CN113717266B - Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield - Google Patents

Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield Download PDF

Info

Publication number
CN113717266B
CN113717266B CN202111073073.XA CN202111073073A CN113717266B CN 113717266 B CN113717266 B CN 113717266B CN 202111073073 A CN202111073073 A CN 202111073073A CN 113717266 B CN113717266 B CN 113717266B
Authority
CN
China
Prior art keywords
osnop2
plant
gene
protein
increasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111073073.XA
Other languages
Chinese (zh)
Other versions
CN113717266A (en
Inventor
谷晓峰
李秀兰
王晓蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CN202111073073.XA priority Critical patent/CN113717266B/en
Publication of CN113717266A publication Critical patent/CN113717266A/en
Application granted granted Critical
Publication of CN113717266B publication Critical patent/CN113717266B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention discloses an Osnop2 protein and application of a coding gene thereof in relation to stress tolerance and yield. The invention protects an application of Osnop2 protein in regulating stress tolerance of plants. The invention also protects the application of the substances for inhibiting the Osnop2 genes and/or the substances for inhibiting the Osnop2 proteins in plant breeding, wherein the breeding targets are as follows: plants with enhanced stress tolerance are cultivated. The invention also protects the application of the substances for inhibiting the Osnop2 genes and/or the substances for inhibiting the Osnop2 proteins in plant breeding, wherein the breeding targets are as follows: cultivating plants with enhanced yield traits. The invention can be used for improving plant properties and has great application and popularization values for plant breeding, especially rice breeding.

Description

Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield
Technical Field
The invention belongs to the technical field of biology, and relates to an Osnop2 protein and application of a coding gene thereof in relation to stress tolerance and yield.
Background
Rice is native to China and India. Is one of the main grain crops in the world. The Chinese rice sowing surface accounts for 1/4 of the national grain crops, and the yield accounts for more than half of the yield. The cultivation history has been 14000-18000 years. Is an important grain crop; besides the edible caryopsis, the rice bran can be used for preparing starch, brewing wine and vinegar, and the rice bran can be used for preparing sugar, extracting oil and extracting furfural for industrial and medical use; the rice stalks are good feed, papermaking raw materials and weaving materials, and the rice sprouts and the rice roots can be used for medical purposes.
In recent years, the rapid development of biotechnology has greatly promoted the innovation of plant breeding research means and the continuous improvement of research level, and plant disease and insect resistance and herbicide resistance biotechnology breeding have begun to enter into the practical stage. Exogenous insecticidal herbicide-resistant genes are introduced into plant genome by biotechnology means, natural barriers which are difficult to hybridize among plant species are broken, and transfer of the insecticidal herbicide-resistant genes is realized, so that the plants can rapidly and directionally obtain insect resistance and mechanical weeding, and meanwhile, the original good agronomic characters can be maintained. Because each plant of the transgenic corn has a considerable degree of resistance, the pest and herbicide resistance effect is better and more stable than the artificial control effect, the investment of manpower and material resources can be saved, and the social resources can be effectively saved. Other transgenic plants with improved agronomic traits are less ideal than insect-resistant and herbicide-resistant traits in development and application, mainly because of the lack of excellent trait improvement genes, and most agronomic traits are mainly caused by slightly effective multi-gene control, and no ideal genes are operated all the time.
Disclosure of Invention
The invention aims to provide an Osnop2 protein and application of a coding gene thereof in relation to stress tolerance and yield.
The invention protects an application of Osnop2 protein in regulating stress tolerance of plants.
The regulation is negative regulation, namely, the Osnop2 protein content is increased, and the stress tolerance of plants is reduced.
The regulation is negative regulation, namely, the Osnop2 protein content is reduced, and the stress tolerance of the plant is enhanced.
The invention also protects the application of the substances for inhibiting the Osnop2 genes and/or the substances for inhibiting the Osnop2 proteins in plant breeding, wherein the breeding targets are as follows: plants with enhanced stress tolerance are cultivated.
The invention also provides a plant breeding method for cultivating stress tolerance enhanced plants, comprising the following steps: performing gene editing on the Osnop2 gene in the receptor plant to obtain a gene editing plant; the stress tolerance of the gene editing plant is enhanced compared to the recipient plant.
The invention also protects the application of the Osnop2 protein in regulating and controlling the plant yield traits.
The regulation is negative regulation, namely, the Osnop2 protein content is increased, and the yield traits of plants are reduced.
The regulation is negative regulation, namely, the Osnop2 protein content is reduced, and the yield traits of plants are enhanced.
The invention also protects the application of the substances for inhibiting the Osnop2 genes and/or the substances for inhibiting the Osnop2 proteins in plant breeding, wherein the breeding targets are as follows: cultivating plants with enhanced yield traits.
The invention also provides a plant breeding method for cultivating plants with enhanced yield traits, comprising the following steps: performing gene editing on the Osnop2 gene in the receptor plant to obtain a gene editing plant; the gene editing plant has enhanced yield traits compared with the recipient plant.
Any of the above-described inhibiting the Osnop2 gene is inhibiting the activity of the Osnop2 gene and/or reducing the abundance of the Osnop2 gene. Decreasing the abundance of the Osnop2 gene can be achieved by disabling transcription of the RNA. The reduction of the abundance of the Osnop2 gene can be achieved by gene editing. The gene editing may specifically be a Cas9 system-based gene editing. In the Cas9 system, the target sequence binding region in the sgRNA is shown as a sequence 7 in a sequence table. In the Cas9 system, sgRNA is shown as a sequence 6 in a sequence table. The gene editing is specifically realized by introducing a recombinant plasmid SG2027 into plants.
Any of the above-described inhibition of an Osnop2 protein is inhibition of the activity of an Osnop2 protein and/or reduction of the abundance of an Osnop2 protein. The reduction in the abundance of the Osnop2 protein may be achieved by disabling the expression of the Osnop2 protein.
Any of the above gene edits may specifically be Cas9 system-based gene edits. Substances that gene-edit the Osnop2 gene can specifically be sgrnas and Cas9 proteins. The substances that perform gene editing on the Osnop2 gene may specifically be a DNA molecule encoding sgRNA and a DNA molecule encoding Cas9 protein. The substances that carry out gene editing on the Osnop2 gene may specifically be an expression vector having a DNA molecule encoding sgRNA and an expression vector having a DNA molecule encoding Cas9 protein. The substance for gene editing of the Osnop2 gene may specifically be an expression vector having a DNA molecule encoding sgRNA and a DNA molecule encoding Cas9 protein. The target sequence binding region in the sgRNA is shown as a sequence 7 in a sequence table. The sgRNA is shown as a sequence 6 in a sequence table. The DNA molecule for coding the sgRNA is shown as a sequence 5 in a sequence table. The material for gene editing of the Osnop2 gene is specifically recombinant plasmid SG2027.
The invention also provides a method for preparing the plant with enhanced stress tolerance, which comprises the following steps of replacing 'TCGGACGACGCCTCCTTTG' in the Osnop2 gene in plant genome DNA with 'TCGGACGACGCCTCCTTG' or 'TCGGACGACGCCTCCTTTTGG', so as to obtain the plant with enhanced stress tolerance.
The substitutions are homozygous substitutions, i.e., identical substitutions occur in homologous chromosomes.
The present invention also provides a method for preparing a plant with enhanced yield traits comprising the step of replacing "TCGGACGACGCCTCCTTTG" in the Osnop2 gene in plant genomic DNA with "TCGGACGACGCCTCCTTG" or "TCGGACGACGCCTCCTTTTGG" to obtain a plant with enhanced yield traits.
The substitutions are homozygous substitutions, i.e., identical substitutions occur in homologous chromosomes.
The stress tolerance is stress tolerance to heat stress and/or stress tolerance to salt stress.
The yield trait enhancement is embodied as at least one or any combination of the following: increased ear length, increased secondary stem number, increased ear grain number, increased grain weight, increased grain length and increased grain width.
Any one of the above Osnop2 proteins is (a 1) or (a 2) or (a 3) or (a 4) as follows:
(a1) Protein shown in a sequence 1 in a sequence table;
(a2) A fusion protein obtained by connecting a tag to the N-terminal or/and the C-terminal of the protein of (a 1);
(a3) A protein related to plant stress tolerance obtained by substitution and/or deletion and/or addition of one or more amino acid residues in the step (a 1);
(a4) A protein derived from rice and having 98% or more identity with (a 1) and being related to plant stress tolerance.
Any of the above described Osnop2 genes is a gene encoding an Osnop2 protein.
Any of the above Osnop2 genes is (b 1) or (b 2) or (b 3) or (b 4) as follows:
(b1) A DNA molecule with a coding region shown as a sequence 2 in a sequence table;
(b2) DNA molecules shown in a sequence 3 in a sequence table;
(b3) A DNA molecule derived from rice and having 95% or more identity to (b 1) or (b 2) and encoding said protein;
(b4) A DNA molecule which hybridizes under stringent conditions to the nucleotide sequence defined in (b 1) or (b 2) and which encodes said protein.
Any one of the Cas9 proteins is a protein coded by 2696 th-6967 th nucleotide in a sequence 4 of a sequence table.
Any recombinant plasmid SG2027 is shown as a sequence 4 in a sequence table.
Any of the above plants is a monocotyledonous plant or a dicotyledonous plant. Any of the above plants is a gramineous plant. Any of the above plants is a oryza plant. Any of the above plants is rice, for example, rice Nipponbare.
The invention can be used for improving plant properties and has great application and popularization values for plant breeding, especially rice breeding.
Drawings
FIG. 1 is a schematic diagram of the structure of recombinant plasmid SG2027.
FIG. 2 shows the sequencing results of the mutant sites and their surrounding nucleotides of Osnop2#1 plants and Osnop2#2 plants.
FIG. 3 shows ear phenotypes of different strains of osnop2 and complementary materials.
FIG. 4 shows spike length statistics for different strains of osnop2 and complementary materials.
FIG. 5 is a graph showing statistics of the number of primary and secondary shoots of different strains of osnop2 and complementary materials.
FIG. 6 is a plot of statistics of the number of grains per ear for different strains of osnop2 and complementary materials.
FIG. 7 is a graph showing the statistics of thousand kernel weights of different strains of osnop2 and complementary materials.
FIG. 8 shows the shelled grain length and grain width phenotypes of different strains of osnop2 and complementary materials.
FIG. 9 shows the phenotype of the different strains of osnop2 and the grain length and grain width of the uncoating of the complementary material.
FIG. 10 is a plot of the statistics of the shelled grain length and grain width of different strains of osnop2 and complementary materials.
FIG. 11 is a plot of statistics of the grain length and grain width of the dehulled grains of the different strains of osnop2 and the complementary materials.
FIG. 12 is a graph showing heat stress phenotypes and statistics of different strains of osnop 2.
FIG. 13 is a salt stress phenotype and statistical plot of osnop2#1 and its complement.
Detailed Description
The following detailed description of the invention is provided in connection with the accompanying drawings that are presented to illustrate the invention and not to limit the scope thereof. The examples provided below are intended as guidelines for further modifications by one of ordinary skill in the art and are not to be construed as limiting the invention in any way.
The experimental methods in the following examples, unless otherwise specified, are conventional methods, and are carried out according to techniques or conditions described in the literature in the field or according to the product specifications. Materials, reagents and the like used in the examples described below are commercially available unless otherwise specified.
Unless otherwise indicated, the quantitative tests in the examples below were all performed in triplicate, and the results averaged.
Examples
The Osnop2 protein is shown as a sequence 1 in a sequence table. In the cDNA of rice Japanese sunny, the CDS of the encoding Osnop2 protein is shown as a sequence 2 of a sequence table. In the genomic DNA of rice Japanese sunny, the gene for encoding the Osnop2 protein is shown as a sequence 3 in a sequence table.
1. Construction of recombinant plasmids
Recombinant plasmid SG2027 was constructed. The structural schematic of recombinant plasmid SG2027 is shown in FIG. 1. And through whole plasmid sequencing, the recombinant plasmid SG2027 is shown as a sequence 4 of a sequence table. In the sequence 4 of the sequence table, 2696-6967 th nucleotide codes Cas9 protein. In the recombinant plasmid SG2027, the coding region of the sgRNA is shown as a sequence 5 of a sequence table. Correspondingly, the sgRNA is shown as a sequence 6 in a sequence table, and a target sequence binding region in the sgRNA is shown as a sequence 7 in the sequence table.
2. Genetic transformation is carried out and regenerated plants are obtained
Recombinant plasmid SG2027 was introduced into Agrobacterium EHA105 to obtain recombinant Agrobacterium. The method comprises the steps of adopting an agrobacterium dip method to carry out genetic transformation on embryogenic callus of rice Japanese sunny by recombinant agrobacterium, then screening resistant callus (100 mg/L hygromycin is adopted for resistance screening), carrying out differentiation regeneration culture, and then carrying out rooting culture to obtain regenerated plants.
3. Obtaining a gene editing plant and a progeny plant thereof
And (3) identifying the regenerated plant obtained in the step two as follows: taking leaves, extracting genome DNA, carrying out PCR amplification by adopting a primer pair consisting of a primer F1 and a primer R1, and sequencing PCR amplification products.
F1:5’-GCGGGGAAGAAGGGGAAG-3’;
R1:5’-TAGCTCGCGTGAATGCTACA-3’。
Through the above identification, two homozygous mutant plants (homozygous mutant, i.e., two chromosomes are identical) were selected from the regenerated plants obtained in the second step, and designated as Osnop2#1 plants and Osnop2#2 plants, respectively. Sequencing identified that the Osnop2#1 plant differed from the genomic DNA of rice Nippon (expressed by Nip) only in that a deletion of one nucleotide occurred in the gene encoding the Osnop2 protein (a frame shift mutation was caused and terminated in advance), the sequencing results of the mutation site and its surrounding nucleotides were shown in FIG. 2. Sequencing identified, compared with genomic DNA of rice Nippon (expressed by Nip), osnop2#2 plants were different only in that two nucleotide insertions (causing frame shift mutation and premature termination) occurred in the gene encoding the Osnop2 protein, and the sequencing results of the mutation site and its surrounding nucleotides are shown in FIG. 2.
The Osnop2#1 plant is selfed and seeds are harvested, and the seeds are cultivated into plants, namely T1 generation plants. And selfing the T1 generation plant and harvesting seeds to obtain the T2 generation seed. The Osnop2#1 plant and its inbred progeny are called Osnop2#1 strain.
The Osnop2#2 plant is selfed and seeds are harvested, and the seeds are cultivated into plants, namely T1 generation plants. And selfing the T1 generation plant and harvesting seeds to obtain the T2 generation seed. The Osnop2#2 plant and its inbred progeny are called Osnop2#2 strain.
4. Obtaining a compensation plant and a progeny plant thereof
1. Construction of recombinant plasmids
The recombinant plasmid is a circular double-stranded DNA molecule, as shown in a sequence 8 of a sequence table. In the sequence 8 of the sequence table, 807 th-2296 th nucleotide is a promoter, and 2297 th-4378 th nucleotide codes Osnop2 protein.
2. And (3) introducing the recombinant plasmid constructed in the step (1) into agrobacterium EHA105 to obtain recombinant agrobacterium. The method comprises the steps of adopting an agrobacterium infection method, carrying out genetic transformation on embryogenic callus of a receptor plant (the receptor plant is a plant grown from T2 generation seeds of Osnop2#1 plants), screening resistant callus (50 mg/L hygromycin is adopted for resistance screening), carrying out differentiation regeneration culture, and carrying out rooting culture to obtain regenerated plants.
3. And (3) identifying the regenerated plant obtained in the step (2) as follows: taking leaves, extracting genome DNA, carrying out PCR amplification by adopting a primer pair consisting of a primer F2 and a primer R2, and sequencing PCR amplification products. And screening to obtain the anaplerotic plants according to the identification result. Sequencing results show that the DNA molecule shown in the sequence 2 of the sequence table and the mutant DNA molecule are simultaneously arranged in the anaplerotic plant (the mutant DNA molecule is used for replacing TCGGACGACGCCTCC in the DNA molecule shown in the sequence 2 by TCGGACGACGCCTCCTTG)TTTG "DNA molecule obtained).
F2:5’-GAGTTAGCTCACTCATTAG-3’;
R2:5’-CAACGTGCACAACAGAAT-3’。
4. And 3, selfing the anaplerotic plant obtained in the step, harvesting seeds, and culturing the seeds into plants, namely T1 generation plants. And selfing the T1 generation plant and harvesting seeds to obtain the T2 generation seed. The selfing offspring of the anaplerotic plants are called Osnop2-CP strain.
5. Trait comparison
The seeds tested were: rice seeds of Nippon sunny, T2 generation seeds of Osnop2#1, T2 generation seeds of Osnop2#2, and T2 generation seeds of Osnop2-CP.
The test plants were cultivated under parallel conditions, in particular: taking seeds, germinating and raising seedlings in a greenhouse (counting from dew white, and co-culturing for 3 weeks) to obtain 3-week seedlings; transplanting the 3-week seedlings to the field of the Hebei gallery and carrying out normal cultivation and management.
And (5) observing the phenotype of the spike in the mature period, photographing, and counting the spike length. The photograph is shown in FIG. 3. The ear length is shown in FIG. 4 (average of 10 plants per line). Compared with rice Japanese sunny plants, the spike length of the Osnop2#1 plant line and the Osnop2#2 plant line is obviously increased, and the increase range is about 5.48-7.34 percent. Compared with rice Japanese sunny plants, the spike length of the Osnop2-CP plants is not significantly different. Compared with the Osnop2#1 strain plant, the spike length of the Osnop2-CP plant is obviously reduced.
And observing and counting the number of primary and secondary branches in the mature period. The results are shown in FIG. 5 (average of 10 plants per line). Compared with rice Japanese sunny plants, the number of secondary branches of the Osnop2#1 plant line and the Osnop2#2 plant line is obviously increased, and the increase range is about 11.08-13.67%. Compared with the Osnop2#1 strain plant, the secondary branch number of the Osnop2-CP plant is obviously reduced.
The number of seeds per ear was observed and counted during the maturation period. The results are shown in FIG. 6. Compared with rice Japanese sunny plants, the seed numbers of the Osnop2#1 plant line and the Osnop2#2 plant line are obviously increased, and the increase range is about 15.32-17.04%. Compared with rice Japanese sunny plants, the seed numbers of the Osnop2-CP plants have no obvious difference. Compared with the Osnop2#1 plant, the number of seeds of the Osnop2-CP plant is obviously reduced.
Seeds were harvested at maturity and thousand kernel weight was counted. The results are shown in FIG. 7. Compared with rice Japanese sunny plants, the thousand seed weight of the Osnop2#1 plant line and the Osnop2#2 plant line is obviously increased, and the increase range is about 8.7-15.88 percent. Compared with rice Japanese sunny plants, the thousand seed weight of the Osnop2-CP plants is not significantly different. Compared with the Osnop2#1 strain, the thousand seed weight of the Osnop2-CP strain is remarkably reduced.
The seeds are harvested in the mature period, and the length and width of the shelled seeds and the shelled seeds are observed and counted. The results are shown in fig. 8, 9, 10 and 11. Compared with the rice Japanese sunny plant, the grain length with hulls, grain width with hulls, grain length with hulls and grain width with hulls of the Osnop2#1 plant and the Osnop2#2 plant are obviously increased, and the increase ranges are about 12.4 to 16.2 percent, 22.6 to 23.2 percent, 11.4 to 15.7 percent and 16.1 to 17.9 percent respectively. Compared with the rice Japanese sunny plant, the Osnop2-CP plant has no obvious difference in grain length with hulls, grain width with hulls, grain length with hulls and grain width with hulls. Compared with the Osnop2#1 strain, the Osnop2-CP strain has significantly reduced grain length with shell, grain width with shell, grain length with shell and grain width with shell.
6. Heat stress test
The seeds tested were: rice seeds of japan, T2 generation seeds of osnop2#1 line, T2 generation seeds of osnop2#2 line. The test plants were cultivated under parallel conditions, in particular: seeds were taken, germinated in the greenhouse and cultivated to the trefoil phase (time point a, photographs), then transferred to a 45 ℃ incubator for 48 hours (time point B, photographs), then transferred back to the greenhouse and cultivated for 7 days (time point C, photographs), and then the survival rate was counted (at least 24 per test plant). The greenhouse conditions were: 28 ℃,10 hours light/14 hours darkness.
The photographs of the plants are shown in fig. 12, the left graph corresponds to time point a, the middle graph corresponds to time point B, and the right graph corresponds to time point C.
The survival results are shown in figure 12. The survival rate of the Japanese sunny plant is about 40%, the survival rate of the Osnop2#1 plant is about 90%, and the survival rate of the Osnop2#2 plant is about 85%. Compared with Japanese sunny, the heat resistance of the Osnop2#1 strain and the Osnop2#2 strain plants is remarkably improved.
7. Salt stress test
The seeds tested were: rice seeds of Nippon sunny, seeds of the T2 generation of the Osnop2#1 strain and seeds of the T2 generation of the Osnop2-CP strain. The test plants were cultivated under parallel conditions, in particular: seeds were taken, grown in the greenhouse to the trefoil stage (time point a, photographed), then changed to grown in the Hoagland nutrient solution containing 150mM NaCl for 6 days (time point B, photographed), then the seedlings were washed, then changed to grown in the Hoagland nutrient solution for 7 days (time point C, photographed), and finally the survival rate was counted (at least 24 plants per test plant). The greenhouse conditions were: 28 ℃,10 hours light/14 hours darkness.
The photographs of plants are shown in fig. 13, the left graph corresponds to time point a, the middle graph corresponds to time point B, and the right graph corresponds to time point C.
The survival results are shown in figure 13. The survival rate of the Nippon plants was 0, the survival rate of the Osnop2#1 plants was about 20%, and the survival rate of the Osnop2-CP plants was 0. Compared with Japanese sunny, the salt tolerance of the Osnop2#1 line is significantly increased. The salt tolerance of the Osnop2-CP strain plant is basically consistent with that of Japanese sunny.
The present invention is described in detail above. It will be apparent to those skilled in the art that the present invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with respect to specific embodiments, it will be appreciated that the invention may be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The application of some of the basic features may be done in accordance with the scope of the claims that follow.
Sequence listing
<110> institute of biotechnology of national academy of agricultural sciences
<120> Osnop2 protein and use of gene encoding the same in relation to stress tolerance and yield
<130> GNCYX212426
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 693
<212> PRT
<213> Oryza sativa
<400> 1
Met Ala Lys Lys Gly Ala Pro Arg Arg Gln Pro Pro Pro Pro Pro Pro
1 5 10 15
Arg Gln Leu Ala Ala Gly Lys Lys Gly Lys Ala Ser Pro Lys Ala Ala
20 25 30
Lys Arg Ala Ala Pro Lys Lys Gln Arg Leu Leu Glu Ser Ser Ser Asp
35 40 45
Asp Ser Glu Leu Glu Gln Gln Gln Gly Gln Leu Gln Glu Val Glu Ser
50 55 60
Gly Ser Asp Leu Asp Val Pro Ser Asp Ser Gly Ala Glu Glu Leu Ser
65 70 75 80
Asp Ser Asp Asp Ala Ser Phe Glu Gly Gly Asp Ser Gly Asp Glu Glu
85 90 95
Glu Glu Glu Asp Asp Glu Asp Gly Asp Asp Asp Pro Leu Ala Asp Asp
100 105 110
Phe Leu Ala Gly Ser Asp Asp Glu Ser Asp Gly Gly Asp Asp Ser Gly
115 120 125
Val Asp Ser Asp Glu Ser Asp Asp Leu Glu Ala Lys Ser Arg Ala Ile
130 135 140
Asp Glu Glu Lys Glu Lys Ala Glu Glu Glu Ala Glu Glu Glu Leu Lys
145 150 155 160
Leu Asn Ile Arg Ser Glu Ser Asp Glu Phe Arg Leu Pro Thr Lys Glu
165 170 175
Glu Leu Glu Glu Glu Ala Leu Arg Pro Pro Asn Leu Pro Asn Leu Lys
180 185 190
Arg Arg Ile Ser Glu Ile Val Arg Val Leu Ser Asn Phe Ser Lys Leu
195 200 205
Arg Gln Lys Asp Val Pro Arg Lys Asp Tyr Val Asn Gln Leu Lys Thr
210 215 220
Asp Ile Met Ser Tyr Tyr Gly Tyr Asn Asp Phe Leu Val Glu Ala Phe
225 230 235 240
Ile Glu Met Phe Pro Ala Val Glu Leu Val Glu Leu Leu Glu Ser Phe
245 250 255
Glu Lys Arg Pro Pro Glu Cys Leu Arg Thr Asn Thr Leu Lys Thr Arg
260 265 270
Arg Arg Asp Leu Ala Ala Ala Leu Ile Pro Arg Gly Phe Asn Leu Asp
275 280 285
Pro Ile Gly Lys Trp Ser Lys Val Gly Leu Val Val Tyr Asp Ser Thr
290 295 300
Ile Ser Ala Gly Ala Thr Val Glu Tyr Met Ala Gly His Tyr Met Lys
305 310 315 320
Gln Gly Ala Ser Ser Phe Leu Pro Val Met Ala Leu Ala Pro Gln Glu
325 330 335
Lys Glu Arg Ile Val Asp Met Ala Ala Ala Pro Gly Gly Lys Thr Thr
340 345 350
Tyr Ile Gly Ala Leu Met Lys Asn Thr Gly Ile Ile Tyr Ala Asn Glu
355 360 365
Phe Asn Glu Lys Arg Leu His Gly Leu Leu Gly Asn Ile His Arg Met
370 375 380
Gly Val Thr Asn Thr Ile Val Cys Asn Tyr Asp Gly Lys Glu Leu Pro
385 390 395 400
Lys Val Leu Gly Met Asn Ser Val Asp Arg Val Leu Leu Asp Ala Pro
405 410 415
Cys Thr Gly Thr Gly Thr Ile Trp Lys Asp Pro Gln Ile Lys Thr Ser
420 425 430
Lys Gly Ile Glu Asp Ile Arg Asp Cys Ala Phe Val Gln Lys Gln Leu
435 440 445
Leu Leu Ala Ala Ile Asp Leu Val Asp Ala Asn Ser Lys Thr Gly Gly
450 455 460
Tyr Ile Val Tyr Ser Thr Cys Ser Leu Met Ile Pro Glu Asn Glu Ala
465 470 475 480
Val Val Asp Tyr Ala Leu Lys Lys Arg Asn Val Lys Leu Val Pro Cys
485 490 495
Gly Leu Asp Phe Gly Arg Pro Gly Phe Ile Arg Phe Arg Glu His Arg
500 505 510
Phe His Thr Ser Leu Asp Lys Thr Arg Arg Phe Tyr Pro His Val Asn
515 520 525
Asn Met Asp Gly Phe Phe Val Ala Lys Leu Lys Lys Leu Ser Asn Thr
530 535 540
Ile Pro Val Ala Ser Glu Ser Ser Asn Val Pro Glu Glu Ala Ile Glu
545 550 555 560
Lys Ala Asp Pro Ser Ser Asp Asp Pro Gln Lys Gln Pro Ile Gln Ser
565 570 575
Lys Lys His Lys Asp Val Lys Thr Thr Asn Glu Glu Thr Ser Ile Leu
580 585 590
Asp Gly Val Thr Lys Asp Lys Arg Gln Thr His Glu Thr Leu Lys Asn
595 600 605
His Lys Lys Gly Lys Lys Arg Asn Gly Pro Glu Ser Thr Lys Ile Lys
610 615 620
Gly Asp Gln Lys Glu Thr His Asn Glu Glu Glu Pro Thr Ser Glu Lys
625 630 635 640
Lys Gln Pro Val Ser Ala Lys Ile Lys Lys Ser Val Pro Lys Arg Ile
645 650 655
Ser Gly Asn Lys Gly Lys Lys Leu Asp Thr Gly Lys Gly Glu Lys Arg
660 665 670
Lys Arg Asn Trp Met Val Arg Arg Asp Trp Glu Ala Tyr Lys Lys Ser
675 680 685
Arg Ser Lys Gln Val
690
<210> 2
<211> 2082
<212> DNA
<213> Oryza sativa
<400> 2
atggcgaaga agggcgcgcc gcgcaggcag ccgccgccgc cgccgcctcg gcaactggcc 60
gcggggaaga aggggaaggc ctccccgaag gcggcgaaga gggcggcgcc caagaagcag 120
aggctgctcg agtcgtcctc cgacgactcc gagctggagc agcagcaggg gcagcttcag 180
gaggtggagt ccgggtcaga cctcgacgtc ccctctgatt ccggcgccga ggagctctcc 240
gactcggacg acgcctcctt tgagggagga gacagcggcg acgaggagga ggaggaagac 300
gatgaggatg gcgacgacga ccccctcgct gacgacttcc tcgccggcag tgacgacgaa 360
agtgacggag gagacgactc tggtgtggac tcagatgagt ctgatgactt agaggcgaag 420
tcgcgagcga ttgatgaaga gaaagagaag gcagaagaag aggctgagga ggagctcaag 480
ctcaatatta gatcagaatc tgatgagttc cgattgccca caaaggagga gttggaggaa 540
gaggcacttc gaccaccaaa cctgccgaat cttaaaagga ggatatcaga aattgtccgg 600
gtactctcaa actttagtaa gctgaggcaa aaagatgtgc cgcgaaagga ttatgtcaat 660
cagctgaaga cagatataat gtcatactat ggatacaatg attttctcgt tgaagcattt 720
attgagatgt tcccagctgt ggagcttgtt gaactactgg aatcttttga gaaaagaccg 780
cctgaatgct tacgaacaaa tacattgaag acccggagaa gggatcttgc tgctgctctt 840
ataccaagag gatttaatct ggatccgata gggaagtggt caaaggtagg ccttgttgta 900
tacgactcca ccatttcagc tggtgccact gttgaatata tggctgggca ttacatgaaa 960
caaggtgcaa gttctttctt acctgtgatg gctcttgctc ctcaggagaa agagcgaatt 1020
gttgatatgg cggctgcccc aggtggcaag actacatata ttggagctct tatgaagaat 1080
actggaataa tttatgcaaa tgagttcaat gagaaaaggc tgcatggact tttgggcaac 1140
atacatcgca tgggtgttac caataccata gtttgtaatt atgatggtaa agagctacct 1200
aaagttcttg ggatgaattc ggttgacaga gttcttttgg atgcaccctg cacaggcaca 1260
gggaccattt ggaaggatcc acaaattaaa acgtcgaagg gcattgagga catcagagac 1320
tgtgcttttg tacaaaagca attgctatta gctgctattg atttggttga tgccaactcc 1380
aaaactggag gttacattgt ttactcaaca tgttcattga tgattccaga gaatgaagcg 1440
gttgttgact atgcccttaa aaagagaaac gtaaagcttg taccttgtgg attagatttt 1500
gggcgtccag gattcatccg gttccgagag catcgattcc atacttcttt agataaaaca 1560
aggagatttt atccccatgt aaacaacatg gatggttttt ttgttgcgaa gcttaaaaaa 1620
ttgagcaata cgatcccagt ggcatctgag tcatctaatg tgcctgaaga agcaattgag 1680
aaggctgatc ctagcagtga cgatcctcaa aaacagccca ttcagtcaaa aaaacataaa 1740
gatgtgaaga cgacgaatga agagacaagc atccttgatg gggtgactaa ggacaaaagg 1800
cagacacatg agacactcaa gaaccacaag aagggtaaga aacgcaatgg ccctgagagt 1860
actaaaataa agggagacca gaaagaaaca cacaacgaag aagagcctac aagtgaaaaa 1920
aagcagcctg tgtctgctaa aataaaaaaa tctgttccca agagaatatc aggtaacaaa 1980
ggaaagaagc tggatacggg caaaggagag aagaggaaaa gaaactggat ggtgaggcga 2040
gactgggaag cttataagaa gtcgaggagt aaacaagtat ga 2082
<210> 3
<211> 5395
<212> DNA
<213> Oryza sativa
<400> 3
attaaaacga gcggctcttt cccctctccg ccctctctct ctctctctct ctctctctcc 60
catggcgaag aagggcgcgc cgcgcaggca gccgccgccg ccgccgcctc ggcaactggc 120
cgcggggaag aaggggaagg cctccccgaa ggcggcgaag agggcggcgc ccaagaagca 180
gaggctgctc gagtcgtcct ccgacgactc cgagctggag cagcagcagg ggcagcttca 240
ggaggtggag tccgggtcag acctcgacgt cccctctgat tccggcgccg aggagctctc 300
cgactcggac gacgcctcct ttgagggagg agacagcggc gacgaggagg aggaggaaga 360
cgatgaggat ggcgacgacg accccctcgc tgacgacttc ctcgccggca gtgacgacga 420
aagtggtaat gcacggatta ctattgaatc gaattagctt taacaacgtg cttttcagcc 480
ttttccccat caagtcattc gattgtagca ttcacgcgag ctagtattgt aataatcgat 540
aatgggaatg caatgctgta ttgtacatct aggggaatat ctattgatga ttgtattgtg 600
ttttgtagac ggaggagacg actctggtgt ggactcagat gagtctgatg acttagaggc 660
gaagtcgcga gcgattgatg aagagaaaga gaaggcagaa gaagaggctg aggaggagct 720
caagctcaat attagatcag aatctgatga gttccgattg cccacaaagg aggttgattt 780
ttccaccttc ttttatgtct tcagttttac gtgccgctga aggtccgcaa gtgatgtgca 840
catatatcat agtttgtatg ctctgcagga gttggaggaa gaggcacttc gaccaccaaa 900
cctgccgaat cttaaaagga ggatatcaga aagtgtgttc atatatatat tttgcattac 960
caagtttatg aattttttag atgaatcaga gaaaactcaa ttgagatttg gcataatatt 1020
agtgagctaa caagatgtag ctgttctctt gtgtaaactc caaggcactt cgaccaccaa 1080
acctgccgaa tcttaaaagg aggatatcag aaagtgtgtt catatatata ttttgcatta 1140
tcaagtttat gaatttttta gatgaatcag agaaaactca attgagattt ggcataatat 1200
tagtgagcta acaagatgta gctgttctct tgtgtaaact ccaagggcaa atttaagctt 1260
tataactatg gtcattttgc attgtgatag aagcattgaa tatttccctt tctgactttt 1320
ctttctgccc attggtcttc ccctctagtt gtccgggtac tctcaaactt tagtaagctg 1380
aggcaaaaag atgtgccgcg aaaggattat gtcaatcagc tgaagacaga tataatgtca 1440
tactatggat acaatgattt tctcgttgaa gcatttattg aggtgagctt ggtgccgttt 1500
gtttctttcc attgagctgt gcgtttcccc aactgcatca ggttataatt agaaattatt 1560
gtctgacatg cttattaaaa tatgatcatg gtttacctgc tatgagttaa cagtatacat 1620
atttttactg cgcagatgtt cccagctgtg gagcttgttg aactactgga atcttttgag 1680
aaaagaccgc ctgaatgctt acgaacaaat acattgaagg taactatttc agatctcctg 1740
atatgtatgt atgtggtgcc atggaataca tgattcttta tatgtgcttc agtcttttct 1800
ttgcgttctt catcgtcctt acctgctttg ttcatgatgt tggcagaccc ggagaaggga 1860
tcttgctgct gctcttatac caagaggatt taatctggat ccgataggga agtggtcaaa 1920
ggtatgcttt gttcgatctt ctcctttact caagtaatat atccaacatc ccaaagcaac 1980
tctcctggta taaatggcag gtaggccttg ttgtatacga ctccaccatt tcagctggtg 2040
ccactgttga atatatggct gggcattaca tggtaccttc ttctccgata tcattgtgtg 2100
tagattattt catttgctct ccttccacta atgttggtat taaaaaatgt gactacagaa 2160
acaaggtgca agttctttct tacctgtgat ggctcttgct cctcaggaga aagagcgaat 2220
tgttgatatg gcgtaagatg ttttcctttg tctcatacac ttttggcaat tgttcactat 2280
catgacttct aagttattat gtgatccttt tttttcaatg aacatgtaat tgtaatatgc 2340
catgtatgta atctagtcat gctgtcttga tataccactt tgcttctgaa tttgatgata 2400
cattcaactg aattaattac cttgaattca tggaattcat gtcctcgttt ctgatcagga 2460
actcattctt ttcttgtttc cagggctgcc ccaggtggca agactacata tattggagct 2520
cttatgaaga atactggtca gtatgctgcc tgtttttaaa tacattttgt tcctccattg 2580
gagtaatttt gttttgtgtg gtttcttgcc aattgaaatg caaatatact gttttattca 2640
tttgtcatgc acaggaataa tttatgcaaa tgagttcaat gagaaaaggc tgcatggact 2700
tttgggcaac atacatcgca tgggtgttac caataccata gtttgtaatt atgatggtaa 2760
agaggtgagc aaacagtaca aatattgtta acgtgctatc tgatagccga aacacaatca 2820
actaatttta tgcattaaga aagaatcttg atttgtggta tttgtcaagt acttagtata 2880
atgtaactac agtatattgt tttgtacaaa acgataacag aatgaaaaca cattataagt 2940
attgttacat aatctctgac caataatttt tggtccattt taatcatgga gaagataaat 3000
gtcaagtcct aataattttt ggttgcttga attgggtgca gcattttctc attgaaaacc 3060
tattttgtga taacattctg tttatttcag ctacctaaag ttcttgggat gaattcggtt 3120
gacagagttc ttttggatgc accctgcaca ggcacagggg taagcatcat atagttcgta 3180
taagctccta ctcctgtcat attttctcat ttatttaaac agatgcttac tttttctgca 3240
gaccatttgg aaggatccac aaattaaaac gtcgaagggc attgaggaca tcagagactg 3300
tgcttttgta caaaaggtgc atttcttgta tttctaggtc ttgtttaaat tgaacctact 3360
taccatttgg catattccca cctaacaatt ctaaatgcaa ttcttcttat gttatcgagg 3420
aaaagaactg cattccactc acattattcc aattttgatt cttaaccaag tcacttgctt 3480
aaaacattat tggttcgtcc tcgtgttgag tttgtttttt gggggtcatt tctaagcaat 3540
ttatattgtg cagttgtgct gattcttaca tggaaataac atataacccc agaattgcta 3600
tgttctgttt gctcattttt atggattatg tttacttaat ctgtatttgc taagctatgt 3660
gattgtgttc aatcataatt tggtctttta agctacacaa tttttgtttg gtcagttttt 3720
tctaaatcga gctgttattc tatactggtt gagtacctca atcaccttga aattggtatg 3780
tataccacta tttactgtct aactgatgag ttgttttaca gcaattgcta ttagctgcta 3840
ttgatttggt tgatgccaac tccaaaactg gaggttacat tgtttactca acatgttcat 3900
tgatgattcc agaggtaagt tcattggcct tgccagttca atgatagtca acttagtttc 3960
ttgaacctct ctccattctt gcagaatgaa gcggttgttg actatgccct taaaaagaga 4020
aacgtaaagc ttgtaccttg tggattagat tttgggcgtc cagggtactg taaatctctc 4080
tcccatgacc tgttatgaag aatttctaca tttttatctt attactatcc gtttatccta 4140
cagattcatc cggttccgag agcatcgatt ccatacttct ttagataaaa caaggagatt 4200
ttatccccat gtaaacaaca tggatggttt ttttgttgcg aaggtaacac caatgctaaa 4260
cttcatggtg aaatatctaa tctattaaat aggttgtttg atcaggtgct tatttcatta 4320
ttaggatgtg ctgaatgtat tgaactctat tatgaaaagt ttaattttct ttgcttagtt 4380
tggacatacc atctgattag ggtacttcct ttgacgcagc ttaaaaaatt gagcaatacg 4440
atcccagtgg catctgagtc atctaatgtg cctgaagaag caattgagaa ggctgatcct 4500
agcagtgacg atcctcaaaa acagcccatt cagtcaaaaa aacataaaga tgtgaagacg 4560
acgaatgaag agacaagcat ccttgatggg gtgactaagg acaaaaggca gacacatgag 4620
acactcaaga accacaagaa gggtaagaaa cgcaatggcc ctgagagtac taaaataaag 4680
ggagaccaga aagaaacaca caacgaagaa gagcctacaa gtgaaaaaaa gcagcctgtg 4740
tctgctaaaa taaaaaaatc tgttcccaag agaatatcag gtaacaaagg aaagaagctg 4800
gatacgggca aaggagagaa gaggaaaaga aactggatgg tgaggcgaga ctggtgagat 4860
agtacaatga tgttgtgcct tttcatgcct tggaattgtt gttttcgttg ctttattctg 4920
atttggtgta atgatcttct aacagggaag cttataagaa gtcgaggagt aaacaagtat 4980
gaaaggcacg gatgaaggag ctctagccgt agacaaattg cagttaaatt tgaaaaccca 5040
catacgggga agatgttaga aggagcgaga atacacaatt ttggcgttgg ttcaagttcg 5100
aggcgaagga aaatttttgt tgtacttaag tctagtgaag tgatcgtctg tagttttacc 5160
ctttcttttc cgtcttggtt taatgtacca atactaaggc acttctcgga catgagttat 5220
gggagtatgt gattgacttc gtcatgttgc ctggtaagta ctatgctggc cgatggaaca 5280
gtatgatgtt ctgcttgcta agggcgacgt gtggttgtgc tcagggttag gggcggaaat 5340
cgtgctggct ccgcttttta ttgagctttc tttgaaatta atttaccttc atatt 5395
<210> 4
<211> 15897
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
taaacgctct tttctcttag gtttacccgc caatatatcc tgtcaaacac tgatagttta 60
aactgaaggc gggaaacgac aatctgatcc aagctcaagc tgctctagca ttcgccattc 120
aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg 180
gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 240
cgacgttgta aaacgacggc cagtgccaag cttggatcat gaaccaacgg cctggctgta 300
tttggtggtt gtgtagggag atggggagaa gaaaagcccg attctcttcg ctgtgatggg 360
ctggatgcat gcgggggagc gggaggccca agtacgtgca cggtgagcgg cccacagggc 420
gagtgtgagc gcgagaggcg ggaggaacag tttagtacca cattgcccag ctaactcgaa 480
cgcgaccaac ttataaaccc gcgcgctgtc gcttgtgttc ggacgacgcc tcctttggtt 540
ttagagctag aaatagcaag ttaaaataag gctagtccgt tatcaacttg aaaaagtggc 600
accgagtcgg tgcttttttg ttttagagct agaaatagca agttaaaata aggctagtcc 660
gtagcgcgtg cgccaattct gcagacaaat ggccccgggc ctgcaggtgc agcgtgaccc 720
ggtcgtgccc ctctctagag ataatgagca ttgcatgtct aagttataaa aaattaccac 780
atattttttt tgtcacactt gtttgaagtg cagtttatct atctttatac atatatttaa 840
actttactct acgaataata taatctatag tactacaata atatcagtgt tttagagaat 900
catataaatg aacagttaga catggtctaa aggacaattg agtattttga caacaggact 960
ctacagtttt atctttttag tgtgcatgtg ttctcctttt tttttgcaaa tagcttcacc 1020
tatataatac ttcatccatt ttattagtac atccatttag ggtttagggt taatggtttt 1080
tatagactaa tttttttagt acatctattt tattctattt tagcctctaa attaagaaaa 1140
ctaaaactct attttagttt ttttatttaa taatttagat ataaaataga ataaaataaa 1200
gtgactaaaa attaaacaaa taccctttaa gaaattaaaa aaactaagga aacatttttc 1260
ttgtttcgag tagataatgc cagcctgtta aacgccgtcg acgagtctaa cggacaccaa 1320
ccagcgaacc agcagcgtcg cgtcgggcca agcgaagcag acggcacggc atctctgtcg 1380
ctgcctctgg acccctctcg agagttccgc tccaccgttg gacttgctcc gctgtcggca 1440
tccagaaatt gcgtggcgga gcggcagacg tgagccggca cggcaggcgg cctcctcctc 1500
ctctcacggc acggcagcta cgggggattc ctttcccacc gctccttcgc tttcccttcc 1560
tcgcccgccg taataaatag acaccccctc cacaccctct ttccccaacc tcgtgttgtt 1620
cggagcgcac acacacacaa ccagatctcc cccaaatcca cccgtcggca cctccgcttc 1680
aaggtacgcc gctcgtcctc cccccccccc cctctctacc ttctctagat cggcgttccg 1740
gtccatggtt agggcccggt agttctactt ctgttcatgt ttgtgttaga tccgtgtttg 1800
tgttagatcc gtgctgctag cgttcgtaca cggatgcgac ctgtacgtca gacacgttct 1860
gattgctaac ttgccagtgt ttctctttgg ggaatcctgg gatggctcta gccgttccgc 1920
agacgggatc gatttcatga ttttttttgt ttcgttgcat agggtttggt ttgccctttt 1980
cctttatttc aatatatgcc gtgcacttgt ttgtcgggtc atcttttcat gctttttttt 2040
gtcttggttg tgatgatgtg gtctggttgg gcggtcgttc tagatcggag tagaattctg 2100
tttcaaacta cctggtggat ttattaattt tggatctgta tgtgtgtgcc atacatattc 2160
atagttacga attgaagatg atggatggaa atatcgatct aggataggta tacatgttga 2220
tgcgggtttt actgatgcat atacagagat gctttttgtt cgcttggttg tgatgatgtg 2280
gtgtggttgg gcggtcgttc attcgttcta gatcggagta gaatactgtt tcaaactacc 2340
tggtgtattt attaattttg gaactgtatg tgtgtgtcat acatcttcat agttacgagt 2400
ttaagatgga tggaaatatc gatctaggat aggtatacat gttgatgtgg gttttactga 2460
tgcatataca tgatggcata tgcagcatct attcatatgc tctaaccttg agtacctatc 2520
tattataata aacaagtatg ttttataatt attttgatct tgatatactt ggatgatggc 2580
atatgcagca gctatatgtg gattttttta gccctgcctt catacgctat ttatttgctt 2640
ggtactgttt cttttgtcga tgctcaccct gttgtttggt gttacttctg cagccatgga 2700
ctataaggac cacgacggag actacaagga tcatgatatt gattacaaag acgatgacga 2760
taagatggcc ccaaagaaga agcggaaggt cggtatccac ggagtcccag cagccgacaa 2820
gaagtacagc atcggcctgg acatcggcac caactctgtg ggctgggccg tgatcaccga 2880
cgagtacaag gtgcccagca agaaattcaa ggtgctgggc aacaccgacc ggcacagcat 2940
caagaagaac ctgatcggag ccctgctgtt cgacagcggc gaaacagccg aggccacccg 3000
gctgaagaga accgccagaa gaagatacac cagacggaag aaccggatct gctatctgca 3060
agagatcttc agcaacgaga tggccaaggt ggacgacagc ttcttccaca gactggaaga 3120
gtccttcctg gtggaagagg ataagaagca cgagcggcac cccatcttcg gcaacatcgt 3180
ggacgaggtg gcctaccacg agaagtaccc caccatctac cacctgagaa agaaactggt 3240
ggacagcacc gacaaggccg acctgcggct gatctatctg gccctggccc acatgatcaa 3300
gttccggggc cacttcctga tcgagggcga cctgaacccc gacaacagcg acgtggacaa 3360
gctgttcatc cagctggtgc agacctacaa ccagctgttc gaggaaaacc ccatcaacgc 3420
cagcggcgtg gacgccaagg ccatcctgtc tgccagactg agcaagagca gacggctgga 3480
aaatctgatc gcccagctgc ccggcgagaa gaagaatggc ctgttcggaa acctgattgc 3540
cctgagcctg ggcctgaccc ccaacttcaa gagcaacttc gacctggccg aggatgccaa 3600
actgcagctg agcaaggaca cctacgacga cgacctggac aacctgctgg cccagatcgg 3660
cgaccagtac gccgacctgt ttctggccgc caagaacctg tccgacgcca tcctgctgag 3720
cgacatcctg agagtgaaca ccgagatcac caaggccccc ctgagcgcct ctatgatcaa 3780
gagatacgac gagcaccacc aggacctgac cctgctgaaa gctctcgtgc ggcagcagct 3840
gcctgagaag tacaaagaga ttttcttcga ccagagcaag aacggctacg ccggctacat 3900
tgacggcgga gccagccagg aagagttcta caagttcatc aagcccatcc tggaaaagat 3960
ggacggcacc gaggaactgc tcgtgaagct gaacagagag gacctgctgc ggaagcagcg 4020
gaccttcgac aacggcagca tcccccacca gatccacctg ggagagctgc acgccattct 4080
gcggcggcag gaagattttt acccattcct gaaggacaac cgggaaaaga tcgagaagat 4140
cctgaccttc cgcatcccct actacgtggg ccctctggcc aggggaaaca gcagattcgc 4200
ctggatgacc agaaagagcg aggaaaccat caccccctgg aacttcgagg aagtggtgga 4260
caagggcgct tccgcccaga gcttcatcga gcggatgacc aacttcgata agaacctgcc 4320
caacgagaag gtgctgccca agcacagcct gctgtacgag tacttcaccg tgtataacga 4380
gctgaccaaa gtgaaatacg tgaccgaggg aatgagaaag cccgccttcc tgagcggcga 4440
gcagaaaaag gccatcgtgg acctgctgtt caagaccaac cggaaagtga ccgtgaagca 4500
gctgaaagag gactacttca agaaaatcga gtgcttcgac tccgtggaaa tctccggcgt 4560
ggaagatcgg ttcaacgcct ccctgggcac ataccacgat ctgctgaaaa ttatcaagga 4620
caaggacttc ctggacaatg aggaaaacga ggacattctg gaagatatcg tgctgaccct 4680
gacactgttt gaggacagag agatgatcga ggaacggctg aaaacctatg cccacctgtt 4740
cgacgacaaa gtgatgaagc agctgaagcg gcggagatac accggctggg gcaggctgag 4800
ccggaagctg atcaacggca tccgggacaa gcagtccggc aagacaatcc tggatttcct 4860
gaagtccgac ggcttcgcca acagaaactt catgcagctg atccacgacg acagcctgac 4920
ctttaaagag gacatccaga aagcccaggt gtccggccag ggcgatagcc tgcacgagca 4980
cattgccaat ctggccggca gccccgccat taagaagggc atcctgcaga cagtgaaggt 5040
ggtggacgag ctcgtgaaag tgatgggccg gcacaagccc gagaacatcg tgatcgaaat 5100
ggccagagag aaccagacca cccagaaggg acagaagaac agccgcgaga gaatgaagcg 5160
gatcgaagag ggcatcaaag agctgggcag ccagatcctg aaagaacacc ccgtggaaaa 5220
cacccagctg cagaacgaga agctgtacct gtactacctg cagaatgggc gggatatgta 5280
cgtggaccag gaactggaca tcaaccggct gtccgactac gatgtggacc atatcgtgcc 5340
tcagagcttt ctgaaggacg actccatcga caacaaggtg ctgaccagaa gcgacaagaa 5400
ccggggcaag agcgacaacg tgccctccga agaggtcgtg aagaagatga agaactactg 5460
gcggcagctg ctgaacgcca agctgattac ccagagaaag ttcgacaatc tgaccaaggc 5520
cgagagaggc ggcctgagcg aactggataa ggccggcttc atcaagagac agctggtgga 5580
aacccggcag atcacaaagc acgtggcaca gatcctggac tcccggatga acactaagta 5640
cgacgagaat gacaagctga tccgggaagt gaaagtgatc accctgaagt ccaagctggt 5700
gtccgatttc cggaaggatt tccagtttta caaagtgcgc gagatcaaca actaccacca 5760
cgcccacgac gcctacctga acgccgtcgt gggaaccgcc ctgatcaaaa agtaccctaa 5820
gctggaaagc gagttcgtgt acggcgacta caaggtgtac gacgtgcgga agatgatcgc 5880
caagagcgag caggaaatcg gcaaggctac cgccaagtac ttcttctaca gcaacatcat 5940
gaactttttc aagaccgaga ttaccctggc caacggcgag atccggaagc ggcctctgat 6000
cgagacaaac ggcgaaaccg gggagatcgt gtgggataag ggccgggatt ttgccaccgt 6060
gcggaaagtg ctgagcatgc cccaagtgaa tatcgtgaaa aagaccgagg tgcagacagg 6120
cggcttcagc aaagagtcta tcctgcccaa gaggaacagc gataagctga tcgccagaaa 6180
gaaggactgg gaccctaaga agtacggcgg cttcgacagc cccaccgtgg cctattctgt 6240
gctggtggtg gccaaagtgg aaaagggcaa gtccaagaaa ctgaagagtg tgaaagagct 6300
gctggggatc accatcatgg aaagaagcag cttcgagaag aatcccatcg actttctgga 6360
agccaagggc tacaaagaag tgaaaaagga cctgatcatc aagctgccta agtactccct 6420
gttcgagctg gaaaacggcc ggaagagaat gctggcctct gccggcgaac tgcagaaggg 6480
aaacgaactg gccctgccct ccaaatatgt gaacttcctg tacctggcca gccactatga 6540
gaagctgaag ggctcccccg aggataatga gcagaaacag ctgtttgtgg aacagcacaa 6600
gcactacctg gacgagatca tcgagcagat cagcgagttc tccaagagag tgatcctggc 6660
cgacgctaat ctggacaaag tgctgtccgc ctacaacaag caccgggata agcccatcag 6720
agagcaggcc gagaatatca tccacctgtt taccctgacc aatctgggag cccctgccgc 6780
cttcaagtac tttgacacca ccatcgaccg gaagaggtac accagcacca aagaggtgct 6840
ggacgccacc ctgatccacc agagcatcac cggcctgtac gagacacgga tcgacctgtc 6900
tcagctggga ggcgacaaaa ggccggcggc cacgaaaaag gccggccagg caaaaaagaa 6960
aaagtaagga tcctgattga tcgatagagc tcgaatttcc ccgatcgttc aaacatttgg 7020
caataaagtt tcttaagatt gaatcctgtt gccggtcttg cgatgattat catataattt 7080
ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga 7140
tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata 7200
tagcgcgcaa actaggataa attatcgcgc gcggtgtcat ctatgttact agatcgggaa 7260
ttcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccaca 7320
caacatacga gccggaagca taaagtgtaa agcctggggt gcctaatgag tgagctaact 7380
cacattaatt gcgttgcgct cactgcccgc tttccagtcg ggaaacctgt cgtgccagct 7440
gcattaatga atcggccaac gcgcggggag aggcggtttg cgtattggct agagcagctt 7500
gccaacatgg tggagcacga cactctcgtc tactccaaga atatcaaaga tacagtctca 7560
gaagaccaaa gggctattga gacttttcaa caaagggtaa tatcgggaaa cctcctcgga 7620
ttccattgcc cagctatctg tcacttcatc aaaaggacag tagaaaagga aggtggcacc 7680
tacaaatgcc atcattgcga taaaggaaag gctatcgttc aagatgcctc tgccgacagt 7740
ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga cgttccaacc 7800
acgtcttcaa agcaagtgga ttgatgtgat aacatggtgg agcacgacac tctcgtctac 7860
tccaagaata tcaaagatac agtctcagaa gaccaaaggg ctattgagac ttttcaacaa 7920
agggtaatat cgggaaacct cctcggattc cattgcccag ctatctgtca cttcatcaaa 7980
aggacagtag aaaaggaagg tggcacctac aaatgccatc attgcgataa aggaaaggct 8040
atcgttcaag atgcctctgc cgacagtggt cccaaagatg gacccccacc cacgaggagc 8100
atcgtggaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattg atgtgatatc 8160
tccactgacg taagggatga cgcacaatcc cactatcctt cgcaagacct tcctctatat 8220
aaggaagttc atttcatttg gagaggacac gctgaaatca ccagtctctc tctacaaatc 8280
tatctctctc gagctttcgc agatcccggg gggcaatgag atatgaaaaa gcctgaactc 8340
accgcgacgt ctgtcgagaa gtttctgatc gaaaagttcg acagcgtctc cgacctgatg 8400
cagctctcgg agggcgaaga atctcgtgct ttcagcttcg atgtaggagg gcgtggatat 8460
gtcctgcggg taaatagctg cgccgatggt ttctacaaag atcgttatgt ttatcggcac 8520
tttgcatcgg ccgcgctccc gattccggaa gtgcttgaca ttggggagtt tagcgagagc 8580
ctgacctatt gcatctcccg ccgtgcacag ggtgtcacgt tgcaagacct gcctgaaacc 8640
gaactgcccg ctgttctaca accggtcgcg gaggctatgg atgcgatcgc tgcggccgat 8700
cttagccaga cgagcgggtt cggcccattc ggaccgcaag gaatcggtca atacactaca 8760
tggcgtgatt tcatatgcgc gattgctgat ccccatgtgt atcactggca aactgtgatg 8820
gacgacaccg tcagtgcgtc cgtcgcgcag gctctcgatg agctgatgct ttgggccgag 8880
gactgccccg aagtccggca cctcgtgcac gcggatttcg gctccaacaa tgtcctgacg 8940
gacaatggcc gcataacagc ggtcattgac tggagcgagg cgatgttcgg ggattcccaa 9000
tacgaggtcg ccaacatctt cttctggagg ccgtggttgg cttgtatgga gcagcagacg 9060
cgctacttcg agcggaggca tccggagctt gcaggatcgc cacgactccg ggcgtatatg 9120
ctccgcattg gtcttgacca actctatcag agcttggttg acggcaattt cgatgatgca 9180
gcttgggcgc agggtcgatg cgacgcaatc gtccgatccg gagccgggac tgtcgggcgt 9240
acacaaatcg cccgcagaag cgcggccgtc tggaccgatg gctgtgtaga agtactcgcc 9300
gatagtggaa accgacgccc cagcactcgt ccgagggcaa agaaatagag tagatgccga 9360
ccggatctgt cgatcgacaa gctcgagttt ctccataata atgtgtgagt agttcccaga 9420
taagggaatt agggttccta tagggtttcg ctcatgtgtt gagcatataa gaaaccctta 9480
gtatgtattt gtatttgtaa aatacttcta tcaataaaat ttctaattcc taaaaccaaa 9540
atccagtact aaaatccaga tcccccgaat taattcggcg ttaattcagt acattaaaaa 9600
cgtccgcaat gtgttattaa gttgtctaag cgtcaatttg tttacaccac aatatatcct 9660
gccaccagcc agccaacagc tccccgaccg gcagctcggc acaaaatcac cactcgatac 9720
aggcagccca tcagtccggg acggcgtcag cgggagagcc gttgtaaggc ggcagacttt 9780
gctcatgtta ccgatgctat tcggaagaac ggcaactaag ctgccgggtt tgaaacacgg 9840
atgatctcgc ggagggtagc atgttgattg taacgatgac agagcgttgc tgcctgtgat 9900
caccgcggtt tcaaaatcgg ctccgtcgat actatgttat acgccaactt tgaaaacaac 9960
tttgaaaaag ctgttttctg gtatttaagg ttttagaatg caaggaacag tgaattggag 10020
ttcgtcttgt tataattagc ttcttggggt atctttaaat actgtagaaa agaggaagga 10080
aataataaat ggctaaaatg agaatatcac cggaattgaa aaaactgatc gaaaaatacc 10140
gctgcgtaaa agatacggaa ggaatgtctc ctgctaaggt atataagctg gtgggagaaa 10200
atgaaaacct atatttaaaa atgacggaca gccggtataa agggaccacc tatgatgtgg 10260
aacgggaaaa ggacatgatg ctatggctgg aaggaaagct gcctgttcca aaggtcctgc 10320
actttgaacg gcatgatggc tggagcaatc tgctcatgag tgaggccgat ggcgtccttt 10380
gctcggaaga gtatgaagat gaacaaagcc ctgaaaagat tatcgagctg tatgcggagt 10440
gcatcaggct ctttcactcc atcgacatat cggattgtcc ctatacgaat agcttagaca 10500
gccgcttagc cgaattggat tacttactga ataacgatct ggccgatgtg gattgcgaaa 10560
actgggaaga agacactcca tttaaagatc cgcgcgagct gtatgatttt ttaaagacgg 10620
aaaagcccga agaggaactt gtcttttccc acggcgacct gggagacagc aacatctttg 10680
tgaaagatgg caaagtaagt ggctttattg atcttgggag aagcggcagg gcggacaagt 10740
ggtatgacat tgccttctgc gtccggtcga tcagggagga tatcggggaa gaacagtatg 10800
tcgagctatt ttttgactta ctggggatca agcctgattg ggagaaaata aaatattata 10860
ttttactgga tgaattgttt tagtacctag aatgcatgac caaaatccct taacgtgagt 10920
tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt 10980
tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt 11040
gtttgccgga tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc 11100
agataccaaa tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg 11160
tagcaccgcc tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg 11220
ataagtcgtg tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt 11280
cgggctgaac ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac 11340
tgagatacct acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg 11400
acaggtatcc ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg 11460
gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat 11520
ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt 11580
tacggttcct ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg 11640
attctgtgga taaccgtatt accgcctttg agtgagctga taccgctcgc cgcagccgaa 11700
cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gcgcctgatg cggtattttc 11760
tccttacgca tctgtgcggt atttcacacc gcatatggtg cactctcagt acaatctgct 11820
ctgatgccgc atagttaagc cagtatacac tccgctatcg ctacgtgact gggtcatggc 11880
tgcgccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc tgctcccggc 11940
atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc 12000
gtcatcaccg aaacgcgcga ggcagggtgc cttgatgtgg gcgccggcgg tcgagtggcg 12060
acggcgcggc ttgtccgcgc cctggtagat tgcctggccg taggccagcc atttttgagc 12120
ggccagcggc cgcgataggc cgacgcgaag cggcggggcg tagggagcgc agcgaccgaa 12180
gggtaggcgc tttttgcagc tcttcggctg tgcgctggcc agacagttat gcacaggcca 12240
ggcgggtttt aagagtttta ataagtttta aagagtttta ggcggaaaaa tcgccttttt 12300
tctcttttat atcagtcact tacatgtgtg accggttccc aatgtacggc tttgggttcc 12360
caatgtacgg gttccggttc ccaatgtacg gctttgggtt cccaatgtac gtgctatcca 12420
caggaaagag tccttttcga cctttttccc ctgctagggc aatttgccct agcatctgct 12480
ccgtacatta ggaaccggcg gatgcttcgc cctcgatcag gttgcggtag cgcatgacta 12540
ggatcgggcc agcctgcccc gcctcctcct tcaaatcgta ctccggcagg tcatttgacc 12600
cgatcagctt gcgcacggtg aaacagaact tcttgaactc tccggcgctg ccactgcgtt 12660
cgtagatcgt cttgaacaac catctggctt ctgccttgcc tgcggcgcgg cgtgccaggc 12720
ggtagagaaa acggccgatg ccgggatcga tcaaaaagta atcggggtga accgtcagca 12780
cgtccgggtt cttgccttct gtgatctcgc ggtacatcca atcagctagc tcgatctcga 12840
tgtactccgg ccgcccggtt tcgctcttta cgatcttgta gcggctaatc aaggcttcac 12900
cctcggatac cgtcaccagg cggccgttct tggccttctt cgtacgctgc atggcaacgt 12960
gcgtggtgtt taaccgaatg caggtttcta ccaggtcgtc tttctgcttt ccgccatcgg 13020
ctcgccggca gaacttgagt acgtccgcaa cgtgtggacg gaacacgcgg ccgggcttgt 13080
ctcccttccc ttcccggtat cggttcatgg attcggttag atgggaaacc gccatcagta 13140
ccaggtcgta atcccacaca ctggccatgc cggccggccc tgcggaaacc tctacgtgcc 13200
cgtctggaag ctcgtagcgg atcacctcgc cagctcgtcg gtcacgcttc gacagacgga 13260
aaacggccac gtccatgatg ctgcgactat cgcgggtgcc cacgtcatag agcatcggaa 13320
cgaaaaaatc tggttgctcg tcgcccttgg gcggcttcct aatcgacggc gcaccggctg 13380
ccggcggttg ccgggattct ttgcggattc gatcagcggc cgcttgccac gattcaccgg 13440
ggcgtgcttc tgcctcgatg cgttgccgct gggcggcctg cgcggccttc aacttctcca 13500
ccaggtcatc acccagcgcc gcgccgattt gtaccgggcc ggatggtttg cgaccgtcac 13560
gccgattcct cgggcttggg ggttccagtg ccattgcagg gccggcagac aacccagccg 13620
cttacgcctg gccaaccgcc cgttcctcca cacatggggc attccacggc gtcggtgcct 13680
ggttgttctt gattttccat gccgcctcct ttagccgcta aaattcatct actcatttat 13740
tcatttgctc atttactctg gtagctgcgc gatgtattca gatagcagct cggtaatggt 13800
cttgccttgg cgtaccgcgt acatcttcag cttggtgtga tcctccgccg gcaactgaaa 13860
gttgacccgc ttcatggctg gcgtgtctgc caggctggcc aacgttgcag ccttgctgct 13920
gcgtgcgctc ggacggccgg cacttagcgt gtttgtgctt ttgctcattt tctctttacc 13980
tcattaactc aaatgagttt tgatttaatt tcagcggcca gcgcctggac ctcgcgggca 14040
gcgtcgccct cgggttctga ttcaagaacg gttgtgccgg cggcggcagt gcctgggtag 14100
ctcacgcgct gcgtgatacg ggactcaaga atgggcagct cgtacccggc cagcgcctcg 14160
gcaacctcac cgccgatgcg cgtgcctttg atcgcccgcg acacgacaaa ggccgcttgt 14220
agccttccat ccgtgacctc aatgcgctgc ttaaccagct ccaccaggtc ggcggtggcc 14280
catatgtcgt aagggcttgg ctgcaccgga atcagcacga agtcggctgc cttgatcgcg 14340
gacacagcca agtccgccgc ctggggcgct ccgtcgatca ctacgaagtc gcgccggccg 14400
atggccttca cgtcgcggtc aatcgtcggg cggtcgatgc cgacaacggt tagcggttga 14460
tcttcccgca cggccgccca atcgcgggca ctgccctggg gatcggaatc gactaacaga 14520
acatcggccc cggcgagttg cagggcgcgg gctagatggg ttgcgatggt cgtcttgcct 14580
gacccgcctt tctggttaag tacagcgata accttcatgc gttccccttg cgtatttgtt 14640
tatttactca tcgcatcata tacgcagcga ccgcatgacg caagctgttt tactcaaata 14700
cacatcacct ttttagacgg cggcgctcgg tttcttcagc ggccaagctg gccggccagg 14760
ccgccagctt ggcatcagac aaaccggcca ggatttcatg cagccgcacg gttgagacgt 14820
gcgcgggcgg ctcgaacacg tacccggccg cgatcatctc cgcctcgatc tcttcggtaa 14880
tgaaaaacgg ttcgtcctgg ccgtcctggt gcggtttcat gcttgttcct cttggcgttc 14940
attctcggcg gccgccaggg cgtcggcctc ggtcaatgcg tcctcacgga aggcaccgcg 15000
ccgcctggcc tcggtgggcg tcacttcctc gctgcgctca agtgcgcggt acagggtcga 15060
gcgatgcacg ccaagcagtg cagccgcctc tttcacggtg cggccttcct ggtcgatcag 15120
ctcgcgggcg tgcgcgatct gtgccggggt gagggtaggg cgggggccaa acttcacgcc 15180
tcgggccttg gcggcctcgc gcccgctccg ggtgcggtcg atgattaggg aacgctcgaa 15240
ctcggcaatg ccggcgaaca cggtcaacac catgcggccg gccggcgtgg tggtgtcggc 15300
ccacggctct gccaggctac gcaggcccgc gccggcctcc tggatgcgct cggcaatgtc 15360
cagtaggtcg cgggtgctgc gggccaggcg gtctagcctg gtcactgtca caacgtcgcc 15420
agggcgtagg tggtcaagca tcctggccag ctccgggcgg tcgcgcctgg tgccggtgat 15480
cttctcggaa aacagcttgg tgcagccggc cgcgtgcagt tcggcccgtt ggttggtcaa 15540
gtcctggtcg tcggtgctga cgcgggcata gcccagcagg ccagcggcgg cgctcttgtt 15600
catggcgtaa tgtctccggt tctagtcgca agtattctac tttatgcgac taaaacacgc 15660
gacaagaaaa cgccaggaaa agggcagggc ggcagcctgt cgcgtaactt aggacttgtg 15720
cgacatgtcg ttttcagaag acggctgcac tgaacgtcag aagccgactg cactatagca 15780
gcggaggggt tggatcaaag tactttgatc ccgaggggaa ccctgtggtt ggcatgcaca 15840
tacaaatgga cgaacggata aaccttttca cgccctttta aatatccgtt attctaa 15897
<210> 5
<211> 95
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
tcggacgacg cctcctttgg ttttagagct agaaatagca agttaaaata aggctagtcc 60
gttatcaact tgaaaaagtg gcaccgagtc ggtgc 95
<210> 6
<211> 95
<212> RNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
ucggacgacg ccuccuuugg uuuuagagcu agaaauagca aguuaaaaua aggcuagucc 60
guuaucaacu ugaaaaagug gcaccgaguc ggugc 95
<210> 7
<211> 19
<212> RNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
ucggacgacg ccuccuuug 19
<210> 8
<211> 5413
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
gcatcttgaa cgatagcctt tcctttatcg caatgatggc atttgtaggt gccaccttcc 60
ttttctactg tccttttgat gaagtgacag atagctgggc aatggaatcc gaggaggttt 120
cccgatatta ccctttgttg aaaagtctca atagcccttt ggtcttctga gactgtatct 180
ttgatattct tggagtagac gagagtgtcg tgctccacca tgttcacatc aatccacttg 240
ctttgaagac gtggttggaa cgtcttcttt ttccacgatg ctcctcgtgg gtgggggtcc 300
atctttggga ccactgtcgg cagaggcatc ttgaacgata gcctttcctt tatcgcaatg 360
atggcatttg taggtgccac cttccttttc tactgtcctt ttgatgaagt gacagatagc 420
tgggcaatgg aatccgagga ggtttcccga tattaccctt tgttgaaaag tctcaatagc 480
cctttggtct tctgagactg tatctttgat attcttggag tagacgagag tgtcgtgctc 540
caccatgttg gcaagctgct ctagccaata cgcaaaccgc ctctccccgc gcgttggccg 600
attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac 660
gcaattaatg tgagttagct cactcattag gcaccccagg ctttacactt tatgcttccg 720
gctcgtatgt tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagctatgac 780
atgattacga attcgagctc ggtaccagta gctgataatt ccacattcaa ggtctctcag 840
gttgttatga tgctcaaatg tactctctct ggtttttaat gtttgacgct attgactttt 900
aaacacatgt ttgatatttt ttcttgttca aaagaaatat agaattatca tttattttgt 960
tgttatttgt tacctcataa ctatggcttt tttgtatata tgtatagttt ttaaaataag 1020
acaagtggta aaggtatgtt taaatgccaa caatgtcagc cattaaaaac tgaagggaga 1080
aacgtcctgg ggttttccgg ctagcttcac aaggtggtgg gttagacgac ctgggttcga 1140
agcctcaccc ctcctaatta tttgatatta ggtccttccc taatacttgt gtttttcatt 1200
aaaaactgaa tgagtaacat tttcagcttg ttggagacag agattagcac accacatcat 1260
gtcaactatc aagaagtcct atttatcatg taccatacta ttggttcctg aaaacagttt 1320
ggccatgcat cacttttcag tcatggctgc aacaatcact ccatttctgc aataaaatgc 1380
agcttggaga tcacttctaa ctaacttgct cttgatcgtt gcagcgcaac atcagctctg 1440
tcacacgttg tgctggggca attcaagacc atagtcataa tgctctcagg ttacctgatc 1500
ttcagctcgg atcctggaat caccagcatc tgcggagcca tcgtcgctct cggtggcatg 1560
tccgtctaca cctatctggg tctgaaagag tcgacgacaa ccgggaagaa accgccttta 1620
gcacagaagc ccaaagctgc tggggatggt gagaagcctg gtttggagca tgaggattct 1680
gtatgagctg acgaggatta ttcatcctgg ttggtcgatt gtactataag catacttagg 1740
tgattctcca agagttgtac gccattgctg agtccattgt acatagaaac acttcatgat 1800
tttacccttt tacagttctt aaaaagttca aaaacattgc ctcacaattc tcttcgtttc 1860
ttttttcttg ctgataagtt ccacagttga tgtcacgtaa gatgaagaac atgtcagcat 1920
gtcacatagg ataggaacca cgtaggagga aaccacgctc taaaccattc gggaaggtaa 1980
attggtccgg ttttaataat tgacggagca tctatacccg gttttgtagt tcatgaacat 2040
gaattggact cggcctgcag attgagggag aatatatgaa ccttttgcca tattgttttt 2100
ctaagttgaa acgggggacg cgtgcgaaac tggcccatta tttctttgga tcaatatact 2160
caagttttgg gccggcctgg cccatctagc aagcgaggta gttatagctc tctcgccgag 2220
ggcccgaggc ccagcattaa aacgagcggc tctttcccct ctccgccctc tctctctctc 2280
tctctctctc tctcccatgg cgaagaaggg cgcgccgcgc aggcagccgc cgccgccgcc 2340
gcctcggcaa ctggccgcgg ggaagaaggg gaaggcctcc ccgaaggcgg cgaagagggc 2400
ggcgcccaag aagcagaggc tgctcgagtc gtcctccgac gactccgagc tggagcagca 2460
gcaggggcag cttcaggagg tggagtccgg gtcagacctc gacgtcccct ctgattccgg 2520
cgccgaggag ctctccgact cggacgacgc ctcctttgag ggaggagaca gcggcgacga 2580
ggaggaggag gaagacgatg aggatggcga cgacgacccc ctcgctgacg acttcctcgc 2640
cggcagtgac gacgaaagtg acggaggaga cgactctggt gtggactcag atgagtctga 2700
tgacttagag gcgaagtcgc gagcgattga tgaagagaaa gagaaggcag aagaagaggc 2760
tgaggaggag ctcaagctca atattagatc agaatctgat gagttccgat tgcccacaaa 2820
ggaggagttg gaggaagagg cacttcgacc accaaacctg ccgaatctta aaaggaggat 2880
atcagaaatt gtccgggtac tctcaaactt tagtaagctg aggcaaaaag atgtgccgcg 2940
aaaggattat gtcaatcagc tgaagacaga tataatgtca tactatggat acaatgattt 3000
tctcgttgaa gcatttattg agatgttccc agctgtggag cttgttgaac tactggaatc 3060
ttttgagaaa agaccgcctg aatgcttacg aacaaataca ttgaagaccc ggagaaggga 3120
tcttgctgct gctcttatac caagaggatt taatctggat ccgataggga agtggtcaaa 3180
ggtaggcctt gttgtatacg actccaccat ttcagctggt gccactgttg aatatatggc 3240
tgggcattac atgaaacaag gtgcaagttc tttcttacct gtgatggctc ttgctcctca 3300
ggagaaagag cgaattgttg atatggcggc tgccccaggt ggcaagacta catatattgg 3360
agctcttatg aagaatactg gaataattta tgcaaatgag ttcaatgaga aaaggctgca 3420
tggacttttg ggcaacatac atcgcatggg tgttaccaat accatagttt gtaattatga 3480
tggtaaagag ctacctaaag ttcttgggat gaattcggtt gacagagttc ttttggatgc 3540
accctgcaca ggcacaggga ccatttggaa ggatccacaa attaaaacgt cgaagggcat 3600
tgaggacatc agagactgtg cttttgtaca aaagcaattg ctattagctg ctattgattt 3660
ggttgatgcc aactccaaaa ctggaggtta cattgtttac tcaacatgtt cattgatgat 3720
tccagagaat gaagcggttg ttgactatgc ccttaaaaag agaaacgtaa agcttgtacc 3780
ttgtggatta gattttgggc gtccaggatt catccggttc cgagagcatc gattccatac 3840
ttctttagat aaaacaagga gattttatcc ccatgtaaac aacatggatg gtttttttgt 3900
tgcgaagctt aaaaaattga gcaatacgat cccagtggca tctgagtcat ctaatgtgcc 3960
tgaagaagca attgagaagg ctgatcctag cagtgacgat cctcaaaaac agcccattca 4020
gtcaaaaaaa cataaagatg tgaagacgac gaatgaagag acaagcatcc ttgatggggt 4080
gactaaggac aaaaggcaga cacatgagac actcaagaac cacaagaagg gtaagaaacg 4140
caatggccct gagagtacta aaataaaggg agaccagaaa gaaacacaca acgaagaaga 4200
gcctacaagt gaaaaaaagc agcctgtgtc tgctaaaata aaaaaatctg ttcccaagag 4260
aatatcaggt aacaaaggaa agaagctgga tacgggcaaa ggagagaaga ggaaaagaaa 4320
ctggatggtg aggcgagact gggaagctta taagaagtcg aggagtaaac aagtatgagg 4380
tacccgggga tcctctagag tcgacctgca ggcatgccct gctttaatga gatatgcgag 4440
acgcctatga tcgcatgata tttgctttca attctgttgt gcacgttgta aaaaacctga 4500
gcatgtgtag ctcagatcct taccgccggt ttcggttcat tctaatgaat atatcacccg 4560
ttactatcgt atttttatga ataatattct ccgttcaatt tactgattgt ccaagcttgg 4620
cactggccgt cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc 4680
gccttgcagc acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcaccgatc 4740
gcccttccca acagttgcgc agcctgaatg gcgaatgcta gagcagcttg agcttggatc 4800
agattgtcgt ttcccgcctt cagtttaaac tatcagtgtt tgacaggata tattggcggg 4860
taaacctaag agaaaagagc gtttattaga ataatcggat atttaaaagg gcgtgaaaag 4920
gtttatccgt tcgtccattt gtatgtgcat gccaaccaca gggttcccct cgggatcaaa 4980
gtactttgat ccaacccctc cgctgctata gtgcagtcgg cttctgacgt tcagtgcagc 5040
cgtcttctga aaacgacatg tcgcacaagt cctaagttac gcgacaggct gccgccctgc 5100
cctttttctg ggcgttttct tgtcgcgtgt tttagtcgca taaaagtaga atacttgcga 5160
ctaggaaccg ggagacatta cgccatgaac aagaagcgcg acgctggcct gctggctatg 5220
cccgcgtcag caccgacgaa ccaggacttg aaccacaacg gacgaactgc acgcggcggc 5280
ctgcactaag ctgttttccg aaaaagaatc accgtacaca ggccgaccgc ccgaacctgc 5340
cagaatgctt gaacacctac ccttgcgcac gtggtgaaca atacaagcct agaaccgccc 5400
ctgaccgcgc gag 5413

Claims (10)

  1. Application of Osnop2 protein in regulating plant stress tolerance;
    the Osnop2 protein is (a 1) or (a 2) as follows:
    (a1) Protein shown in a sequence 1 in a sequence table;
    (a2) A fusion protein obtained by connecting a tag to the N-terminal or/and the C-terminal of the protein of (a 1);
    the regulation is negative regulation, namely, the Osnop2 protein content is reduced, and the stress tolerance of the plant is enhanced;
    the stress tolerance is stress tolerance to heat stress and/or stress tolerance to salt stress;
    the plant is rice.
  2. 2. Use of a substance that inhibits the Osnop2 gene in plant breeding with the following objectives: cultivating a plant with enhanced stress tolerance; the Osnop2 gene is a gene encoding the Osnop2 protein of claim 1;
    the Osnop2 gene inhibition is realized by reducing the abundance of the gene through gene editing;
    the stress tolerance is stress tolerance to heat stress and/or stress tolerance to salt stress;
    the plant is rice.
  3. 3. The use according to claim 2, wherein: the Osnop2 gene is a DNA molecule with a coding region shown as a sequence 2 in a sequence table.
  4. 4. A use according to claim 3, wherein: the Osnop2 gene is a DNA molecule shown in a sequence 3 in a sequence table.
  5. 5. A method of making a stress tolerant enhanced plant comprising the steps of: "TCGGACGACGCCTCCTTG" or "TCGGACGACGCCTCCTTTTGG" is used to replace "TCGGACGACGCCTCCTTTG" in the Osnop2 gene in plant genomic DNA to obtain a plant with enhanced stress tolerance; the Osnop2 gene is a gene encoding the Osnop2 protein of claim 1;
    the stress tolerance is stress tolerance to heat stress and/or stress tolerance to salt stress;
    the plant is rice.
  6. Application of Osnop2 protein in regulating and controlling plant yield traits;
    the Osnop2 protein is (a 1) or (a 2) as follows:
    (a1) Protein shown in a sequence 1 in a sequence table;
    (a2) A fusion protein obtained by connecting a tag to the N-terminal or/and the C-terminal of the protein of (a 1);
    the regulation is negative regulation, namely, the Osnop2 protein content is reduced, and the yield property of the plant is enhanced;
    the yield trait enhancement is embodied as at least one or any combination of the following: increasing the spike length, increasing the number of secondary branches, increasing the spike grain number, increasing the grain weight, increasing the grain length and increasing the grain width;
    the plant is rice.
  7. 7. Use of a substance that inhibits the Osnop2 gene in plant breeding with the following objectives: cultivating plants with enhanced yield traits; the Osnop2 gene is a gene encoding the Osnop2 protein of claim 1;
    the Osnop2 gene inhibition is realized by reducing the abundance of the gene through gene editing;
    the yield trait enhancement is embodied as at least one or any combination of the following: increasing the spike length, increasing the number of secondary branches, increasing the spike grain number, increasing the grain weight, increasing the grain length and increasing the grain width;
    the plant is rice.
  8. 8. The use according to claim 7, wherein: the Osnop2 gene is a DNA molecule with a coding region shown as a sequence 2 in a sequence table.
  9. 9. The use according to claim 8, wherein: the Osnop2 gene is a DNA molecule shown in a sequence 3 in a sequence table.
  10. 10. A method of making a plant with enhanced yield traits comprising the steps of: "TCGGACGACGCCTCCTTG" or "TCGGACGACGCCTCCTTTTGG" is used to replace "TCGGACGACGCCTCCTTTG" in the Osnop2 gene in plant genomic DNA to obtain plants with enhanced yield traits; the Osnop2 gene is a gene encoding the Osnop2 protein of claim 1;
    the yield trait enhancement is embodied as at least one or any combination of the following: increasing the spike length, increasing the number of secondary branches, increasing the spike grain number, increasing the grain weight, increasing the grain length and increasing the grain width;
    the plant is rice.
CN202111073073.XA 2021-09-14 2021-09-14 Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield Active CN113717266B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111073073.XA CN113717266B (en) 2021-09-14 2021-09-14 Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111073073.XA CN113717266B (en) 2021-09-14 2021-09-14 Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield

Publications (2)

Publication Number Publication Date
CN113717266A CN113717266A (en) 2021-11-30
CN113717266B true CN113717266B (en) 2023-05-12

Family

ID=78683534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111073073.XA Active CN113717266B (en) 2021-09-14 2021-09-14 Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield

Country Status (1)

Country Link
CN (1) CN113717266B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410822A (en) * 2022-01-25 2022-04-29 中国农业科学院生物技术研究所 Specific real-time fluorescent quantitative PCR (polymerase chain reaction) detection primer and detection method for transgenic corn BFL4-2 transformant
CN114560921B (en) * 2022-03-21 2023-04-14 中国农业科学院生物技术研究所 OsR5BP1 protein and regulation and control function of coding gene thereof on stress tolerance, growth performance and production performance of plants
CN114606265B (en) * 2022-04-07 2024-01-30 吉林大学 Mini base editor capable of realizing single AAV virus coating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130305398A1 (en) * 2012-02-16 2013-11-14 Marie Coffin Genes and uses for plant enhacement
CN111205358B (en) * 2020-03-04 2021-03-23 中国农业科学院生物技术研究所 Os494 protein and coding gene and application thereof

Also Published As

Publication number Publication date
CN113717266A (en) 2021-11-30

Similar Documents

Publication Publication Date Title
CN113717266B (en) Osnop2 protein and application of encoding gene thereof in relation to stress tolerance and yield
CN113717982B (en) Method for increasing length of wheat grains by utilizing gene editing knockout grain development related protein TaGSR1
US8093453B2 (en) Corn event 3272 and methods of detection thereof
HUE029544T2 (en) Corn plant event MON87460 and compositions and methods for detection thereof
CN111247243A (en) Increased fungal resistance in crop plants
CN113549647B (en) Efficient watermelon genetic transformation system and application
WO2003054229A2 (en) Maize ccoaomt2 gene polymorphism, and uses thereof to enhance plant digestibility
CN106929532A (en) Artificially creating male sterile line of maize and efficient transfer method
CN109929872A (en) A method of tomato gingko material is formulated by gene editing technology
CN111205358B (en) Os494 protein and coding gene and application thereof
CN113604501B (en) Gene editing method for indica rice improved strain aroma control gene and application thereof
CN113832181B (en) Gene editing method of japonica rice improved strain aroma control gene and application thereof
BRPI0614215A2 (en) corn processing method and DNA construct
CN113502277B (en) Rice RNA m 5 Cmethyltransferase and encoding gene and application thereof
CN101351555A (en) A new selection system for wheat
CN114958867A (en) Corn ear grain weight and yield regulation gene KWE2, and encoding protein, functional marker, expression vector and application thereof
CN110452914B (en) Gene BnC04BIN2-like1 for regulating brassinolide signal transduction and application thereof
CN113201556B (en) pSOY19-ZM2 vector, preparation method and application thereof
CN113462661B (en) SIZ1 protein separated from corn, encoding gene thereof and application thereof in variety improvement
CN114480415B (en) sgRNA for improving drought tolerance and saline-alkali tolerance of cotton and application thereof
CN113999871B (en) Method for creating dwarf upright plant type rice germplasm and application thereof
CN116694627B (en) Transgenic corn event LP035-1 and detection method thereof
KR102247547B1 (en) Composition for genome editing of Populus alba × Populus glandulosa based on CRISPR-Cas9 system and its use
JP2017529861A (en) Loci associated with culture and transformation in maize
KR20220169897A (en) Qpt gene engineered plant cell and using method of the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant