-8的质量分数为40wt%。(3) Synthesis of UiO-66 mixed ZIF-8 matrix membrane: Spin-coat 200uL of the zinc gel containing UiO-66 particles obtained in step (2) onto the AAO substrate, dry at 120°C for 25 hours, and wait until the reaction system naturally After cooling, the synthesized membrane was taken out, soaked in the solvent methanol for 2 hours and dried in a methanol atmosphere for 24 hours to obtain the UiO-66 mixed ZIF-8 matrix membrane (Figure 5 is its SEM image). The UiO-66 accounted for The mass fraction of ZIF-8 is 40wt%.
实施例4Example 4
MOF颗粒为UiO-66-NH2,金属凝胶为铜凝胶,基底为阳极氧化铝基底(AAO),金属有机骨架混合金属有机骨架基质膜为UiO-66-NH2混合CuBTC基质膜.The MOF particles are UiO-66-NH 2 , the metal gel is copper gel, the substrate is an anodized aluminum substrate (AAO), and the metal-organic framework mixed metal-organic framework matrix film is UiO-66-NH 2 mixed CuBTC matrix film.
制备方法:Preparation:
(1)UiO-66-NH2的制备:UiO-66-NH2由溶剂热合成法制备。通过搅拌和超声处理将氯化锆(0.48g)和2-氨基对苯二甲酸(0.372g)溶解在N,N-二甲基甲酰胺(40mL)和水(0.19mL)中。将溶液转移到衬有聚四氟乙烯的不锈钢高压釜中,并在120℃下热处理24小时。自然冷却后,通过在6000rpm下离心5min来分离粉末。最后,所得粉末用N,N-二甲基甲酰胺和甲醇洗涤数次。(1) Preparation of UiO-66-NH 2 : UiO-66-NH 2 is prepared by solvothermal synthesis method. Zirconium chloride (0.48 g) and 2-aminoterephthalic acid (0.372 g) were dissolved in N,N-dimethylformamide (40 mL) and water (0.19 mL) by stirring and sonication. The solution was transferred to a Teflon-lined stainless steel autoclave and heat treated at 120 °C for 24 h. After natural cooling, the powder was separated by centrifugation at 6000 rpm for 5 min. Finally, the obtained powder was washed several times with N,N-dimethylformamide and methanol.
(2)制备含有UiO-66-NH2的铜凝胶:将三水硝酸铜(3.817g)添加到乙二醇甲醚(50mL)中,在50℃下搅拌40min,然后加入氨水(1mL),50℃搅拌反应20min,得到铜溶胶,在常温下放置待用。将UiO-66-NH2(0.0327g)加入到1mL铜溶胶中,超声5min,搅拌5min,循环三次,使得UiO-66-NH2在铜溶胶中分散均匀。分散均匀后,将均苯三甲酸(0.42g)加入迅速搅拌几分钟,得到含有UiO-66-NH2的铜凝胶。(2) Preparation of copper gel containing UiO-66- NH2 : Add copper nitrate trihydrate (3.817g) to ethylene glycol methyl ether (50mL), stir at 50°C for 40min, and then add ammonia water (1mL) , stir and react at 50°C for 20 minutes to obtain copper sol, which is left at room temperature for later use. Add UiO-66-NH 2 (0.0327g) to 1 mL of copper sol, sonicate for 5 min, stir for 5 min, and cycle three times to make UiO-66-NH 2 evenly dispersed in the copper sol. After uniform dispersion, trimesic acid (0.42g) was added and stirred rapidly for several minutes to obtain a copper gel containing UiO-66- NH2 .
(3)合成UiO-66-NH2混合CuBTC基质膜:取步骤(2)得到的含有UiO-66-NH2颗粒的铜凝胶200uL旋涂到AAO基底上,在120℃下进行干燥25h,待反应体系自然冷却后,将合成的膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的UiO-66-NH2混合CuBTC基质膜,所述的UiO-66-NH2占CuBTC的质量分数为10wt%。(3) Synthesis of UiO-66-NH 2 mixed CuBTC matrix film: Spin-coat 200uL of the copper gel containing UiO-66-NH 2 particles obtained in step (2) onto the AAO substrate, and dry at 120°C for 25 hours. After the reaction system is naturally cooled, the synthesized membrane is taken out, soaked in the solvent methanol for 2 hours and dried in a methanol atmosphere for 24 hours to obtain the UiO-66-NH 2 mixed CuBTC matrix membrane. The UiO-66-NH 2 accounts for The mass fraction of CuBTC is 10wt%.
实施例5Example 5
MOF颗粒为UiO-66-NH2,金属凝胶为锌凝胶,基底为聚醚砜中空纤维膜,合成的金属有机骨架混合金属有机骨架基质膜为UiO-66-NH2混合ZIF-67基质膜。The MOF particles are UiO-66-NH 2 , the metal gel is zinc gel, the substrate is polyethersulfone hollow fiber membrane, and the synthesized metal-organic framework mixed metal-organic framework matrix membrane is UiO-66-NH 2 mixed ZIF-67 matrix membrane.
制备方法:Preparation:
(1)UiO-66-NH2的制备:UiO-66-NH2由溶剂热合成法制备。通过搅拌和超声处理将氯化锆(0.48g)和2-氨基对苯二甲酸(0.372g)溶解在N,N-二甲基甲酰胺(40mL)和水(0.19mL)中。将溶液转移到衬有聚四氟乙烯的不锈钢高压釜中,并在120℃下热处理24小时。自然冷却后,通过在6000rpm下离心5min来分离粉末。最后,所得粉末用N,N-二甲基甲酰胺和甲醇洗涤数次。(1) Preparation of UiO-66-NH 2 : UiO-66-NH 2 is prepared by solvothermal synthesis method. Zirconium chloride (0.48 g) and 2-aminoterephthalic acid (0.372 g) were dissolved in N,N-dimethylformamide (40 mL) and water (0.19 mL) by stirring and sonication. The solution was transferred to a Teflon-lined stainless steel autoclave and heat treated at 120 °C for 24 h. After natural cooling, the powder was separated by centrifugation at 6000 rpm for 5 min. Finally, the obtained powder was washed several times with N,N-dimethylformamide and methanol.
(2)制备含有UiO-66-NH2的凝胶:将醋酸锌(3.467g)添加到乙醇(10mL)中,在60℃下恒温搅拌20min,然后向溶液中加入乙醇胺(1.0mL),60℃恒温搅拌反应20min,得到透明的锌溶胶,冷却至室温待用。将UiO-66-NH2(0.0327g)加入到1mL锌溶胶中,超声5min,搅拌5min,循环三次,使得UiO-66-NH2在锌溶胶中分散均匀。分散均匀后,将2-甲基咪唑(0.519g)加入溶胶中迅速搅拌几分钟,得到含有UiO-66-NH2的锌凝胶。(2) Prepare gel containing UiO-66- NH2 : Add zinc acetate (3.467g) to ethanol (10mL), stir at constant temperature at 60°C for 20min, then add ethanolamine (1.0mL) to the solution, 60 The reaction was stirred at constant temperature for 20 minutes to obtain a transparent zinc sol, which was cooled to room temperature for later use. Add UiO-66-NH 2 (0.0327g) to 1 mL of zinc sol, sonicate for 5 min, stir for 5 min, and cycle three times to make UiO-66-NH 2 evenly dispersed in the zinc sol. After uniform dispersion, 2-methylimidazole (0.519g) was added to the sol and stirred rapidly for a few minutes to obtain a zinc gel containing UiO-66- NH2 .
(3)合成UiO-66-NH2混合ZIF-8基质膜:取1cm长的聚醚砜中空纤维膜浸泡在步骤(2)得到的含有UiO-66-NH2颗粒的锌凝胶中1min,然后取出。在120℃下干燥25h,待反应体系自然冷却后,将合成的膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的UiO-66-NH2混合ZIF-8基质膜,所述UiO-66-NH2占ZIF-8的质量分数为10wt%。(3) Synthesis of UiO-66-NH 2 mixed ZIF-8 matrix membrane: Take a 1cm long polyethersulfone hollow fiber membrane and soak it in the zinc gel containing UiO-66-NH 2 particles obtained in step (2) for 1 min. Then take it out. Dry at 120°C for 25h. After the reaction system is naturally cooled, take out the synthesized membrane, soak it in the solvent methanol for 2h and dry it in a methanol atmosphere for 24h to obtain the UiO-66-NH 2 mixed ZIF-8 matrix membrane. The mass fraction of UiO-66-NH 2 in ZIF-8 is 10wt%.
实施例6Example 6
MOF颗粒为UiO-66-NH2和MIL-101,金属凝胶为锌凝胶,基底为阳极氧化铝基底(AAO),合成的金属有机骨架混合金属有机骨架基质膜为UiO-66-NH2/MIL-101混合ZIF-8基质膜。The MOF particles are UiO-66-NH 2 and MIL-101, the metal gel is zinc gel, the substrate is an anodized aluminum substrate (AAO), and the synthesized metal-organic framework hybrid metal-organic framework matrix film is UiO-66-NH 2 /MIL-101 mixed ZIF-8 matrix membrane.
制备方法:Preparation:
(1)UiO-66-NH2的制备:UiO-66-NH2由溶剂热合成法制备。通过搅拌和超声处理将氯化锆(0.48g)和2-氨基对苯二甲酸(0.372g)溶解在N,N-二甲基甲酰胺(40mL)和水(0.19mL)中。将溶液转移到衬有聚四氟乙烯的不锈钢高压釜中,并在120℃下热处理24小时。自然冷却后,通过在6000rpm下离心5min来分离粉末。最后,所得粉末用N,N-二甲基甲酰胺和甲醇洗涤数次。(1) Preparation of UiO-66-NH 2 : UiO-66-NH 2 is prepared by solvothermal synthesis method. Zirconium chloride (0.48 g) and 2-aminoterephthalic acid (0.372 g) were dissolved in N,N-dimethylformamide (40 mL) and water (0.19 mL) by stirring and sonication. The solution was transferred to a Teflon-lined stainless steel autoclave and heat treated at 120 °C for 24 h. After natural cooling, the powder was separated by centrifugation at 6000 rpm for 5 min. Finally, the obtained powder was washed several times with N,N-dimethylformamide and methanol.
(2)MIL-101的制备:将九水硝酸铬(1.2g)、1,4-苯二甲酸(0.5g)和氢氟酸溶液(0.6mL)加入去离子水(15.0mL)中并搅拌10min。将混合物转移到衬有聚四氟乙烯的不锈钢高压釜中,并在220℃下热处理8小时。结晶后,MIL-101粉末通过离心分离并洗涤。(2) Preparation of MIL-101: Add chromium nitrate nonahydrate (1.2g), 1,4-phthalic acid (0.5g) and hydrofluoric acid solution (0.6mL) into deionized water (15.0mL) and stir 10 minutes. The mixture was transferred to a Teflon-lined stainless steel autoclave and heat treated at 220 °C for 8 h. After crystallization, the MIL-101 powder is separated by centrifugation and washed.
(3)制备含有UiO-66-NH2和MIL-101的锌凝胶:将醋酸锌(3.467g)加入到乙醇(10mL)中,在60℃下恒温搅拌30min,然后加入乙醇胺(1.0mL),60℃恒温搅拌反应20min,得到透明无沉淀锌溶胶,冷却至室温待用。将UiO-66-NH2(0.0164g)和MIL-101(0.0164g)加入到1mL锌溶胶中,超声5min,搅拌5min,循环三次,使得UiO-66-NH2和MIL-101在锌溶胶中分散均匀。分散均匀后,将2-甲基咪唑(0.519g)加入迅速搅拌几分钟,得到含有UiO-66-NH2和MIL-101的锌凝胶。(3) Preparation of zinc gel containing UiO-66-NH 2 and MIL-101: Add zinc acetate (3.467g) to ethanol (10mL), stir at constant temperature at 60°C for 30min, then add ethanolamine (1.0mL) , react with constant stirring at 60°C for 20 minutes to obtain a transparent zinc sol without precipitation, and cool it to room temperature for later use. Add UiO-66-NH 2 (0.0164g) and MIL-101 (0.0164g) to 1mL zinc sol, sonicate for 5 minutes, stir for 5 minutes, and cycle three times to make UiO-66-NH 2 and MIL-101 in the zinc sol. Disperse evenly. After uniform dispersion, 2-methylimidazole (0.519g) was added and stirred rapidly for a few minutes to obtain a zinc gel containing UiO-66- NH2 and MIL-101.
(4)合成UiO-66-NH2/MIL-101混合ZIF-8基质膜:取步骤(3)得到的含有UiO-66-NH2和MIL-101颗粒的200uL锌凝胶旋涂到AAO基底上,在120℃下进行干燥25h,待反应体系自然冷却后,将合成的膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的UiO-66-NH2/MIL-101混合ZIF-8基质膜,所述的UiO-66-NH2/MIL-101占ZIF-8的质量分数为20wt%。(4) Synthesis of UiO-66-NH 2 /MIL-101 mixed ZIF-8 matrix membrane: Take 200uL zinc gel containing UiO-66-NH 2 and MIL-101 particles obtained in step (3) and spin-coat it on the AAO substrate on the membrane, dry it for 25 hours at 120°C. After the reaction system is naturally cooled, take out the synthesized membrane, soak it in the solvent methanol for 2 hours and dry it in a methanol atmosphere for 24 hours to obtain the UiO-66-NH 2 /MIL-101 mixture. ZIF-8 matrix membrane, the mass fraction of UiO-66-NH 2 /MIL-101 in ZIF-8 is 20wt%.
对比例(没有添加MOF颗粒,原始ZIF-8膜)Comparative example (no MOF particles added, original ZIF-8 membrane)
金属凝胶为锌凝胶,基底为阳极氧化铝(AAO),合成的金属有机骨架膜为ZIF-8膜。The metal gel is zinc gel, the substrate is anodized aluminum oxide (AAO), and the synthesized metal-organic framework film is ZIF-8 film.
制备方法:Preparation:
(1)制备锌凝胶:将醋酸锌(3.467g)加入到乙醇(10mL)中,在60℃下恒温搅拌20min,然后加入乙醇胺(1.0mL),60℃恒温搅拌反应20min,得到透明无沉淀锌溶胶,冷却至室温待用。将2-甲基咪唑(0.519g)加入1mL锌溶胶中迅速搅拌几分钟,得到锌凝胶。(1) Preparation of zinc gel: Add zinc acetate (3.467g) to ethanol (10 mL), stir at a constant temperature of 60°C for 20 min, then add ethanolamine (1.0 mL), and react with constant stirring at a constant temperature of 60°C for 20 min to obtain a transparent product without precipitation. Zinc sol, cool to room temperature and set aside. Add 2-methylimidazole (0.519g) to 1 mL of zinc sol and stir rapidly for several minutes to obtain zinc gel.
(2)合成ZIF-8膜:取步骤(1)得到的锌凝胶200uL旋涂到AAO基底上,在120℃下进行干燥25h,待反应体系冷却至室温,将合成的膜取出用溶剂甲醇浸泡2h并在甲醇氛围下干燥24h,得到所述的ZIF-8膜。(2) Synthesize ZIF-8 membrane: Spin-coat 200uL of the zinc gel obtained in step (1) onto the AAO substrate, dry it at 120°C for 25 hours, wait until the reaction system cools to room temperature, take out the synthesized membrane and use the solvent methanol Soak for 2 hours and dry under methanol atmosphere for 24 hours to obtain the ZIF-8 membrane.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110991613.6A CN113731195B (en) | 2021-08-26 | 2021-08-26 | Synthesis method and application of mixed metal organic framework film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110991613.6A CN113731195B (en) | 2021-08-26 | 2021-08-26 | Synthesis method and application of mixed metal organic framework film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113731195A CN113731195A (en) | 2021-12-03 |
CN113731195B true CN113731195B (en) | 2023-12-12 |
Family
ID=78733225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110991613.6A Active CN113731195B (en) | 2021-08-26 | 2021-08-26 | Synthesis method and application of mixed metal organic framework film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113731195B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114247307B (en) * | 2022-01-13 | 2023-05-26 | 南京工业大学 | Method for preparing metal organic framework film and composite film |
CN116139705B (en) * | 2023-02-27 | 2024-12-10 | 吉林大学 | A method for preparing a MOFs mixed matrix membrane and its application in polyphenol purification |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104959044A (en) * | 2015-06-30 | 2015-10-07 | 浙江工业大学 | Method for synthesizing metal organic framework film |
CN105294738A (en) * | 2015-10-27 | 2016-02-03 | 浙江工业大学 | Method for preparing metal organic framework material by conversion method |
CN106215716A (en) * | 2016-08-20 | 2016-12-14 | 齐齐哈尔医学院 | A kind of novel bimetallic organic framework film with high efficiency hydrogen separating property |
CN110026097A (en) * | 2019-03-29 | 2019-07-19 | 浙江工业大学 | A kind of preparation method of PIM-1@MOFs/ polymer compounding permeation vaporizing film |
CN110052183A (en) * | 2019-04-16 | 2019-07-26 | 暨南大学 | A kind of method that collosol and gel coating combines vapour deposition process to prepare MOF film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138999A1 (en) * | 2009-12-15 | 2011-06-16 | Uop Llc | Metal organic framework polymer mixed matrix membranes |
WO2014115177A2 (en) * | 2013-01-28 | 2014-07-31 | Council Of Scientific & Industrial Research | A process for the preparation of mofs-porous polymeric membrane composites |
US9789444B2 (en) * | 2014-03-04 | 2017-10-17 | The Texas A&M University System | Methods to enhance separation performance of metal-organic framework membranes |
-
2021
- 2021-08-26 CN CN202110991613.6A patent/CN113731195B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104959044A (en) * | 2015-06-30 | 2015-10-07 | 浙江工业大学 | Method for synthesizing metal organic framework film |
CN105294738A (en) * | 2015-10-27 | 2016-02-03 | 浙江工业大学 | Method for preparing metal organic framework material by conversion method |
CN106215716A (en) * | 2016-08-20 | 2016-12-14 | 齐齐哈尔医学院 | A kind of novel bimetallic organic framework film with high efficiency hydrogen separating property |
CN110026097A (en) * | 2019-03-29 | 2019-07-19 | 浙江工业大学 | A kind of preparation method of PIM-1@MOFs/ polymer compounding permeation vaporizing film |
CN110052183A (en) * | 2019-04-16 | 2019-07-26 | 暨南大学 | A kind of method that collosol and gel coating combines vapour deposition process to prepare MOF film |
Also Published As
Publication number | Publication date |
---|---|
CN113731195A (en) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Al Obeidli et al. | Recent advancements in MOFs synthesis and their green applications | |
CN106807329B (en) | Preparation, composite material and application of activated carbon fiber-metal organic framework composites | |
CN104959044B (en) | Method for synthesizing metal organic framework film | |
CN103446893B (en) | Method for preparing metal organic framework membrane on inner wall of tubular ceramic support | |
Kujawa et al. | Crystalline porous frameworks as nano-enhancers for membrane liquid separation–Recent developments | |
CN103272491B (en) | Preparation method for in situ self-assembled organic/inorganic hybrid membrane based on coordination | |
CN113731195B (en) | Synthesis method and application of mixed metal organic framework film | |
CN111282405A (en) | Modified metal organic framework nanosheet and preparation method thereof | |
Wu et al. | Synthesis of high-performance Co-based ZIF-67 membrane for H2 separation by using cobalt ions chelated PIM-1 as interface layer | |
Sun et al. | Fabrication of MOF derivatives composite membrane via in-situ sulfurization for dye/salt separation | |
CN105879708B (en) | A kind of method for preparing the metal organic framework films of Co ZIF 67 using not homologous zinc oxide film induction | |
CN115232320B (en) | A green method to control the crystal size and morphology of crystalline MOFs using a modifier system | |
CN112657350B (en) | Method for preparing MOF @ MOF hybrid membrane by utilizing two-dimensional nanosheet membrane induced heteroepitaxial growth method | |
Ma et al. | Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts | |
CN111672341A (en) | A method for preparing bimetallic MOF membrane by self-conversion of hydroxy bimetallic salt and its application in pervaporation separation | |
CN112934007A (en) | Method for preparing ZIF-8/GO composite gas separation membrane by converting ZIF-8 precursor | |
CN111617645A (en) | A kind of preparation method of low-resistance and high-selectivity mixed matrix membrane based on hollow MOFs material | |
CN114887502A (en) | Method for preparing Zr-MOF molecular sieve membrane by using zirconium cluster as metal source under mild reaction condition | |
Wu et al. | Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation | |
Chen et al. | Bird's nest-inspired fabrication of ZIF-8 interlayer for organic solvent nanofiltration membranes | |
Lian et al. | Manipulation strategies for improving gas separation performance on metal-organic frameworks membranes | |
CN113648850A (en) | Preparation method of MXene/reduced porous graphene oxide (r-HGO) composite membrane with high flux and high removal rate | |
CN108479434A (en) | A kind of preparation method and application of the HKUST-1 membrane materials of doping Li | |
Yahaya et al. | Interaction of metal organic framework with fluorinated polymer on ceramic hollow fiber | |
CN112480421B (en) | A method for the synthesis of solvent-induced sea urchin-like MOFs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |